1
|
Soltani S, Webb SM, Kroll T, King-Jones K. Drosophila Evi5 is a critical regulator of intracellular iron transport via transferrin and ferritin interactions. Nat Commun 2024; 15:4045. [PMID: 38744835 PMCID: PMC11094094 DOI: 10.1038/s41467-024-48165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.
Collapse
Affiliation(s)
- Sattar Soltani
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Kirst King-Jones
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
2
|
Panska L, Nedvedova S, Vacek V, Krivska D, Konecny L, Knop F, Kutil Z, Skultetyova L, Leontovyc A, Ulrychova L, Sakanari J, Asahina M, Barinka C, Macurkova M, Dvorak J. Uncovering the essential roles of glutamate carboxypeptidase 2 orthologs in Caenorhabditis elegans. Biosci Rep 2024; 44:BSR20230502. [PMID: 38108122 PMCID: PMC10794815 DOI: 10.1042/bsr20230502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Human glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology. The results of gene knockout studies showed that C. elegans GCP2 orthologs affect the pharyngeal physiology, reproduction, and structural integrity of the organism. Promoter-driven GFP expression revealed distinct localization for each of the three gene paralogs, with gcp-2.1 being most abundant in muscles, intestine, and pharyngeal interneurons, gcp-2.2 restricted to the phasmid neurons, and gcp-2.3 located in the excretory cell. The present study provides new insight into the unique phenotypic effects of GCP2 gene knockouts in C. elegans, and the specific tissue localizations. We believe that elucidation of particular roles in a non-mammalian organism can help to explain important questions linked to physiology of this protease group and in extension to human GCP2 involvement in pathophysiological processes.
Collapse
Affiliation(s)
- Lucie Panska
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Stepanka Nedvedova
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Vojtech Vacek
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Daniela Krivska
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Lukas Konecny
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
| | - Filip Knop
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
| | - Zsofia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Lubica Skultetyova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Adrian Leontovyc
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Lenka Ulrychova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, CA 94143, USA
| | - Masako Asahina
- Department of Physiology, University of California, San Francisco, 600 16th Street, CA 94143, U.S.A
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Marie Macurkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
| | - Jan Dvorak
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Kamycka 129, Prague 165 00, Czech Republic
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, Prague 160 00, Czech Republic
| |
Collapse
|
3
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
4
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S, Li RF. Mechanisms and regulations of ferroptosis. Front Immunol 2023; 14:1269451. [PMID: 37868994 PMCID: PMC10587589 DOI: 10.3389/fimmu.2023.1269451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Lee Z, Heston WD, Wang X, Basilion JP. GCP III is not the "off-target" for urea-based PSMA ligands. Eur J Nucl Med Mol Imaging 2023; 50:2944-2946. [PMID: 37191680 PMCID: PMC10382371 DOI: 10.1007/s00259-023-06265-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Zhenghong Lee
- Radiology, School of Medicine, Case Western Reserve University, Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH, 44106, USA.
| | | | - Xinning Wang
- Radiology, School of Medicine, Case Western Reserve University, Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH, 44106, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James P Basilion
- Radiology, School of Medicine, Case Western Reserve University, Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH, 44106, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
6
|
Jedlickova L, Peterkova K, Boateng EM, Ulrychova L, Vacek V, Kutil Z, Jiang Z, Novakova Z, Snajdr I, Kim J, O’Donoghue AJ, Barinka C, Dvorak J. Characterization of glutamate carboxypeptidase 2 orthologs in trematodes. Parasit Vectors 2022; 15:480. [PMID: 36539882 PMCID: PMC9768917 DOI: 10.1186/s13071-022-05556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glutamate carboxypeptidase 2 (GCP2) belongs to the M28B metalloprotease subfamily encompassing a variety of zinc-dependent exopeptidases that can be found in many eukaryotes, including unicellular organisms. Limited information exists on the physiological functions of GCP2 orthologs in mammalian tissues outside of the brain and intestine, and such data are completely absent for non-mammalian species. Here, we investigate GCP2 orthologs found in trematodes, not only as putative instrumental molecules for defining their basal function(s) but also as drug targets. METHODS Identified genes encoding M28B proteases Schistosoma mansoni and Fasciola hepatica genomes were analyzed and annotated. Homology modeling was used to create three-dimensional models of SmM28B and FhM28B proteins using published X-ray structures as the template. For S. mansoni, RT-qPCR was used to evaluate gene expression profiles, and, by RNAi, we exploited the possible impact of knockdown on the viability of worms. Enzymes from both parasite species were cloned for recombinant expression. Polyclonal antibodies raised against purified recombinant enzymes and RNA probes were used for localization studies in both parasite species. RESULTS Single genes encoding M28B metalloproteases were identified in the genomes of S. mansoni and F. hepatica. Homology models revealed the conserved three-dimensional fold as well as the organization of the di-zinc active site. Putative peptidase activities of purified recombinant proteins were assayed using peptidic libraries, yet no specific substrate was identified, pointing towards the likely stringent substrate specificity of the enzymes. The orthologs were found to be localized in reproductive, digestive, nervous, and sensory organs as well as parenchymal cells. Knockdown of gene expression by RNAi silencing revealed that the genes studied were non-essential for trematode survival under laboratory conditions, reflecting similar findings for GCP2 KO mice. CONCLUSIONS Our study offers the first insight to our knowledge into M28B protease orthologs found in trematodes. Conservation of their three-dimensional structure, as well as tissue expression pattern, suggests that trematode GCP2 orthologs may have functions similar to their mammalian counterparts and can thus serve as valuable models for future studies aimed at clarifying the physiological role(s) of GCP2 and related subfamily proteases.
Collapse
Affiliation(s)
- Lucie Jedlickova
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Kristyna Peterkova
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - Enoch Mensah Boateng
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Lenka Ulrychova
- grid.4491.80000 0004 1937 116XDepartment of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo N. 2, 16610 Prague 6, Czech Republic
| | - Vojtech Vacek
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Zsofia Kutil
- grid.418095.10000 0001 1015 3316Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Zhenze Jiang
- grid.266100.30000 0001 2107 4242Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Zora Novakova
- grid.418095.10000 0001 1015 3316Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Ivan Snajdr
- grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo N. 2, 16610 Prague 6, Czech Republic
| | - Juan Kim
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Anthony J. O’Donoghue
- grid.266100.30000 0001 2107 4242Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Cyril Barinka
- grid.418095.10000 0001 1015 3316Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Jan Dvorak
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo N. 2, 16610 Prague 6, Czech Republic ,grid.15866.3c0000 0001 2238 631XFaculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| |
Collapse
|
7
|
De R, Prakash KU, Edison ES. Complex Interactions in Regulation of Haematopoiesis-An Unexplored Iron Mine. Genes (Basel) 2021; 12:genes12081270. [PMID: 34440444 PMCID: PMC8391430 DOI: 10.3390/genes12081270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is one of the most abundant metals on earth and is vital for the growth and survival of life forms. It is crucial for the functioning of plants and animals as it is an integral component of the photosynthetic apparatus and innumerable proteins and enzymes. It plays a pivotal role in haematopoiesis and affects the development and differentiation of different haematopoietic lineages, apart from its obvious necessity in erythropoiesis. A large amount of iron stores in humans is diverted towards the latter process, as iron is an indispensable component of haemoglobin. This review summarises the important players of iron metabolism and homeostasis that have been discovered in recent years and highlights the overall significance of iron in haematopoiesis. Its role in maintenance of haematopoietic stem cells, influence on differentiation of varied haematopoietic lineages and consequences of iron deficiency/overloading on development and maturation of different groups of haematopoietic cells have been discussed.
Collapse
|
8
|
Yu X, Tian X, Wang Y, Zhu C. Metal-metal interaction and metal toxicity: a comparison between mammalian and D. melanogaster. Xenobiotica 2021; 51:842-851. [PMID: 33929283 DOI: 10.1080/00498254.2021.1922781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Non-essential heavy metals such as mercury (Hg), arsenic (As), cadmium (Cd), and aluminium (Al) are useless to organisms and have shown extensive toxic effects. Previous studies show that two main molecular mechanisms of metal toxicity are oxidative stress and metal-metal interaction which can disrupt metal homeostasis.2. In this paper, we mainly illustrate metal toxicity and metal-metal interaction through examples in mammalians and D. melanogaster (fruit fly).3. We describe the interference of metal homeostasis by metal-metal interactions in three aspects including replacement, cellular transporter competition, and disruption of the regulation mechanism, and elaborate the mechanisms of metal toxicity to better deal with the challenges of heavy metal pollution and related health problems.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xianhan Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Chunfeng Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020; 12:E2601. [PMID: 32867052 PMCID: PMC7551829 DOI: 10.3390/nu12092601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans' health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
10
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Structural analysis of the transferrin receptor multifaceted ligand(s) interface. Biophys Chem 2019; 254:106242. [DOI: 10.1016/j.bpc.2019.106242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
|
12
|
Transferrin Receptor Targeted Cellular Delivery of Doxorubicin Via a Reduction-Responsive Peptide-Drug Conjugate. Pharm Res 2019; 36:168. [DOI: 10.1007/s11095-019-2688-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
|
13
|
Li S, Zhao H, Fan Y, Zhao G, Wang R, Wen F, Wang J, Wang X, Wang Y, Gao Y. Design, synthesis, and in vitro antitumor activity of a transferrin receptor-targeted peptide-doxorubicin conjugate. Chem Biol Drug Des 2019; 95:58-65. [PMID: 31452330 DOI: 10.1111/cbdd.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022]
Abstract
In this study, a peptide-drug conjugate was designed and synthesized by connecting a transferrin receptor (TfR)-targeted binding peptide analog BP9a (CAHLHNRS) with doxorubicin (DOX) through N-succinimidyl-3-maleimidopropionate (SMP) as the cross-linker. Confocal laser scanning microscopy results indicated that free DOX mainly accumulated in the nuclei of both TfR overexpressed HepG2 hepatoma cells and L-O2 normal liver cells expressing low level of TfR; most of the BP9a-DOX conjugate displayed cytoplasmic location, and its cellular uptake by HepG2 cells was obviously reduced by TfR blockage test. Nevertheless, the cellular uptake of this conjugate by L-O2 cells was much less than that of free DOX. Meanwhile, the BP9a-DOX conjugate exhibited lower in vitro antiproliferative activity against HepG2 cells than free DOX, but its cytotoxic effect on L-O2 cells was decreased compared with that of free DOX. These results suggest that BP9a could be applied as a potential TfR-targeted peptide vector for selective drug delivery.
Collapse
Affiliation(s)
- Songtao Li
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Hongling Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Yanfang Fan
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Guiqin Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Ruxing Wang
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Fuyu Wen
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Jianping Wang
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Xiaohui Wang
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Yu Wang
- Department of Traumatic Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yang Gao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| |
Collapse
|
14
|
Xue L, Deng D, Sun J. Magnetoferritin: Process, Prospects, and Their Biomedical Applications. Int J Mol Sci 2019; 20:E2426. [PMID: 31100837 PMCID: PMC6567256 DOI: 10.3390/ijms20102426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Ferritin is a spherical iron storage protein composed of 24 subunits and an iron core. Using biomimetic mineralization, magnetic iron oxide can be synthesized in the cavity of ferritin to form magnetoferritin (MFt). MFt, also known as a superparamagnetic protein, is a novel magnetic nanomaterial with good biocompatibility and flexibility for biomedical applications. Recently, it has been demonstrated that MFt had tumor targetability and a peroxidase-like catalytic activity. Thus, MFt, with its many unique properties, provides a powerful platform for tumor diagnosis and therapy. In this review, we discuss the biomimetic synthesis and biomedical applications of MFt.
Collapse
Affiliation(s)
- Le Xue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
15
|
Diao W, Cai H, Chen L, Jin X, Liao X, Jia Z. Recent Advances in Prostate-Specific Membrane Antigen-Based Radiopharmaceuticals. Curr Top Med Chem 2019; 19:33-56. [PMID: 30706785 DOI: 10.2174/1568026619666190201100739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common sex-related malignancy with high mortality in men worldwide. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most prostate tumor cells and considered a valuable target for both diagnosis and therapy of prostate cancer. A series of radiolabeled agents have been developed based on the featured PSMA ligands in the previous decade and have demonstrated promising outcomes in clinical research of primary and recurrent PCa. Furthermore, the inspiring response and safety of lutetium-177-PSMA-617 (177Lu-PSMA-617) radiotherapy represent the potential for expanded therapeutic options for metastatic castration-resistant PCa. Retrospective cohort studies have revealed that radiolabeled PSMA agents are the mainstays of the current success, especially in detecting prostate cancer with metastasis and biochemical recurrence. OBJECTIVE This review is intended to present a comprehensive overview of the current literature on PSMA ligand-based agents for both radionuclide imaging and therapeutic approaches, with a focus on those that have been clinically adopted. CONCLUSION PSMA-based diagnosis and therapy hold great promise for improving the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xi Jin
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyang Liao
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
16
|
Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med 2019; 133:46-54. [PMID: 29969719 DOI: 10.1016/j.freeradbiomed.2018.06.037] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
In vertebrates, transferrin (Tf) safely delivers iron through circulation to cells. Tf-bound iron is incorporated through Tf receptor (TfR) 1-mediated endocytosis. TfR1 can mediate cellular uptake of both Tf and H-ferritin, an iron storage protein. New World arenaviruses, which cause hemorrhagic fever, and Plasmodium vivax use TfR1 for entry into host cells. Human TfR2, another receptor for Tf, is predominantly expressed in hepatocytes and erythroid precursors, and holo-Tf dramatically upregulates its expression. TfR2 forms a complex with hemochromatosis protein, HFE, and serves as a component of the iron sensing machinery in hepatocytes. Defects in TfR2 cause systemic iron overload, hemochromatosis, through down-regulation of hepcidin. In erythroid cells, TfR2 forms a complex with the erythropoietin receptor and regulates erythropoiesis. TfR2 facilitates iron transport from lysosomes to mitochondria in erythroblasts and dopaminergic neurons. Administration of apo-Tf, which scavenges free iron, has been explored for various clinical conditions including atransferrinemia, iron overload, and tissue ischemia. Apo-Tf has also been shown to ameliorate anemia in animal models of β-thalassemia. In this review, I provide an update and summary on our knowledge of mammalian Tf and its receptors.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa-ken 920-0293, Japan.
| |
Collapse
|
17
|
|
18
|
Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:372-379. [PMID: 29421281 DOI: 10.1016/j.bmhimx.2016.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Gustavo Helguera
- Instituto de Biología y Medicina Experimental, Ciudad Autónoma de Buenos Aires, Argentina.
| | - José A Rodríguez
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, USA.
| |
Collapse
|
19
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Abstract
Disturbances of iron metabolism are a frequent challenge in outpatient and inpatient care. Although several established biomarkers are commonly used by clinicians for differential diagnosis, the discrimination between latent or classic iron deficiency, anaemia of chronic disease or a combination of functional iron deficiency (iron-restricted erythropoiesis) with anaemia of chronic disease in patients affected by inflammatory disease can be demanding. Soluble transferrin receptor (sTfR) is a cleaved monomer of transferrin receptor 1 and correlates positively with tissue iron deficiency as well as with stimulated erythropoiesis. The ratio between sTfR and ferritin in combination with reticulocyte haemoglobin content further helps to identify different states of iron deficiency. In this review, we will focus on biological aspects of iron metabolism and sTfR, established clinical applications and limitations of sTfR and derived indices, and prospects of future research and applications.
Collapse
Affiliation(s)
- Kristian Harms
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.
| | - Thorsten Kaiser
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Foss CA, Mease RC, Cho SY, Kim HJ, Pomper MG. GCPII imaging and cancer. Curr Med Chem 2012; 19:1346-59. [PMID: 22304713 DOI: 10.2174/092986712799462612] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 12/11/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) in the central nervous system is referred to as the prostate-specific membrane antigen (PSMA) in the periphery. PSMA serves as a target for imaging and treatment of prostate cancer and because of its expression in solid tumor neovasculature has the potential to be used in this regard for other malignancies as well. An overview of GCPII/PSMA in cancer, as well as a discussion of imaging and therapy of prostate cancer using a wide variety of PSMA-targeting agents is provided.
Collapse
Affiliation(s)
- C A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
22
|
Integrative approach to pain genetics identifies pain sensitivity loci across diseases. PLoS Comput Biol 2012; 8:e1002538. [PMID: 22685391 PMCID: PMC3369906 DOI: 10.1371/journal.pcbi.1002538] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022] Open
Abstract
Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10−10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10−4, 1.8×10−4, and 2.2×10−4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. The mechanisms underlying pain are incompletely understood, and are hard to study due to the subjective and complex nature of pain. From a genetics perspective, the discovery of genes relevant for the processing of pain in humans has been slow and genome-wide association studies have not been successful in yielding significantly associated variants. Targeted approaches examining specific candidate genes may be more promising. We present a novel integrative approach that combines publicly available molecular data and automatically extracted knowledge regarding pain contained in the literature to assist the discovery of novel pain genes. We prospectively validated this approach by demonstrating a significant association between several newly identified pain gene candidates and sensitivity to cold pressor pain.
Collapse
|
23
|
Gaffney JP, Valentine AM. Beyond bilobal: transferrin homologs having unusual domain architectures. Biochim Biophys Acta Gen Subj 2011; 1820:212-7. [PMID: 21985891 DOI: 10.1016/j.bbagen.2011.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/02/2011] [Accepted: 09/24/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND Most transferrin family proteins have a familiar bilobal structure, the result of an ancient gene duplication, with an iron binding site in each of two homologous lobes. Scattered throughout the evolutionary tree from algae to mammals, though, are transferrin homologs having other kinds of domain architectures. SCOPE OF REVIEW This review covers a variety of unusual transferrin forms, including monolobals, bilobals with one or both iron-binding sites abrogated, bilobals accessorized with long insertions or with membrane anchors, and even trilobals. The monolobal transferrin homologs from marine invertebrate ascidians are especially highlighted here. MAJOR CONCLUSIONS Unusual transferrin homologs appear scattered through much of the evolutionary tree. For some of these proteins, iron binding and/or iron transport appear to be the primary roles; for others they clearly are not. Many are incompletely or not at all studied. GENERAL SIGNIFICANCE Taken together, these proteins begin to offer a glimpse into how the transferrin architecture has been repurposed for a diversity of applications. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
24
|
Ueki T, Michibata H. Molecular mechanism of the transport and reduction pathway of vanadium in ascidians. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Identification of nine novel loci associated with white blood cell subtypes in a Japanese population. PLoS Genet 2011; 7:e1002067. [PMID: 21738478 PMCID: PMC3128095 DOI: 10.1371/journal.pgen.1002067] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/15/2011] [Indexed: 11/25/2022] Open
Abstract
White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10−8, of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits. White blood cells (WBCs) are blood cells that mediate immune systems and defend the body against foreign microorganisms. It is well known that WBCs consist of various subtypes of cells with distinct roles, although the genetic background of each of the WBC subtypes has yet to be examined. In this study, we report genome-wide association studies (GWAS) for the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects. We identified 12 significantly associated genetic loci, and 9 of them were novel. Evaluation of the associations of these identified loci in cohorts of Caucasian populations demonstrated both ethnically common and divergent genetic backgrounds of the WBC subtypes. These loci also indicated a variety of patterns of pleiotropic associations within the hematological traits, including the other WBC subtypes, total WBC count, platelet count, or red blood cell-related traits, which suggests unique and common functional roles of these loci in the processes of hematopoiesis.
Collapse
|
26
|
Lambert LA. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta Gen Subj 2011; 1820:244-55. [PMID: 21693173 DOI: 10.1016/j.bbagen.2011.06.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND In vertebrates, serum transferrins are essential iron transporters that have bind and release Fe(III) in response to receptor binding and changes in pH. Some family members such as lactoferrin and melanotransferrin can also bind iron while others have lost this ability and have gained other functions, e.g., inhibitor of carbonic anhydrase (mammals), saxiphilin (frogs) and otolith matrix protein 1 (fish). SCOPE OF REVIEW This article provides an overview of the known transferrin family members and their associated receptors and interacting partners. MAJOR CONCLUSIONS The number of transferrin genes has proliferated as a result of multiple duplication events, and the resulting paralogs have developed a wide array of new functions. Some homologs in the most primitive metazoan groups resemble both serum and melanotransferrins, but the major yolk proteins show considerable divergence from the rest of the family. Among the transferrin receptors, the lack of TFR2 in birds and reptiles, and the lack of any TFR homologs among the insects draw attention to the differences in iron transport and regulation in those groups. GENERAL SIGNIFICANCE The transferrin family members are important because of their clinical significance, interesting biochemical properties, and evolutionary history. More work is needed to better understand the functions and evolution of the non-vertebrate family members. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, USA.
| |
Collapse
|
27
|
Gaffney JP, Valentine AM. The challenges of trafficking hydrolysis prone metals and ascidians as an archetype. Dalton Trans 2011; 40:5827-35. [DOI: 10.1039/c1dt10092k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Priest H, McDonough S, Erb H, Daddona J, Stokol T. Transferrin receptor expression in canine lymphoma. Vet Pathol 2010; 48:466-74. [PMID: 20685917 DOI: 10.1177/0300985810377074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transferrin receptor 1 (TfR1) expression was measured by immunohistochemistry in 78 archived cases of canine B-cell and T-cell lymphoma with an anti-human TfR1 monoclonal antibody that was validated in the dog by immunohistochemistry and immunoblotting. The canine lymphoma cases were initially classified on the basis of World Health Organization criteria and then subdivided into the following 4 subgroups: low-grade B-cell (LGB), high-grade B-cell (HGB), low-grade T-cell (LGT), and high-grade T-cell (HGT). A visual scoring system and densitometric analysis of the proportion and intensity of positive staining were used to quantify TfR1 expression. TfR1 expression was also correlated to mitotic rate. TfR1 expression was significantly lower in the LGT tumors compared to all other lymphoma subgroups (LGB, HGB, and HGT). LGB tumors showed a TfR1 expression similar to those of the high-grade tumors (HGB and HGT). Significant correlations were found between mitotic rate and densitometric TfR1 variables in the T-cell tumors but not in the B-cell tumors. Further studies are needed to investigate the underlying molecular basis of the high TfR1 expression in LGB lymphomas and its pathological relevance. The anti-human TfR1 monoclonal antibody is a useful tool for measurement of total cellular transferrin receptor expression in the dog; however, an antibody with specificity for the canine TfR1 ectodomain is needed to investigate the potential of this receptor as an oncolytic target.
Collapse
Affiliation(s)
- H Priest
- Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
29
|
Ivy MT, Newkirk RF, Wang Y, Townsel JG. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation. J Neurochem 2009; 112:1295-304. [PMID: 20015153 DOI: 10.1111/j.1471-4159.2009.06543.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.
Collapse
Affiliation(s)
- Michael T Ivy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | | | | | |
Collapse
|
30
|
Hlouchova K, Barinka C, Konvalinka J, Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J 2009; 276:4448-62. [DOI: 10.1111/j.1742-4658.2009.07152.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Hilton KB, Lambert LA. Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 2008; 415:40-8. [DOI: 10.1016/j.gene.2008.02.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 12/14/2022]
|
32
|
Barinka C, Hlouchova K, Rovenska M, Majer P, Dauter M, Hin N, Ko YS, Tsukamoto T, Slusher BS, Konvalinka J, Lubkowski J. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J Mol Biol 2008; 376:1438-50. [PMID: 18234225 PMCID: PMC2753231 DOI: 10.1016/j.jmb.2007.12.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/24/2007] [Indexed: 01/07/2023]
Abstract
Human glutamate carboxypeptidase II (GCPII) is involved in neuronal signal transduction and intestinal folate absorption by means of the hydrolysis of its two natural substrates, N-acetyl-aspartyl-glutamate and folyl-poly-gamma-glutamates, respectively. During the past years, tremendous efforts have been made toward the structural analysis of GCPII. Crystal structures of GCPII in complex with various ligands have provided insight into the binding of these ligands, particularly to the S1' site of the enzyme. In this article, we have extended structural characterization of GCPII to its S1 site by using dipeptide-based inhibitors that interact with both S1 and S1' sites of the enzyme. To this end, we have determined crystal structures of human GCPII in complex with phosphapeptide analogs of folyl-gamma-glutamate, aspartyl-glutamate, and gamma-glutamyl-glutamate, refined at 1.50, 1.60, and 1.67 A resolution, respectively. The S1 pocket of GCPII could be accurately defined and analyzed for the first time, and the data indicate the importance of Asn519, Arg463, Arg534, and Arg536 for recognition of the penultimate (i.e., P1) substrate residues. Direct interactions between the positively charged guanidinium groups of Arg534 and Arg536 and a P1 moiety of a substrate/inhibitor provide mechanistic explanation of GCPII preference for acidic dipeptides. Additionally, observed conformational flexibility of the Arg463 and Arg536 side chains likely regulates GCPII affinity toward different inhibitors and modulates GCPII substrate specificity. The biochemical experiments assessing the hydrolysis of several GCPII substrate derivatives modified at the P1 position, also included in this report, further complement and extend conclusions derived from the structural analysis. The data described here form an a solid foundation for the structurally aided design of novel low-molecular-weight GCPII inhibitors and imaging agents.
Collapse
Affiliation(s)
- Cyril Barinka
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Klara Hlouchova
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Miroslava Rovenska
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Pavel Majer
- MGI Pharma, Inc., 6611 Tributary Street, Baltimore, MD, USA
| | - Miroslawa Dauter
- SAIC-Frederick, Inc., Basic Research Program, Argonne National Laboratory, Argonne, IL, USA
| | - Niyada Hin
- MGI Pharma, Inc., 6611 Tributary Street, Baltimore, MD, USA
| | - Yao-Sen Ko
- MGI Pharma, Inc., 6611 Tributary Street, Baltimore, MD, USA
| | | | | | - Jan Konvalinka
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Jacek Lubkowski
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
33
|
Rovenská M, Hlouchová K, Sácha P, Mlcochová P, Horák V, Zámecník J, Barinka C, Konvalinka J. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs. Prostate 2008; 68:171-82. [PMID: 18076021 DOI: 10.1002/pros.20676] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostate specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCPII), is a target enzyme for diagnosis and treatment of prostate cancer. Moreover, it is upregulated in the vasculature of most solid tumors and is therefore a potential target for the generation of novel antineoplastics. In this context, we analyze the possibility of using rat and pig as animal models for enzymologic and in vivo studies. METHODS We prepared the recombinant extracellular part of human, rat, and pig GCPII in S2 cell media and characterized the activity and inhibition profiles of the three orthologs by radioenzymatic assay. We performed Western blot analysis of GCPII expression in human, rat, and pig tissues using the monoclonal antibody GCP-04 and confirmed these findings by activity measurements and immunohistochemistry. RESULTS The three recombinant proteins show similar specific enzymatic activities and inhibition profiles. Tissue expression analysis revealed that most of the pig and human tissues show at least some GCPII-positivity, while the expression pattern in rat is more restricted. Moreover, tissues such as prostate and testes exhibit different GCPII expression levels among the species studied. CONCLUSIONS The rat and pig orthologs of GCPII seem to be suitable to approximate human GCPII in enzymologic studies. However, the diffuse expression pattern of GCPII in animal and human tissues could be a caveat for the potential utilization of GCPII-targeted anticancer drugs. Furthermore, variations in GCPII tissue distribution among the species studied should be considered when using rat or pig as models for antineoplastic drug discovery.
Collapse
Affiliation(s)
- Miroslava Rovenská
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Guilarte TR, Hammoud DA, McGlothan JL, Caffo BS, Foss CA, Kozikowski AP, Pomper MG. Dysregulation of glutamate carboxypeptidase II in psychiatric disease. Schizophr Res 2008; 99:324-32. [PMID: 18191545 PMCID: PMC2287371 DOI: 10.1016/j.schres.2007.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/30/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
Abstract
Experimental evidence is beginning to converge on an important role for dysregulation of glutamate carboxypeptidase II (GCPII) in schizophrenia. The goal of this study was to determine GCPII levels in postmortem brain specimens of patients with schizophrenia, bipolar disorder or unipolar depression and age-matched control subjects. We used N-[N-(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-[(125)I]iodo-l-tyrosine ([(125)I]DCIT), a high-affinity radioligand for GCPII, to probe for GCPII expression in prefrontal cortex (PFC) and mesial temporal lobe, two brain regions implicated in the pathophysiology of schizophrenia. We found that GCPII levels measured by [(125)I]DCIT quantitative autoradiography were significantly lower in the PFC and entorhinal cortex in patients with schizophrenia compared to age-matched controls. Patients with bipolar disorder also expressed significantly lower GCPII levels in PFC than controls. The decrease in [(125)I]DCIT binding in schizophrenia and bipolar disorder remained significant after adjusting for drug abuse. A significant difference in GCPII levels was also observed between schizophrenia relative to bipolar disorder and depressed subjects in the hippocampus-stratum lucidum and between schizophrenia and bipolar in the CA2 region of the hippocampus, with bipolar and depressed subjects expressing higher levels of GCPII than subjects with schizophrenia. These differences in hippocampal GCPII levels may implicate differences in the etiologies of these mental disorders. In summary, this study demonstrates a regional dysregulation of GCPII expression in the brain of patients with schizophrenia and other psychiatric disorders and supports a hypoglutamatergic state of the former illness. GCPII may represent a viable therapeutic target for intervention in psychiatric disease.
Collapse
Affiliation(s)
- Tomás R. Guilarte
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Dima A. Hammoud
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Jennifer L. McGlothan
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Brian S. Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | | | - Martin G. Pomper
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205,Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| |
Collapse
|
35
|
Camus LM, Lambert LA. Molecular evolution of hemojuvelin and the repulsive guidance molecule family. J Mol Evol 2007; 65:68-81. [PMID: 17593421 DOI: 10.1007/s00239-006-0241-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 02/28/2007] [Indexed: 02/05/2023]
Abstract
Repulsive guidance molecules (RGMs) are found in vertebrates and chordates and are involved in embryonic development and iron homeostasis. Members of this family are GPI-linked membrane proteins that contain an N-terminal signal peptide, a C-terminal propeptide, and a conserved RGD motif. Vertebrates are known to possess three paralogues; RGMA and RGMB (sometimes called Dragon) are expressed in the nervous system and are thought to play various roles in neural development. Hemojuvelin (HJV; also called repulsive guidance molecule c, RGMC) is the third member of this family, and mutations in this gene result in a form of juvenile hemochromatosis (type 2A). Phylogenetic analyses of 55 different RGM family sequences from 21 different species support the existence of a novel gene, found only in fish, which we have labeled RGMD. The pattern of conserved residues in each family identifies new candidates for important functional roles, including ligand binding.
Collapse
Affiliation(s)
- Laura Marie Camus
- Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, USA
| | | |
Collapse
|