1
|
Guo FC, Yang JX, Guo YY. The plastomes of Cypripedium (Orchidaceae: Cypripedioideae) exhibit atypical GC content and genome size based on different sequencing strategies. Gene 2025; 935:149086. [PMID: 39527990 DOI: 10.1016/j.gene.2024.149086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Most of the sequenced plastomes of photosynthetic angiosperms exhibit conservation in size, gene content, gene order, and GC content. In contrast, the sequenced plastomes of Cypripedium are distinguished by genome size expansion, AT-biased base composition, structural variation, and a low substitution rate. Additionally, the impact of sequencing methods is seldom addressed in prior studies, and the species represented in these studies are underrepresented. These atypical plastome features render the genus an ideal candidate for investigating plastome evolution. Besides, the backbone relationships within the genus remain poorly resolved. In this study, we sequenced twelve Cypripedium plastomes using three distinct sequencing strategies and obtained an additional 27 sequences from GenBank for comparative analysis. We classified the plastomes of the genus into two types: one resembling those of most other angiosperms, and the other characterized by inverted repeat (IR) expansion and small single copy (SSC) contraction. The plastomes within this genus exhibit significant size variations (∼72 kb), variations in GC content, and structural differences at the genus level. Furthermore, our comparative analysis revealed that the choice of sequencing strategy significantly impacts the assembly results. The uncovered regions in samples sequenced with short-read technology are predominantly AT-rich, suggesting that short-read sequencing may lead to assembly errors in plastomes with AT-rich regions and long repeats. Additionally, we have reconstructed the phylogeny of the genus using plastome-level data. However, the phylogenetic relationships within the genus remain partially solved. This study provides new insights into the evolution of plastomes, particularly those with AT-rich base compositions and genomes containing long repeat regions.
Collapse
Affiliation(s)
- Fu-Chao Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jia-Xing Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
Benítez-Villaseñor A, Jost M, Granados Mendoza C, Wanke S, Meza-Lázaro RN, Peñafiel Cevallos M, Freire E, Magallón S. Exploring Structural Plastome Evolution in Asterales: Insights from Off-Target Hybrid Enrichment Data on the Small Single-Copy Region. J Mol Evol 2024:10.1007/s00239-024-10224-6. [PMID: 39724205 DOI: 10.1007/s00239-024-10224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented. This study investigates the possibility of recovering plastid loci from off-target reads obtained through hybrid enrichment techniques. Our sampling includes 63 species from the eleven currently recognized families in Asterales derived from previously published studies. We assembled and annotated complete and partial plastomes using custom pipelines and estimate phylogenomic relationships. We retrieved plastid information from 60 of the 63 sampled species including a complete plastome from Tithonia tubaeformis (Asteraceae), circular partial (with gaps) plastomes from seven species, and non-circular partial plastomes from other 52 species. We focused on the small single-copy region because it could be recovered for over 29 species. Within the small single-copy region, we assessed intron losses and presence of putative pseudogenes. Comparative genomics revealed a relocated fragment of ~ 6500 bp in two Campanulaceae lineages (i. e. subfamily Lobelioideae and Pseudonemacladus oppositifolium), involving the genes rbcL, atpB, atpE, trnM-CAU, and trnV-UAC. Obtained phylogenetic hypotheses were congruent across the applied methods and consistent with previously published results. Our study demonstrates the feasibility of recovering plastid information, both complete and partial, from off-target hybrid enrichment data and provides insights on the structural plastome changes that have occurred throughout the evolution of the order Asterales.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510, Ciudad de Mexico, México.
| | - Matthias Jost
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
- Senckenberg Forschungsinstitut Und Naturmuseum, Botanik Und Molekulare Evolutionsforschung, 60325, Frankfurt, Germany
| | - Rubi N Meza-Lázaro
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
3
|
Xu Y, Li Y, Chen Y, Wang L, Xue B, Zhang X, Song W, Guo W, Wu W. Comparative Analysis of Complete Chloroplast Genomes of Rubus in China: Hypervariable Regions and Phylogenetic Relationships. Genes (Basel) 2024; 15:716. [PMID: 38927652 PMCID: PMC11202638 DOI: 10.3390/genes15060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the plastomes of 22 out of 204 Chinese Rubus species (including varieties) from three of the eight sections reported in China, i.e., the sections Chamaebatus, Idaeobatus, and Malachobatus. Plastomes were annotated and comparatively analyzed with the inclusion of two published plastomes. The plastomes of all 24 Rubus species were composed of a large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs), and ranged in length from 155,464 to 156,506 bp. We identified 112 unique genes, including 79 protein-coding genes, 29 transfer RNAs, and four ribosomal RNAs. With highly consistent gene order, these Rubus plastomes showed strong collinearity, and no significant changes in IR boundaries were noted. Nine divergent hotspots were identified based on nucleotide polymorphism analysis: trnH-psbA, trnK-rps16, rps16-trnQ-psbK, petN-psbM, trnT-trnL, petA-psbJ, rpl16 intron, ndhF-trnL, and ycf1. Based on whole plastome sequences, we obtained a clearer phylogenetic understanding of these Rubus species. All sampled Rubus species formed a monophyletic group; however, sections Idaeobatus and Malachobatus were polyphyletic. These data and analyses demonstrate the phylogenetic utility of plastomes for systematic research within Rubus.
Collapse
Affiliation(s)
- Yufen Xu
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yongquan Li
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Yanzhao Chen
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Longyuan Wang
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Bine Xue
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Xianzhi Zhang
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Wenpei Song
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Wei Guo
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| | - Wei Wu
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.X.); (Y.L.); (Y.C.); (L.W.); (B.X.); (X.Z.); (W.S.); (W.W.)
| |
Collapse
|
4
|
Samigullin TH, Logacheva MD, Averyanov LV, Zeng SJ, Fu LF, Nuraliev MS. Phylogenetic position and plastid genome structure of Vietorchis, a mycoheterotrophic genus of Orchidaceae (subtribe Orchidinae) endemic to Vietnam. FRONTIERS IN PLANT SCIENCE 2024; 15:1393225. [PMID: 38855461 PMCID: PMC11157612 DOI: 10.3389/fpls.2024.1393225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
The orchid genus Vietorchis comprises three species, all discovered in the 21 century. Each of these species is achlorophyllous, mycoheterotrophic and is known to be endemic to Vietnam. The type species of the genus, V. aurea, occurs in a single location in northern Vietnam within a lowland limestone karstic area. Vietorchis furcata and V. proboscidea, in contrast, are confined to mountains of southern Vietnam, far away from any limestone formations. Taxonomic placement of Vietorchis remained uncertain for the reason of inconclusive morphological affinities. At the same time, the genus has never been included into molecular phylogenetic studies. We investigate the phylogenetic relationships of two species of Vietorchis (V. aurea and V. furcata) based on three DNA datasets: (1) a dataset comprising two nuclear regions, (2) a dataset comprising two plastid regions, and (3) a dataset employing data on the entire plastid genomes. Our phylogenetic reconstructions support the placement of Vietorchis into the subtribe Orchidinae (tribe Orchideae, subfamily Orchidoideae). This leads to a conclusion that the previously highlighted similarities in the rhizome morphology between Vietorchis and certain mycoheterotrophic genera of the subfamilies Epidendroideae and Vanilloideae are examples of a convergence. Vietorchis is deeply nested within Orchidinae, and therefore the subtribe Vietorchidinae is to be treated as a synonym of Orchidinae. In the obtained phylogenetic reconstructions, Vietorchis is sister to the photosynthetic genus Sirindhornia. Sirindhornia is restricted to limestone mountains, which allows to speculate that association with limestone karst is plesiomorphic for Vietorchis. Flower morphology is concordant with the molecular data in placing Vietorchis into Orchidinae and strongly supports the assignment of the genus to one of the two major clades within this subtribe. Within this clade, however, Vietorchis shows no close structural similarity with any of its genera; in particular, the proximity between Vietorchis and Sirindhornia has never been proposed. Finally, we assembled the plastid genome of V. furcata, which is 65969 bp long and contains 45 unique genes, being one of the most reduced plastomes in the subfamily Orchidoideae. The plastome of Vietorchis lacks any rearrangements in comparison with the closest studied autotrophic species, and possesses substantially contracted inverted repeats. No signs of positive selection acting on the protein-coding plastid sequences were detected.
Collapse
Affiliation(s)
- Tahir H. Samigullin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maria D. Logacheva
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Leonid V. Averyanov
- Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Si-Jin Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops / Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China and South China National Botanical Garden, Guangzhou, China
| | - Long-Fei Fu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Maxim S. Nuraliev
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| |
Collapse
|
5
|
Chen LQ, Li X, Yao X, Li DZ, Barrett C, dePamphilis CW, Yu WB. Variations and reduction of plastome are associated with the evolution of parasitism in Convolvulaceae. PLANT MOLECULAR BIOLOGY 2024; 114:40. [PMID: 38622367 DOI: 10.1007/s11103-024-01440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Parasitic lifestyle can often relax the constraint on the plastome, leading to gene pseudogenization and loss, and resulting in diverse genomic structures and rampant genome degradation. Although several plastomes of parasitic Cuscuta have been reported, the evolution of parasitism in the family Convolvulaceae which is linked to structural variations and reduction of plastome has not been well investigated. In this study, we assembled and collected 40 plastid genomes belonging to 23 species representing four subgenera of Cuscuta and ten species of autotrophic Convolvulaceae. Our findings revealed nine types of structural variations and six types of inverted repeat (IR) boundary variations in the plastome of Convolvulaceae spp. These structural variations were associated with the shift of parasitic lifestyle, and IR boundary shift, as well as the abundance of long repeats. Overall, the degradation of Cuscuta plastome proceeded gradually, with one clade exhibiting an accelerated degradation rate. We observed five stages of gene loss in Cuscuta, including NAD(P)H complex → PEP complex → Photosynthesis-related → Ribosomal protein subunits → ATP synthase complex. Based on our results, we speculated that the shift of parasitic lifestyle in early divergent time promoted relaxed selection on plastomes, leading to the accumulation of microvariations, which ultimately resulted in the plastome reduction. This study provides new evidence towards a better understanding of plastomic evolution, variation, and reduction in the genus Cuscuta.
Collapse
Affiliation(s)
- Li-Qiong Chen
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Xin Li
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Division of BiologicalScience, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Xin Yao
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Craig Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, State College, Pennsylvania, 16802, USA
| | - Wen-Bin Yu
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
6
|
Wang D, Wei J, Yuan X, Chen Z, Wang L, Geng Y, Zhang J, Wang Y. Transcriptome and comparative chloroplast genome analysis of Taxus yunnanensis individuals with high and low paclitaxel yield. Heliyon 2024; 10:e27223. [PMID: 38455575 PMCID: PMC10918223 DOI: 10.1016/j.heliyon.2024.e27223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Paclitaxel is a potent anti-cancer drug that is mainly produced through semi-synthesis, which still requires plant materials as precursors. The content of paclitaxel and 10-deacetyl baccatin III (10-DAB) in Taxus yunnanensis has been found to differ from that of other Taxus species, but there is little research on the mechanism underlying the variation in paclitaxel content in T. yunnanensis of different provenances. In this experiment, the contents of taxoids and precursors in twigs between a high paclitaxel-yielding individual (TG) and a low paclitaxel-yielding individual (TD) of T. yunnanensis were compared, and comparative analyses of transcriptomes as well as chloroplast genomes were performed. High-performance liquid chromatography (HPLC) detection showed that 10-DAB and baccatin III contents in TG were 18 and 47 times those in TD, respectively. Transcriptomic analysis results indicated that genes encoding key enzymes in the paclitaxel biosynthesis pathway, such as taxane 10-β-hydroxylase (T10βH), 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT), and debenzoyl paclitaxel N-benzoyl transferase (DBTNBT), exhibited higher expression levels in TG. Additionally, qRT-PCR showed that the relative expression level of T10βH and DBAT in TG were 29 and 13 times those in TD, respectively. In addition, six putative transcription factors were identified that may be involved in paclitaxel biosynthesis from transcriptome data. Comparative analysis of plastid genomes showed that the TD chloroplast contained a duplicate of rps12, leading to a longer plastid genome length in TD relative to TG. Fifteen mutation hotspot regions were identified between the two plastid genomes that can serve as candidate DNA barcodes for identifying high-paclitaxel-yield individuals. This experiment provides insight into the difference in paclitaxel accumulation among different provenances of T. yunnanensis individuals.
Collapse
Affiliation(s)
- Dong Wang
- College of Forestry, Southwest Forestry University, Kunming, 650224, China
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jiansheng Wei
- Haba Snow Mountain Provincial Nature Reserve Management and Protection Bureau, Diqing, 674402, China
| | - Xiaolong Yuan
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Zhonghua Chen
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Lei Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yunfen Geng
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jinfeng Zhang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| |
Collapse
|
7
|
Cao J, Wang H, Cao Y, Kan S, Li J, Liu Y. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats. Int J Mol Sci 2024; 25:2278. [PMID: 38396955 PMCID: PMC10888665 DOI: 10.3390/ijms25042278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The plastid genomes (plastomes) of angiosperms are typically highly conserved, with extreme reconfiguration being uncommon, although reports of such events have emerged in some lineages. In this study, we conducted a comprehensive comparison of the complete plastomes from twenty-two species, covering seventeen genera from three subfamilies (Fumarioideae, Hypecooideae, and Papaveroideae) of Papaveraceae. Our results revealed a high level of variability in the plastid genome size of Papaveraceae, ranging from 151,864 bp to 219,144 bp in length, which might be triggered by the expansion of the IR region and a large number of repeat sequences. Moreover, we detected numerous large-scale rearrangements, primarily occurring in the plastomes of Fumarioideae and Hypecooideae. Frequent gene loss or pseudogenization were also observed for ndhs, accD, clpP, infA, rpl2, rpl20, rpl32, rps16, and several tRNA genes, particularly in Fumarioideae and Hypecooideae, which might be associated with the structural variation in their plastomes. Furthermore, we found that the plastomes of Fumarioideae exhibited a higher GC content and more repeat sequences than those of Papaveroideae. Our results showed that Papaveroideae generally displayed a relatively conserved plastome, with the exception of Eomecon chionantha, while Fumarioideae and Hypecooideae typically harbored highly reconfigurable plastomes, showing high variability in the genome size, gene content, and gene order. This study provides insights into the plastome evolution of Papaveraceae and may contribute to the development of effective molecular markers.
Collapse
Affiliation(s)
- Jialiang Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China;
| | - Jiamei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanyan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| |
Collapse
|
8
|
Liu L, Li H, Li J, Li X, Hu N, Wang H, Zhou W. Chloroplast genome analyses of Caragana arborescens and Caragana opulens. BMC Genom Data 2024; 25:16. [PMID: 38336648 PMCID: PMC10854190 DOI: 10.1186/s12863-024-01202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Numerous species within the genus Caragana have high ecological and medicinal value. However, species identification based on morphological characteristics is quite complicated in the genus. To address this issue, we analyzed complete plastid genome data for the genus. RESULTS We obtained chloroplast genomes of two species, Caragana arborescens and Caragana opulens, using Illumina sequencing technology, with lengths of 129,473 bp and 132,815 bp, respectively. The absence of inverted repeat sequences in the two species indicated that they could be assigned to the inverted repeat-lacking clade (IRLC). The genomes included 111 distinct genes (4 rRNA genes, 31 tRNA genes, and 76 protein-coding genes). In addition, 16 genes containing introns were identified in the two genomes, the majority of which contained a single intron. Repeat analyses revealed 129 and 229 repeats in C. arborescens and C. opulens, respectively. C. arborescens and C. opulens genomes contained 277 and 265 simple sequence repeats, respectively. The two Caragana species exhibited similar codon usage patterns. rpl20-clpP, rps19-rpl2, and rpl23-ycf2 showed the highest nucleotide diversity (pi). In an analysis of sequence divergence, certain intergenic regions (matK-rbcL, psbM-petN, atpA-psbI, petA-psbL, psbE-petL, and rps7-rps12) were highly variable. A phylogenetic analysis showed that C. arborescens and C. opulens were related and clustered together with four other Caragana species. The genera Astragalus and Caragana were relatively closely related. CONCLUSIONS The present study provides valuable information about the chloroplast genomes of C. arborescens and C. opulens and lays a foundation for future phylogenetic research and molecular marker development.
Collapse
Affiliation(s)
- LiE Liu
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Hongyan Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Jiaxin Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Xinjuan Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Wu Zhou
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
9
|
Köhler M, Reginato M, Jin JJ, Majure LC. More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae). ANNALS OF BOTANY 2023; 132:771-786. [PMID: 37467174 PMCID: PMC10799996 DOI: 10.1093/aob/mcad098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. METHODS Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. KEY RESULTS Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. CONCLUSIONS Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
Collapse
Affiliation(s)
- Matias Köhler
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos, Sorocaba, SP, Brazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jian-Jun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Lucas C Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
10
|
Wu M, He L, Ma G, Zhang K, Yang H, Yang X. The complete chloroplast genome of Diplodiscus trichospermus and phylogenetic position of Brownlowioideae within Malvaceae. BMC Genomics 2023; 24:571. [PMID: 37752438 PMCID: PMC10521492 DOI: 10.1186/s12864-023-09680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Malvaceae is an economically important plant family of 4,225 species in nine subfamilies. Phylogenetic relationships among the nine subfamilies have always been controversial, especially for Brownlowioideae, whose phylogenetic position remains largely unknown due to the lack of samples in previous analysis datasets. To greatly clarify the phylogenetic relationship of Malvaceae, we newly sequenced and assembled the plastome of Diplodiscus trichospermus taxonomically located in Brownlowioideae, and downloaded the allied genomes from public database to build a dataset covering all subfamily members of Malvaceae. RESULTS The annotation results showed that the plastome of Diplodiscus trichospermus has a typical quadripartite structure, comprising 112 unique genes, namely 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The total length was 158,570 bp with 37.2% GC content. Based on the maximum likelihood method and Bayesian inference, a robust phylogenetic backbone of Malvaceae was reconstructed. The topology showed that Malvaceae was divided distinctly into two major branches which were previously recognized as Byttneriina and Malvadendrina. In the Malvadendrina clade, Malvoideae and Bombacoideae formed, as always, a close sister clade named as Malvatheca. Subfamily Helicteroideae occupied the most basal position and was followed by Sterculioideae which was sister to the alliance of Malvatheca, Brownlowioideae, Dombeyoideae, and Tilioideae. Brownlowioideae together with the clade comprising Dombeyoideae and Tilioideae formed a sister clade to Malvatheca. In addition, one specific conservation SSR and three specific palindrome sequences were observed in Brownlowioideae. CONCLUSIONS In this study, the phylogenetic framework of subfamilies in Malvaceae has been resolved clearly based on plastomes, which may contribute to a better understanding of the classification and plastome evolution for Malvaceae.
Collapse
Affiliation(s)
- Mingsong Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Liu He
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Guangyao Ma
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Kai Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Haijian Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
11
|
Kim YK, Jo S, Cheon SH, Hong JR, Kim KJ. Ancient Horizontal Gene Transfers from Plastome to Mitogenome of a Nonphotosynthetic Orchid, Gastrodia pubilabiata (Epidendroideae, Orchidaceae). Int J Mol Sci 2023; 24:11448. [PMID: 37511216 PMCID: PMC10380568 DOI: 10.3390/ijms241411448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrodia pubilabiata is a nonphotosynthetic and mycoheterotrophic orchid belonging to subfamily Epidendroideae. Compared to other typical angiosperm species, the plastome of G. pubilabiata is dramatically reduced in size to only 30,698 base pairs (bp). This reduction has led to the loss of most photosynthesis-related genes and some housekeeping genes in the plastome, which now only contains 19 protein coding genes, three tRNAs, and three rRNAs. In contrast, the typical orchid species contains 79 protein coding genes, 30 tRNAs, and four rRNAs. This study decoded the entire mitogenome of G. pubilabiata, which consisted of 44 contigs with a total length of 867,349 bp. Its mitogenome contained 38 protein coding genes, nine tRNAs, and three rRNAs. The gene content of G. pubilabiata mitogenome is similar to the typical plant mitogenomes even though the mitogenome size is twice as large as the typical ones. To determine possible gene transfer events between the plastome and the mitogenome individual BLASTN searches were conducted, using all available orchid plastome sequences and flowering plant mitogenome sequences. Plastid rRNA fragments were found at a high frequency in the mitogenome. Seven plastid protein coding gene fragments (ndhC, ndhJ, ndhK, psaA, psbF, rpoB, and rps4) were also identified in the mitogenome of G. pubilabiata. Phylogenetic trees using these seven plastid protein coding gene fragments suggested that horizontal gene transfer (HGT) from plastome to mitogenome occurred before losses of photosynthesis related genes, leading to the lineage of G. pubilabiata. Compared to species phylogeny of the lineage of orchid, it was estimated that HGT might have occurred approximately 30 million years ago.
Collapse
Affiliation(s)
- Young-Kee Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sangjin Jo
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Se-Hwan Cheon
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Ram Hong
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Wonok W, Sudmoon R, Tanee T, Lee SY, Chaveerach A. Complete Chloroplast Genome of Four Thai Native Dioscorea Species: Structural, Comparative and Phylogenetic Analyses. Genes (Basel) 2023; 14:genes14030703. [PMID: 36980975 PMCID: PMC10048501 DOI: 10.3390/genes14030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The chloroplast genomes of Dioscorea brevipetiolata, D. depauperata, D. glabra, and D. pyrifolia are 153,370–153,503 bp in size. A total of 113 genes were predicted, including 79 protein-coding sequences (CDS), 30 tRNA, and four rRNA genes. The overall GC content for all four species was 37%. Only mono-, di-, and trinucleotides were present in the genome. Genes adjacent to the junction borders were similar in all species analyzed. Eight distinct indel variations were detected in the chloroplast genome alignment of 24 Dioscorea species. At a cut-off point of Pi = 0.03, a sliding window analysis based on 25 chloroplast genome sequences of Dioscorea species revealed three highly variable regions, which included three CDS (trnC, ycf1, and rpl32), as well as an intergenic spacer region, ndhF-rpl32. A phylogenetic tree based on the complete chloroplast genome sequence displayed an almost fully resolved relationship in Dioscorea. However, D. brevipetiolata, D. depauperata, and D. glabra were clustered together with D. alata, while D. pyrifolia was closely related to D. aspersa. As Dioscorea is a diverse genus, genome data generated in this study may contribute to a better understanding of the genetic identity of these species, which would be useful for future taxonomic work of Dioscorea.
Collapse
Affiliation(s)
- Warin Wonok
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
13
|
Chen J, Zang Y, Shang S, Yang Z, Liang S, Xue S, Wang Y, Tang X. Chloroplast genomic comparison provides insights into the evolution of seagrasses. BMC PLANT BIOLOGY 2023; 23:104. [PMID: 36814193 PMCID: PMC9945681 DOI: 10.1186/s12870-023-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Wee CC, Nor Muhammad NA, Subbiah VK, Arita M, Nakamura Y, Goh HH. Plastomes of Garcinia mangostana L. and Comparative Analysis with Other Garcinia Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:930. [PMID: 36840278 PMCID: PMC9966718 DOI: 10.3390/plants12040930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The two varieties of mangosteen (Garcinia mangostana L.) cultivated in Malaysia are known as Manggis and Mesta. The latter is preferred for its flavor, texture, and seedlessness. Here, we report a complete plastome (156,580 bp) of the Mesta variety that was obtained through a hybrid assembly approach using PacBio and Illumina sequencing reads. It encompasses a large single-copy (LSC) region (85,383 bp) and a small single-copy (SSC) region (17,137 bp) that are separated by 27,230 bp of inverted repeat (IR) regions at both ends. The plastome comprises 128 genes, namely, 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The plastome of the Manggis variety (156,582 bp) obtained from reference-guided assembly of Illumina reads was found to be nearly identical to Mesta except for two indels and the presence of a single-nucleotide polymorphism (SNP). Comparative analyses with other publicly available Garcinia plastomes, including G. anomala, G. gummi-gutta, G. mangostana var. Thailand, G. oblongifolia, G. paucinervis, and G. pedunculata, found that the gene content, gene order, and gene orientation were highly conserved among the Garcinia species. Phylogenomic analysis divided the six Garcinia plastomes into three groups, with the Mesta and Manggis varieties clustered closer to G. anomala, G. gummi-gutta, and G. oblongifolia, while the Thailand variety clustered with G. pedunculata in another group. These findings serve as future references for the identification of species or varieties and facilitate phylogenomic analysis of lineages from the Garcinia genus to better understand their evolutionary history.
Collapse
Affiliation(s)
- Ching-Ching Wee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
15
|
Xu S, Teng K, Zhang H, Gao K, Wu J, Duan L, Yue Y, Fan X. Chloroplast genomes of four Carex species: Long repetitive sequences trigger dramatic changes in chloroplast genome structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1100876. [PMID: 36778700 PMCID: PMC9911286 DOI: 10.3389/fpls.2023.1100876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chloroplast genomes of angiosperms usually have a stable circular quadripartite structure that exhibits high consistency in genome size and gene order. As one of the most diverse genera of angiosperms, Carex is of great value for the study of evolutionary relationships and speciation within its genus, but the study of the structure of its chloroplast genome is limited due to its highly expanded and restructured genome with a large number of repeats. In this study, we provided a more detailed account of the chloroplast genomes of Carex using a hybrid assembly of second- and third-generation sequencing and examined structural variation within this genus. The study revealed that chloroplast genomes of four Carex species are significantly longer than that of most angiosperms and are characterized by high sequence rearrangement rates, low GC content and gene density, and increased repetitive sequences. The location of chloroplast genome structural variation in the species of Carex studied is closely related to the positions of long repeat sequences; this genus provides a typical example of chloroplast structural variation and expansion caused by long repeats. Phylogenetic relationships constructed based on the chloroplast protein-coding genes support the latest taxonomic system of Carex, while revealing that structural variation in the chloroplast genome of Carex may have some phylogenetic significance. Moreover, this study demonstrated a hybrid assembly approach based on long and short reads to analyze complex chloroplast genome assembly and also provided an important reference for the analysis of structural rearrangements of chloroplast genomes in other taxa.
Collapse
Affiliation(s)
- Shenjian Xu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Kang Gao
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Juying Wu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liusheng Duan
- College of Plants and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
16
|
Dong S, Yu J, Zhang L, Goffinet B, Liu Y. Phylotranscriptomics of liverworts: revisiting the backbone phylogeny and ancestral gene duplications. ANNALS OF BOTANY 2022; 130:951-964. [PMID: 36075207 PMCID: PMC9851303 DOI: 10.1093/aob/mcac113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS With some 7300 extant species, liverworts (Marchantiophyta) represent one of the major land plant lineages. The backbone relationships, such as the phylogenetic position of Ptilidiales, and the occurrence and timing of whole-genome duplications, are still contentious. METHODS Based on analyses of the newly generated transcriptome data for 38 liverworts and complemented with those publicly available, we reconstructed the evolutionary history of liverworts and inferred gene duplication events along the 55 taxon liverwort species tree. KEY RESULTS Our phylogenomic study provided an ordinal-level liverwort nuclear phylogeny and identified extensive gene tree conflicts and cyto-nuclear incongruences. Gene duplication analyses based on integrated phylogenomics and Ks distributions indicated no evidence of whole-genome duplication events along the backbone phylogeny of liverworts. CONCLUSIONS With a broadened sampling of liverwort transcriptomes, we re-evaluated the backbone phylogeny of liverworts, and provided evidence for ancient hybridizations followed by incomplete lineage sorting that shaped the deep evolutionary history of liverworts. The lack of whole-genome duplication during the deep evolution of liverworts indicates that liverworts might represent one of the few major embryophyte lineages whose evolution was not driven by whole-genome duplications.
Collapse
Affiliation(s)
- Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Jin Yu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| |
Collapse
|
17
|
Xu YL, Shen HH, Du XY, Lu L. Plastome characteristics and species identification of Chinese medicinal wintergreens ( Gaultheria, Ericaceae). PLANT DIVERSITY 2022; 44:519-529. [PMID: 36540705 PMCID: PMC9751084 DOI: 10.1016/j.pld.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/17/2023]
Abstract
Wintergreen oil is a folk medicine widely used in foods, pesticides, cosmetics and drugs. In China, nine out of 47 species within Gaultheria (Ericaceae) are traditionally used as Chinese medicinal wintergreens; however, phylogenetic approaches currently used to discriminating these species remain unsatisfactory. In this study, we sequenced and characterized plastomes from nine Chinese wintergreen species and identified candidate DNA barcoding regions for Gaultheria. Each Gaultheria plastome contained 110 unique genes (76 protein-coding, 30 tRNA, and four rRNA genes). Duplication of trnfM, rps14, and rpl23 genes were detected, while all plastomes lacked ycf1 and ycf2 genes. Gaultheria plastomes shared substantially contracted SSC regions that contained only the ndhF gene. Moreover, plastomes of Gaultheria leucocarpa var. yunnanensis contained an inversion in the LSC region and an IR expansion to cover the ndhF gene. Multiple rearrangement events apparently occurred between the Gaultheria plastomes and those from several previously reported families in Ericales. Our phylogenetic reconstruction using 42 plastomes revealed well-supported relationships within all nine Gaultheria species. Additionally, seven mutational hotspot regions were identified as potential DNA barcodes for Chinese medicinal wintergreens. Our study is the first to generate complete plastomes and describe the structural variations of the complicated genus Gaultheria. In addition, our findings provide important resources for identification of Chinese medicinal wintergreens.
Collapse
Affiliation(s)
- Yan-Ling Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Hao-Hua Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lu Lu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Liang J, Chen R, Zhang F, Wang Q, Yang Y, Lv M, Yan S, Gao S. Full-length chloroplast genome of Dongxiang wild rice reveals small single-copy region switching. FRONTIERS IN PLANT SCIENCE 2022; 13:929352. [PMID: 36247578 PMCID: PMC9559570 DOI: 10.3389/fpls.2022.929352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Background Plant chloroplast DNA (cpDNA) typically has a circular structure, including a large single-copy region (LSC), a small single-copy region (SSC) and two inverted repeats (IR1 and IR2). The organization of these four elementary regions LSC-IR1-SSC-IR2 is highly conserved across all plant cpDNAs. Very few structural variations (SVs) occurring at the elementary-region level have been reported. Results In the present study, we assembled the full-length cpDNA of Dongxiang wild rice line 159 (DXWR159). Using the long PacBio subreads, we discovered a large inversion of SSC and a large duplication of IR in DXWR159 cpDNAs. Significantly, we reported for the first time forward and reverse SSCs of cpDNAs in similar proportions and named the frequent inversion of a whole SSC as SSC switching. Conclusions Our study helps researchers to correctly assemble the chloroplast genomes. Our recombination model explained the formation of large SVs in cpDNAs and provided insights into a novel scientific question that if there are common mechanisms in the formation or translocation of all kinds of transposon-like elements (TLEs). We propose that: (1) large inversion is the most accepted mutation type of SVs in cpDNAs; (2) SSC switching ubiquitous occurs in plant cpDNAs; and (3) further investigation of molecular mechanism underlying SSC switching may reveal new driving forces for large SVs.
Collapse
Affiliation(s)
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- Tianjin Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yingxia Yang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Mingjie Lv
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shuangyong Yan
- Tianjin Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Plastomes of limestone karst gesneriad genera Petrocodon and Primulina, and the comparative plastid phylogenomics of Gesneriaceae. Sci Rep 2022; 12:15800. [PMID: 36138079 PMCID: PMC9500069 DOI: 10.1038/s41598-022-19812-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Petrocodon and Primulina are two characteristic genera of Gesneriaceae that exhibit remarkable species and floral diversity, and high endemism across the Sino-Vietnamese Limestone Karsts. To better understand the evolution of limestone gesneriad plastomes, we report nine complete plastomes of seven Primulina and two Petrocodon which have never been assembled before. The newly generated plastomes range from 152,323 to 153,786 bp in size and display a typical quadripartite structure. To further explore the plastome evolution across Gesneriaceae, we assembled five additional plastomes from public reads data and incorporated 38 complete Gesneriaceae plastomes available online into comparative and phylogenomic analyses. The comparison of 52 Gesneriaceae plastomes reveals that not only Primulina and Petrocodon but all gesneriad genera analyzed are highly conserved in genome size, genome structure, gene contents, IR boundary configurations, and codon usage bias. Additionally, sliding window analyses were implemented across alignments of Primulina and Petrocodon for identifying highly variable regions, providing informative markers for future studies. Meanwhile, the SSRs and long repeats of Gesneriaceae plastomes were characterized, serving as useful data in studying population and repetitive sequence evolutions. The results of plastome phylogenetics represent a preliminary but highly resolved maternal backbone genealogy of Primulina and the Old World subtribes of Gesneriaceae.
Collapse
|
20
|
Yin X, Huang F, Liu X, Guo J, Cui N, Liang C, Lian Y, Deng J, Wu H, Yin H, Jiang G. Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis. Sci Rep 2022; 12:14241. [PMID: 35987818 PMCID: PMC9392791 DOI: 10.1038/s41598-022-17721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Corydalis is one of the few lineages that have been reported to have extensive large-scale chloroplast genome (cp-genome) rearrangements. In this study, novel cp-genome rearrangements of Corydalis pinnata, C. mucronate, and C. sheareri are described. C. pinnata is a narrow endemic species only distributed at Qingcheng Mountain in southwest China. Two independent relocations of the same four genes (trnM-CAU-rbcL) were found relocated from the typically posterior part of the large single-copy region to the front of it. A uniform inversion of an 11-14-kb segment (ndhB-trnR-ACG) was found in the inverted repeat region; and extensive losses of accD, clpP, and trnV-UAC genes were detected in all cp-genomes of all three species of Corydalis. In addition, a phylogenetic tree was reconstructed based on 31 single-copy orthologous proteins in 27 cp-genomes. This study provides insights into the evolution of cp-genomes throughout the genus Corydalis and also provides a reference for further studies on the taxonomy, identification, phylogeny, and genetic transformation of other lineages with extensive rearrangements in cp-genomes.
Collapse
Affiliation(s)
- Xianmei Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Feng Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Xiaofen Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jiachen Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Ning Cui
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Conglian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Lian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jingjing Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Hao Wu
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Hongxiang Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| | - Guihua Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| |
Collapse
|
21
|
Ogoma CA, Liu J, Stull GW, Wambulwa MC, Oyebanji O, Milne RI, Monro AK, Zhao Y, Li DZ, Wu ZY. Deep Insights Into the Plastome Evolution and Phylogenetic Relationships of the Tribe Urticeae (Family Urticaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:870949. [PMID: 35668809 PMCID: PMC9164014 DOI: 10.3389/fpls.2022.870949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 05/09/2023]
Abstract
Urticeae s.l., a tribe of Urticaceae well-known for their stinging trichomes, consists of more than 10 genera and approximately 220 species. Relationships within this tribe remain poorly known due to the limited molecular and taxonomic sampling in previous studies, and chloroplast genome (CP genome/plastome) evolution is still largely unaddressed. To address these concerns, we used genome skimming data-CP genome and nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-26S); 106 accessions-for the very first time to attempt resolving the recalcitrant relationships and to explore chloroplast structural evolution across the group. Furthermore, we assembled a taxon rich two-locus dataset of trnL-F spacer and ITS sequences across 291 accessions to complement our genome skimming dataset. We found that Urticeae plastomes exhibit the tetrad structure typical of angiosperms, with sizes ranging from 145 to 161 kb and encoding a set of 110-112 unique genes. The studied plastomes have also undergone several structural variations, including inverted repeat (IR) expansions and contractions, inversion of the trnN-GUU gene, losses of the rps19 gene, and the rpl2 intron, and the proliferation of multiple repeat types; 11 hypervariable regions were also identified. Our phylogenomic analyses largely resolved major relationships across tribe Urticeae, supporting the monophyly of the tribe and most of its genera except for Laportea, Urera, and Urtica, which were recovered as polyphyletic with strong support. Our analyses also resolved with strong support several previously contentious branches: (1) Girardinia as a sister to the Dendrocnide-Discocnide-Laportea-Nanocnide-Zhengyia-Urtica-Hesperocnide clade and (2) Poikilospermum as sister to the recently transcribed Urera sensu stricto. Analyses of the taxon-rich, two-locus dataset showed lower support but was largely congruent with results from the CP genome and nuclear ribosomal DNA dataset. Collectively, our study highlights the power of genome skimming data to ameliorate phylogenetic resolution and provides new insights into phylogenetic relationships and chloroplast structural evolution in Urticeae.
Collapse
Affiliation(s)
- Catherine A. Ogoma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Moses C. Wambulwa
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Oyetola Oyebanji
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Richard I. Milne
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ying Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Guo S, Liao X, Chen S, Liao B, Guo Y, Cheng R, Xiao S, Hu H, Chen J, Pei J, Chen Y, Xu J, Chen S. A Comparative Analysis of the Chloroplast Genomes of Four Polygonum Medicinal Plants. Front Genet 2022; 13:764534. [PMID: 35547259 PMCID: PMC9084321 DOI: 10.3389/fgene.2022.764534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Polygonum is a generalized genus of the Polygonaceae family that includes various herbaceous plants. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Polygonum at the chloroplast (cp) genome-scale level, we sequenced and annotated the complete chloroplast genomes of four Polygonum species using next-generation sequencing technology and CpGAVAS. Then, repeat sequences, IR contractions, and expansion and transformation sites of chloroplast genomes of four Polygonum species were studied, and a phylogenetic tree was built using the chloroplast genomes of Polygonum. The results indicated that the chloroplast genome construction of Polygonum also displayed characteristic four types of results, comparable to the published chloroplast genome of recorded angiosperms. The chloroplast genomes of the four Polygonum plants are highly consistent in genome size (159,015 bp-163,461 bp), number of genes (112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes), gene types, gene order, codon usage, and repeat sequence distribution, which identifies the high preservation among the Polygonum chloroplast genomes. The Polygonum phylogenetic tree was recreated by a full sequence of the chloroplast genome, which illustrates that the P. bistorta, P. orientale, and P. perfoliatum are divided into the same branch, and P. aviculare belongs to Fallopia. The precise system site of lots base parts requires further verification, but the study would provide a basis for developing the available genetic resources and evolutionary relationships of Polygonum.
Collapse
Affiliation(s)
- Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Guo
- Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangjin Chen
- Department of City and Regional Planning, Nanjing University, Nanjing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Samigullin T, Logacheva M, Terentieva E, Degtjareva G, Pimenov M, Valiejo-Roman C. Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). PLANTS (BASEL, SWITZERLAND) 2022; 11:709. [PMID: 35270181 PMCID: PMC8912408 DOI: 10.3390/plants11050709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Based on the nrDNA ITS sequence data, the Tordylieae tribe is recognized as monophyletic with three major lineages: the subtribe Tordyliinae, the Cymbocarpum clade, and the Lefebvrea clade. Recent phylogenomic investigations showed incongruence between the nuclear and plastid genome evolution in the tribe. To assess phylogenetic relations and structure evolution of plastomes in Tordylieae, we generated eleven complete plastome sequences using the genome skimming approach and compared them with the available data from this tribe and close relatives. Newly assembled plastomes had lengths ranging from 141,148 to 150,103 base pairs and contained 122-127 genes, including 79-82 protein-coding genes, 35-37 tRNAs, and 8 rRNAs. We observed substantial differences in the inverted repeat length and gene content, accompanied by a complex picture of multiple JLA and JLB shifts. In concatenated phylogenetic analyses, Tordylieae plastomes formed at least three not closely related lineages with plastomes of the Lefebvrea clade as a sister group to plastomes from the Selineae tribe. The newly obtained data have increased our knowledge on the range of plastome variability in Apiaceae.
Collapse
Affiliation(s)
- Tahir Samigullin
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| | - Maria Logacheva
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Elena Terentieva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Galina Degtjareva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Michael Pimenov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Carmen Valiejo-Roman
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| |
Collapse
|
24
|
The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence. Int J Mol Sci 2022; 23:ijms23052783. [PMID: 35269924 PMCID: PMC8911259 DOI: 10.3390/ijms23052783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04-11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8-2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2-0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
Collapse
|
25
|
Zhang Z, Tao M, Shan X, Pan Y, Sun C, Song L, Pei X, Jing Z, Dai Z. Characterization of the complete chloroplast genome of Brassica oleracea var. italica and phylogenetic relationships in Brassicaceae. PLoS One 2022; 17:e0263310. [PMID: 35202392 PMCID: PMC8870505 DOI: 10.1371/journal.pone.0263310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Broccoli (Brassica oleracea var. italica) is an important B. oleracea cultivar, with high economic and agronomic value. However, comparative genome analyses are still needed to clarify variation among cultivars and phylogenetic relationships within the family Brassicaceae. Herein, the complete chloroplast (cp) genome of broccoli was generated by Illumina sequencing platform to provide basic information for genetic studies and to establish phylogenetic relationships within Brassicaceae. The whole genome was 153,364 bp, including two inverted repeat (IR) regions of 26,197 bp each, separated by a small single copy (SSC) region of 17,834 bp and a large single copy (LSC) region of 83,136 bp. The total GC content of the entire chloroplast genome accounts for 36%, while the GC content in each region of SSC,LSC, and IR accounts for 29.1%, 34.15% and 42.35%, respectively. The genome harbored 133 genes, including 88 protein-coding genes, 37 tRNAs, and 8 rRNAs, with 17 duplicates in IRs. The most abundant amino acid was leucine and the least abundant was cysteine. Codon usage analyses revealed a bias for A/T-ending codons. A total of 35 repeat sequences and 92 simple sequence repeats were detected, and the SC-IR boundary regions were variable between the seven cp genomes. A phylogenetic analysis suggested that broccoli is closely related to Brassica oleracea var. italica MH388764.1, Brassica oleracea var. italica MH388765.1, and Brassica oleracea NC_0441167.1. Our results are expected to be useful for further species identification, population genetics analyses, and biological research on broccoli.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Meiqi Tao
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Xi Shan
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Yongfei Pan
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Chunqing Sun
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Lixiao Song
- Department of Vegetables, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuli Pei
- College of Agriculture and Life Science, Kunming University, Kunming, China
| | - Zange Jing
- College of Agriculture and Life Science, Kunming University, Kunming, China
| | - Zhongliang Dai
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| |
Collapse
|
26
|
Moghaddam M, Ohta A, Shimizu M, Terauchi R, Kazempour-Osaloo S. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): comparative analysis with related IR-lacking clade species. BMC PLANT BIOLOGY 2022; 22:75. [PMID: 35183127 PMCID: PMC8858513 DOI: 10.1186/s12870-022-03465-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/14/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plastome (Plastid genome) sequences provide valuable markers for surveying evolutionary relationships and population genetics of plant species. Papilionoideae (papilionoids) has different nucleotide and structural variations in plastomes, which makes it an ideal model for genome evolution studies. Therefore, by sequencing the complete chloroplast genome of Onobrychis gaubae in this study, the characteristics and evolutionary patterns of plastome variations in IR-loss clade were compared. RESULTS In the present study, the complete plastid genome of O. gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 122,688 bp in length and included a large single-copy (LSC) region of 81,486 bp, a small single-copy (SSC) region of 13,805 bp and one copy of the inverted repeat (IRb) of 29,100 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 83 simple sequence repeats (SSRs) and 50 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as DNA barcode regions. Moreover, seven hypervariable regions [trnL(UAA)-trnT(UGU), trnT(GGU)-trnE(UUC), ycf1, ycf2, ycf4, accD and clpP] were identified within Onobrychis, which could be used to distinguish the Onobrychis species. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species. CONCLUSIONS Our results reveal that the plastomes of the IRLC are dynamic molecules and show multiple gene losses and inversions. The identified hypervariable regions could be used as molecular markers for resolving phylogenetic relationships and species identification and also provide new insights into plastome evolution across IRLC.
Collapse
Affiliation(s)
- Mahtab Moghaddam
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Atsushi Ohta
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| |
Collapse
|
27
|
Han Y, Gao Y, Li Y, Zhai X, Zhou H, Ding Q, Ma L. Chloroplast Genes Are Involved in The Male-Sterility of K-Type CMS in Wheat. Genes (Basel) 2022; 13:310. [PMID: 35205355 PMCID: PMC8871828 DOI: 10.3390/genes13020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
The utilization of crop heterosis can greatly improve crop yield. The sterile line is vital for the heterosis utilization of wheat (Triticum aestivum L.). The chloroplast genomes of two sterile lines and one maintainer were sequenced using second-generation high-throughput technology and assembled. The nonsynonymous mutated genes among the three varieties were identified, the expressed difference was further analyzed by qPCR, and finally, the function of the differentially expressed genes was analyzed by the barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) method. A total of 16 genes containing 31 nonsynonymous mutations between K519A and 519B were identified. There were no base mutations in the protein-encoding genes between K519A and YS3038. The chloroplast genomes of 519B and K519A were closely related to the Triticum genus and Aegilops genus, respectively. The gene expression levels of the six selected genes with nonsynonymous mutation sites for K519A compared to 519B were mostly downregulated at the binucleate and trinucleate stages of pollen development. The seed setting rates of atpB-silenced or ndhH-silenced 519B plants by BSMV-VIGS method were significantly reduced. It can be concluded that atpB and the ndhH are likely to be involved in the reproductive transformation of 519B.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (Y.H.); (Y.L.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Yujie Gao
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Yun Li
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (Y.H.); (Y.L.)
| | - Xiaoguang Zhai
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| |
Collapse
|
28
|
Abdel-Ghany SE, LaManna LM, Harroun HT, Maliga P, Sloan DB. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. PLANT MOLECULAR BIOLOGY 2022; 108:277-287. [PMID: 35039977 DOI: 10.1007/s11103-022-01241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution. The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Lisa M LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Haleakala T Harroun
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
29
|
Jo IH, Han S, Shim D, Ryu H, Hyun TK, Lee Y, Kim D, So YS, Chung JW. Complete Chloroplast Genome of the Inverted Repeat-Lacking Species Vicia bungei and Development of Polymorphic Simple Sequence Repeat Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:891783. [PMID: 35651765 PMCID: PMC9149428 DOI: 10.3389/fpls.2022.891783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Vicia bungei is an economically important forage crop in South Korea and China. Although detailed genetic and genomic data can improve population genetic studies, conservation efforts, and improved breeding of crops, few such data are available for Vicia species in general and none at all for V. bungei. Therefore, the main objectives of this study were to sequence, assemble, and annotate V. bungei chloroplast genome and to identify simple sequence repeats (SSRs) as polymorphic genetic markers. RESULTS The whole-genome sequence of V. bungei was generated using an Illumina MiSeq platform. De novo assembly of complete chloroplast genome sequences was performed for the low-coverage sequence using CLC Genome Assembler with a 200-600-bp overlap size. Vicia bungei chloroplast genome was 130,796-bp long. The genome lacked an inverted repeat unit and thus resembled those of species in the inverted repeat-lacking clade within Fabaceae. Genome annotation using Dual OrganellarGenoMe Annotator (DOGMA) identified 107 genes, comprising 75 protein-coding, 28 transfer RNA, and 4 ribosomal RNA genes. In total, 432 SSRs were detected in V. bungei chloroplast genome, including 64 mononucleotides, 14 dinucleotides, 5 trinucleotides, 4 tetranucleotides, 233 pentanucleotides, 90 hexanucleotides, and 14 complex repeated motifs. These were used to develop 232 novel chloroplast SSR markers, 39 of which were chosen at random to test amplification and genetic diversity in Vicia species (20 accessions from seven species). The unweighted pair group method with arithmetic mean cluster analysis identified seven clusters at the interspecies level and intraspecific differences within clusters. CONCLUSION The complete chloroplast genome sequence of V. bungei was determined. This reference genome should facilitate chloroplast resequencing and future searches for additional genetic markers using population samples. The novel chloroplast genome resources and SSR markers will greatly contribute to the conservation of the genus Vicia and facilitate genetic and evolutionary studies of this genus and of other higher plants.
Collapse
Affiliation(s)
- Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, South Korea
| | - Seahee Han
- Division of Botany, Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, South Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Daeil Kim
- Department of Horticulture, Chungbuk National University, Cheongju, South Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Yoon-Sup So,
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
- Jong-Wook Chung,
| |
Collapse
|
30
|
Luo Y, He J, Lyu R, Xiao J, Li W, Yao M, Pei L, Cheng J, Li J, Xie L. Comparative Analysis of Complete Chloroplast Genomes of 13 Species in Epilobium, Circaea, and Chamaenerion and Insights Into Phylogenetic Relationships of Onagraceae. Front Genet 2021; 12:730495. [PMID: 34804117 PMCID: PMC8600051 DOI: 10.3389/fgene.2021.730495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/20/2021] [Indexed: 02/01/2023] Open
Abstract
The evening primrose family, Onagraceae, is a well defined family of the order Myrtales, comprising 22 genera widely distributed from boreal to tropical areas. In this study, we report and characterize the complete chloroplast genome sequences of 13 species in Circaea, Chamaenerion, and Epilobium using a next-generation sequencing method. We also retrieved chloroplast sequences from two other Onagraceae genera to characterize the chloroplast genome of the family. The complete chloroplast genomes of Onagraceae encoded an identical set of 112 genes (with exclusion of duplication), including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The chloroplast genomes are basically conserved in gene arrangement across the family. However, a large segment of inversion was detected in the large single copy region of all the samples of Oenothera subsect. Oenothera. Two kinds of inverted repeat (IR) region expansion were found in Oenothera, Chamaenerion, and Epilobium samples. We also compared chloroplast genomes across the Onagraceae samples in some features, including nucleotide content, codon usage, RNA editing sites, and simple sequence repeats (SSRs). Phylogeny was inferred by the chloroplast genome data using maximum-likelihood (ML) and Bayesian inference methods. The generic relationship of Onagraceae was well resolved by the complete chloroplast genome sequences, showing potential value in inferring phylogeny within the family. Phylogenetic relationship in Oenothera was better resolved than other densely sampled genera, such as Circaea and Epilobium. Chloroplast genomes of Oenothera subsect. Oenothera, which are biparental inheritated, share a syndrome of characteristics that deviate from primitive pattern of the family, including slightly expanded inverted repeat region, intron loss in clpP, and presence of the inversion.
Collapse
Affiliation(s)
- Yike Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wenhe Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Min Yao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Linying Pei
- Beijing Engineering Research Center for Landscape Plant, Beijing Forestry University Forest Science Co. Ltd., Beijing, China
| | - Jin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinyu Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
31
|
Könyves K, Bilsborrow J, Christodoulou MD, Culham A, David J. Comparative plastomics of Amaryllidaceae: inverted repeat expansion and the degradation of the ndh genes in Strumaria truncata Jacq. PeerJ 2021; 9:e12400. [PMID: 34824912 PMCID: PMC8592052 DOI: 10.7717/peerj.12400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Amaryllidaceae is a widespread and distinctive plant family contributing both food and ornamental plants. Here we present an initial survey of plastomes across the family and report on both structural rearrangements and gene losses. Most plastomes in the family are of similar gene arrangement and content however some taxa have shown gains in plastome length while in several taxa there is evidence of gene loss. Strumaria truncata shows a substantial loss of ndh family genes while three other taxa show loss of cemA, which has been reported only rarely. Our sparse sampling of the family has detected sufficient variation to suggest further sampling across the family could be a rich source of new information on plastome variation and evolution.
Collapse
Affiliation(s)
- Kálmán Könyves
- Royal Horticultural Society Garden Wisley, Woking, United Kingdom
- Herbarium, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jordan Bilsborrow
- Herbarium, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alastair Culham
- Herbarium, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - John David
- Royal Horticultural Society Garden Wisley, Woking, United Kingdom
| |
Collapse
|
32
|
Charboneau JLM, Cronn RC, Liston A, Wojciechowski MF, Sanderson MJ. Plastome Structural Evolution and Homoplastic Inversions in Neo-Astragalus (Fabaceae). Genome Biol Evol 2021; 13:evab215. [PMID: 34534296 PMCID: PMC8486006 DOI: 10.1093/gbe/evab215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
The plastid genomes of photosynthetic green plants have largely maintained conserved gene content and order as well as structure over hundreds of millions of years of evolution. Several plant lineages, however, have departed from this conservation and contain many plastome structural rearrangements, which have been associated with an abundance of repeated sequences both overall and near rearrangement endpoints. We sequenced the plastomes of 25 taxa of Astragalus L. (Fabaceae), a large genus in the inverted repeat-lacking clade of legumes, to gain a greater understanding of the connection between repeats and plastome inversions. We found plastome repeat structure has a strong phylogenetic signal among these closely related taxa mostly in the New World clade of Astragalus called Neo-Astragalus. Taxa without inversions also do not differ substantially in their overall repeat structure from four taxa each with one large-scale inversion. For two taxa with inversion endpoints between the same pairs of genes, differences in their exact endpoints indicate the inversions occurred independently. Our proposed mechanism for inversion formation suggests the short inverted repeats now found near the endpoints of the four inversions may be there as a result of these inversions rather than their cause. The longer inverted repeats now near endpoints may have allowed the inversions first mediated by shorter microhomologous sequences to propagate, something that should be considered in explaining how any plastome rearrangement becomes fixed regardless of the mechanism of initial formation.
Collapse
Affiliation(s)
- Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Richard C Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
33
|
Yoo MJ, Jin DP, Lee HO, Lim CE. Complete Plastome of Three Korean Asarum (Aristolochiaceae): Confirmation Tripartite Structure within Korean Asarum and Comparative Analyses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2056. [PMID: 34685866 PMCID: PMC8540983 DOI: 10.3390/plants10102056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
The genus Asarum (Aristolochiaceae) is a well-known resource of medicinal and ornamental plants. However, the taxonomy of Korean Asarum is ambiguous due to their considerable morphological variations. Previously, a unique plastome structure has been reported from this genus. Therefore, we investigated the structural change in the plastomes within three Korean Asarum species and inferred their phylogenetic relationships. The plastome sizes of Asarum species assembled here range from 190,168 to 193,356 bp, which are longer than a typical plastome size (160 kb). This is due to the incorporation and duplication of the small single copy into the inverted repeat, which resulted in a unique tripartite structure. We first verified this unique structure using the Illumina Miseq and Oxford Nanopore MinION platforms. We also investigated the phylogeny of 26 Aristolochiaceae species based on 79 plastid protein-coding genes, which supports the monophyly of Korean Asarum species. Although the 79 plastid protein-coding gene data set showed some limitations in supporting the previous classification, it exhibits its effectiveness in delineating some sections and species. Thus, it can serve as an effective tool for resolving species-level phylogeny in Aristolochiaceae. Last, we evaluated variable sites and simple sequence repeats in the plastome as potential molecular markers for species delimitation.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA;
| | - Dong-Pil Jin
- National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea;
| | - Hyun-Oh Lee
- Phyzen Inc., 13 Seongnam-daero, 331 beon-gil, Bundang-gu, Seongnam-si 13558, Korea;
| | - Chae Eun Lim
- National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea;
| |
Collapse
|
34
|
Park S, Jun M, Park S, Park S. Lineage-Specific Variation in IR Boundary Shift Events, Inversions, and Substitution Rates among Caprifoliaceae s.l. (Dipsacales) Plastomes. Int J Mol Sci 2021; 22:ijms221910485. [PMID: 34638831 PMCID: PMC8508905 DOI: 10.3390/ijms221910485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
Caprifoliaceae s.l. plastid genomes (plastomes) show that one inversion and two inverted repeat boundary shifts occurred in the common ancestor of this family, after which the plastomes are generally conserved. This study reports plastome sequences of five additional species, Fedia cornucopiae, Valeriana fauriei, and Valerianella locusta from the subfamily Valerianoideae, as well as Dipsacus japonicus and Scabiosa comosa from the subfamily Dipsacoideae. Combined with the published plastomes, these plastomes provide new insights into the structural evolution of plastomes within the family. Moreover, the three plastomes from the subfamily Valerianoideae exhibited accelerated nucleotide substitution rates, particularly at synonymous sites, across the family. The patterns of accD sequence divergence in the family are dynamic with structural changes, including interruption of the conserved domain and increases in nonsynonymous substitution rates. In particular, the Valeriana accD gene harbors a large insertion of amino acid repeat (AAR) motifs, and intraspecific polymorphism with a variable number of AARs in the Valeriana accD gene was detected. We found a correlation between intron losses and increased ratios of nonsynonymous to synonymous substitution rates in the clpP gene with intensified positive selection. In addition, two Dipsacoideae plastomes revealed the loss of the plastid-encoded rps15, and a potential functional gene transfer to the nucleus was confirmed.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Minji Jun
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - Sunmi Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2377
| |
Collapse
|
35
|
Cauz-Santos LA, da Costa ZP, Callot C, Cauet S, Zucchi MI, Bergès H, van den Berg C, Vieira MLC. A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes. Genome Biol Evol 2021; 12:1841-1857. [PMID: 32722748 PMCID: PMC7586853 DOI: 10.1093/gbe/evaa155] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.
Collapse
Affiliation(s)
- Luiz Augusto Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Zirlane Portugal da Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Maria Imaculada Zucchi
- Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, SP, Brazil
| | - Hélène Bergès
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Cássio van den Berg
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
36
|
Lee C, Ruhlman TA, Jansen RK. Unprecedented Intraindividual Structural Heteroplasmy in Eleocharis (Cyperaceae, Poales) Plastomes. Genome Biol Evol 2021; 12:641-655. [PMID: 32282915 PMCID: PMC7426004 DOI: 10.1093/gbe/evaa076] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) of land plants have a conserved quadripartite structure in a gene-dense unit genome consisting of a large inverted repeat that separates two single copy regions. Recently, alternative plastome structures were suggested in Geraniaceae and in some conifers and Medicago the coexistence of inversion isomers has been noted. In this study, plastome sequences of two Cyperaceae, Eleocharis dulcis (water chestnut) and Eleocharis cellulosa (gulf coast spikerush), were completed. Unlike the conserved plastomes in basal groups of Poales, these Eleocharis plastomes have remarkably divergent features, including large plastome sizes, high rates of sequence rearrangements, low GC content and gene density, gene duplications and losses, and increased repetitive DNA sequences. A novel finding among these features was the unprecedented level of heteroplasmy with the presence of multiple plastome structural types within a single individual. Illumina paired-end assemblies combined with PacBio single-molecule real-time sequencing, long-range polymerase chain reaction, and Sanger sequencing data identified at least four different plastome structural types in both Eleocharis species. PacBio long read data suggested that one of the four E. dulcis plastome types predominates.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin.,Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Scobeyeva VA, Artyushin IV, Krinitsina AA, Nikitin PA, Antipin MI, Kuptsov SV, Belenikin MS, Omelchenko DO, Logacheva MD, Konorov EA, Samoilov AE, Speranskaya AS. Gene Loss, Pseudogenization in Plastomes of Genus Allium ( Amaryllidaceae), and Putative Selection for Adaptation to Environmental Conditions. Front Genet 2021; 12:674783. [PMID: 34306019 PMCID: PMC8296844 DOI: 10.3389/fgene.2021.674783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus—Allium—is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes’ annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the “normal” or “pseudo” state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.
Collapse
Affiliation(s)
- Victoria A Scobeyeva
- Department of Evolution, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya V Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A Nikitin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim I Antipin
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei V Kuptsov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim S Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, Moscow, Russia
| | - Maria D Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgenii A Konorov
- Laboratory of Animal Genetics, Vavilov Institute of General Genetics, Russian Academy of Science (RAS), Moscow, Russia
| | - Andrey E Samoilov
- Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| | - Anna S Speranskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| |
Collapse
|
38
|
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Towards the Well-Tempered Chloroplast DNA Sequences. PLANTS 2021; 10:plants10071360. [PMID: 34371563 PMCID: PMC8309291 DOI: 10.3390/plants10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
With the development of next-generation sequencing technology and bioinformatics tools, the process of assembling DNA sequences has become cheaper and easier, especially in the case of much shorter organelle genomes. The number of available DNA sequences of complete chloroplast genomes in public genetic databases is constantly increasing and the data are widely used in plant phylogenetic and biotechnological research. In this work, we investigated possible inconsistencies in the stored form of publicly available chloroplast genome sequence data. The impact of these inconsistencies on the results of the phylogenetic analysis was investigated and the bioinformatic solution to identify and correct inconsistencies was implemented. The whole procedure was demonstrated using five plant families (Apiaceae, Asteraceae, Campanulaceae, Lamiaceae and Rosaceae) as examples.
Collapse
Affiliation(s)
- Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-91-3141592
| | - Zlatko Liber
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Martina Grdiša
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Filip Varga
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| |
Collapse
|
39
|
Huang X, Tan W, Li F, Liao R, Guo Z, Shi T, Gao Z. The chloroplast genome of Prunus zhengheensis: Genome comparative and phylogenetic relationships analysis. Gene 2021; 793:145751. [PMID: 34062257 DOI: 10.1016/j.gene.2021.145751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
Prunus zhengheensis is a novel species originated in Fujian province, China. However, there is no further information available on its classification and molecular biology study. In this study, we first report the complete chloroplast (cp) genome sequence of P. zhengheensis. The cp genome of P. zhengheensis is 158,106 bp and GC content is 36.73%, is a circular structure composed of LSC (large single copy), SSC (small single copy), and IR (inverted repeat) regions, with the size of the three regions being 86,321 bp, 18,999 bp and 26,393 bp, respectively. The cp genome of P. zhengheensis contains 130 genes, and 242 SSRs are identified in the cp genome. The comparative analysis of cp genomes in eight Prunus plants demonstrates the subtle divergences occur in the protein-coding gene rps18, rps12, psbF, rpl33, matK, and rbcL, and that the KA/KS nucleotide substitution ratio of the ndhF of P. zhengheensis and P. armeniaca is 1.79636. The phylogenetic results indicate that the P. zhengheensis is closely related to P. mume, compared to other species of Prunus. Our research results provide the important genomic information for molecular phylogeny of P. zhengheensis.
Collapse
Affiliation(s)
- Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Li
- Jilin Academy of Agricultural Sciences, Jilin 136100, China.
| | - Ruyu Liao
- Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Zhongren Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Kim H, Kim J. Structural Mutations in the Organellar Genomes of Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara Show Dynamic Gene Transfer. Int J Mol Sci 2021; 22:ijms22073770. [PMID: 33916499 PMCID: PMC8038606 DOI: 10.3390/ijms22073770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Collapse
Affiliation(s)
- Hyoungtae Kim
- Institute of Agriculture Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jungsung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- Correspondence: ; Tel.: +82-43-261-2535
| |
Collapse
|
41
|
Plastid genomes and phylogenomics of liverworts (Marchantiophyta): Conserved genome structure but highest relative plastid substitution rate in land plants. Mol Phylogenet Evol 2021; 161:107171. [PMID: 33798674 DOI: 10.1016/j.ympev.2021.107171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023]
Abstract
With some 7300 species of small nonvascular spore-producing plants, liverworts represent one of the major lineages of land plants. Although multi-locus molecular phylogenetic studies have elucidated relationships of liverworts at different taxonomic categories, the backbone phylogeny of liverworts is still to be fully resolved, especially for the placement of Ptilidiales and the relationships within Jungermanniales and Marchantiales. Here, we provided phylogenomic inferences of liverworts based on 42 newly sequenced and 24 published liverwort plastid genomes representing all but two orders of liverworts, and characterized the evolution of the plastome in liverworts. The structure of the plastid genome is overall conserved across the phylogeny of liverworts, with only two structural variants detected from simple thalloids, besides 18 out of 43 liverwort genera showing intron variations in their plastomes. Complex thalloid liverworts maintain the most plastid genes, and seem to undergo fewer gene deletions and pseudogenization events than other liverworts. Plastid phylogenetic inferences yielded mostly robustly supported relationships, and consistently resolved Ptilidiales as the sister to Porellales. The relative ratio of silent substitutions across the three genetic compartments (i.e., 1:15:10, for mitochondrial:plastid:nuclear) suggests that liverwort plastid genes have the potential to evolve faster than their nuclear counterparts, unlike in any other major land plant lineages where the mutation rate of nuclear genes overwhelm those of their plastid and mitochondrial counterparts.
Collapse
|
42
|
Complete chloroplast genome sequence of Adenophora racemosa (Campanulaceae): Comparative analysis with congeneric species. PLoS One 2021; 16:e0248788. [PMID: 33735287 PMCID: PMC7971521 DOI: 10.1371/journal.pone.0248788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Adenophora racemosa, belonging to the Campanulaceae, is an important species because it is endemic to Korea. The goal of this study was to assemble and annotate the chloroplast genome of A. racemosa and compare it with published chloroplast genomes of congeneric species. The chloroplast genome was reconstructed using de novo assembly of paired-end reads generated by the Illumina MiSeq platform. The chloroplast genome size of A. racemosa was 169,344 bp. In total, 112 unique genes (78 protein-coding genes, 30 tRNAs, and 4 rRNAs) were identified. A Maximum likelihood (ML) tree based on 76 protein-coding genes divided the five Adenophora species into two clades, showing that A. racemosa is more closely related to Adenophora stricta than to Adenophora divaricata. The gene order and contents of the LSC region of A. racemosa were identical to those of A. divaricata and A. stricta, but the structure of the SSC and IRs was unique due to IR contraction. Nucleotide diversity (Pi) >0.05 was found in eleven regions among the three Adenophora species not included in sect. Remotiflorae and in six regions between two species (A. racemosa and A. stricta).
Collapse
|
43
|
Jung J, Do HDK, Hyun J, Kim C, Kim JH. Comparative analysis and implications of the chloroplast genomes of three thistles ( Carduus L., Asteraceae). PeerJ 2021; 9:e10687. [PMID: 33520461 PMCID: PMC7811785 DOI: 10.7717/peerj.10687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Carduus, commonly known as plumeless thistles, is a genus in the Asteraceae family that exhibits both medicinal value and invasive tendencies. However, the genomic data of Carduus (i.e., complete chloroplast genomes) have not been sequenced. METHODS We sequenced and assembled the chloroplast genome (cpDNA) sequences of three Carduus species using the Illumina Miseq sequencing system and Geneious Prime. Phylogenetic relationships between Carduus and related taxa were reconstructed using Maximum Likelihood and Bayesian Inference analyses. In addition, we used a single nucleotide polymorphism (SNP) in the protein coding region of the matK gene to develop molecular markers to distinguish C. crispus from C. acanthoides and C. tenuiflorus. RESULTS The cpDNA sequences of C. crispus, C. acanthoides, and C. tenuiflorus ranged from 152,342 bp to 152,617 bp in length. Comparative genomic analysis revealed high conservation in terms of gene content (including 80 protein-coding, 30 tRNA, and four rRNA genes) and gene order within the three focal species and members of subfamily Carduoideae. Despite their high similarity, the three species differed with respect to the number and content of repeats in the chloroplast genome. Additionally, eight hotspot regions, including psbI-trnS_GCU, trnE_UUC-rpoB, trnR_UCU-trnG_UCC, psbC-trnS_UGA, trnT_UGU-trnL_UAA, psbT-psbN, petD-rpoA, and rpl16-rps3, were identified in the study species. Phylogenetic analyses inferred from 78 protein-coding and non-coding regions indicated that Carduus is polyphyletic, suggesting the need for additional studies to reconstruct relationships between thistles and related taxa. Based on a SNP in matK, we successfully developed a molecular marker and protocol for distinguishing C. crispus from the other two focal species. Our study provides preliminary chloroplast genome data for further studies on plastid genome evolution, phylogeny, and development of species-level markers in Carduus.
Collapse
Affiliation(s)
- Joonhyung Jung
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| | - Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - JongYoung Hyun
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| | - Changkyun Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea
| |
Collapse
|
44
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
45
|
Liao M, Gao XF, Zhang JY, Deng HN, Xu B. Comparative Chloroplast Genomics of Sophora Species: Evolution and Phylogenetic Relationships in the Early-Diverging Legume Subfamily Papilionoideae (Fabaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:778933. [PMID: 34975964 PMCID: PMC8716937 DOI: 10.3389/fpls.2021.778933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953-158,087 bp in length, and contained 111-113 unique genes, including 76-78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.
Collapse
Affiliation(s)
- Min Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Heng-Ning Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Bo Xu,
| |
Collapse
|
46
|
Oulo MA, Yang JX, Dong X, Wanga VO, Mkala EM, Munyao JN, Onjolo VO, Rono PC, Hu GW, Wang QF. Complete Chloroplast Genome of Rhipsalis baccifera, the only Cactus with Natural Distribution in the Old World: Genome Rearrangement, Intron Gain and Loss, and Implications for Phylogenetic Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E979. [PMID: 32752116 PMCID: PMC7464518 DOI: 10.3390/plants9080979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023]
Abstract
Rhipsalis baccifera is the only cactus that naturally occurs in both the New World and the Old World, and has thus drawn the attention of most researchers. The complete chloroplast (cp) genome of R. baccifera is reported here for the first time. The cp genome of R. baccifera has 122, 333 base pairs (bp), with a large single-copy (LSC) region (81,459 bp), SSC (23,531 bp) and two inverted repeat (IR) regions each 8530 bp. The genome contains 110 genes, with 73 protein-coding genes, 31 tRNAs, 4 rRNAs and 2 pseudogenes. Twelve genes have introns, with loss of introns being observed in, rpoc1clpP and rps12 genes. 49 repeat sequences and 62 simple sequence repeats (SSRs) were found in the genome. Comparative analysis with eight species of the ACPT (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae) clade of the suborder Portulacineae species, showed that R. baccifera genome has higher number of rearrangements, with a 19 gene inversion in its LSC region representing the most significant structural change in terms of its size. Inversion of the SSC region seems common in subfamily Cactoideae, and another 6 kb gene inversion between rbcL- trnM was observed in R. baccifera and Carnegiea gigantea. The IRs of R. baccifera are contracted. The phylogenetic analysis among 36 complete chloroplast genomes of Caryophyllales species and two outgroup species supported monophyly of the families of the ACPT clade. R. baccifera occupied a basal position of the family Cactaceae clade in the tree. A high number of rearrangements in this cp genome suggests a larger number mutation events in the history of evolution of R. baccifera. These results provide important tools for future work on R. baccifera and in the evolutionary studies of the suborder Portulacineae.
Collapse
Affiliation(s)
- Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacinta Ndunge Munyao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi Onjolo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
47
|
Chincoya DA, Sanchez-Flores A, Estrada K, Díaz-Velásquez CE, González-Rodríguez A, Vaca-Paniagua F, Dávila P, Arias S, Solórzano S. Identification of High Molecular Variation Loci in Complete Chloroplast Genomes of Mammillaria (Cactaceae, Caryophyllales). Genes (Basel) 2020; 11:E830. [PMID: 32708269 PMCID: PMC7397273 DOI: 10.3390/genes11070830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 01/23/2023] Open
Abstract
In plants, partial DNA sequences of chloroplasts have been widely used in evolutionary studies. However, the Cactaceae family (1500-1800 species) lacks molecular markers that allow a phylogenetic resolution between species and genera. In order to identify sequences with high variation levels, we compared previously reported complete chloroplast genomes of seven species of Mammillaria. We identified repeated sequences (RSs) and two types of DNA variation: short sequence repeats (SSRs) and divergent homologous loci. The species with the highest number of RSs was M. solisioides (256), whereas M. pectinifera contained the highest amount of SSRs (84). In contrast, M. zephyranthoides contained the lowest number (35) of both RSs and SSRs. In addition, five of the SSRs were found in the seven species, but only three of them showed variation. A total of 180 homologous loci were identified among the seven species. Out of these, 20 loci showed a molecular variation of 5% to 31%, and 12 had a length within the range of 150 to 1000 bp. We conclude that the high levels of variation at the reported loci represent valuable knowledge that may help to resolve phylogenetic relationships and that may potentially be convenient as molecular markers for population genetics and phylogeographic studies.
Collapse
Affiliation(s)
- Delil A Chincoya
- Laboratorio de Ecología Molecular y Evolución, Unidad de Biotecnología y Prototipos FES Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca 62250, Mexico
| | - Karel Estrada
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca 62250, Mexico
| | - Clara E Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, FES Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico
| | - Antonio González-Rodríguez
- Laboratorio de Genética de la Conservación, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda San José La Huerta, Morelia 58190, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, FES Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 04510, Mexico
| | - Patricia Dávila
- Laboratorio de Recursos Naturales, Unidad de Biotecnología y Prototipos, FES Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Sofía Solórzano
- Laboratorio de Ecología Molecular y Evolución, Unidad de Biotecnología y Prototipos FES Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico
| |
Collapse
|
48
|
The dynamic evolution of mobile open reading frames in plastomes of Hymenophyllum Sm. and new insight on Hymenophyllum coreanum Nakai. Sci Rep 2020; 10:11059. [PMID: 32632087 PMCID: PMC7338519 DOI: 10.1038/s41598-020-68000-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, four plastomes of Hymenophyllum, distributed in the Korean peninsula, were newly sequenced and phylogenomic analysis was conducted to reveal (1) the evolutionary history of plastomes of early-diverging fern species at the species level, (2) the importance of mobile open reading frames in the genus, and (3) plastome sequence divergence providing support for H. coreanum to be recognized as an independent species distinct from H. polyanthos. In addition, 1C-values of H. polyanthos and H. coreanum were measured to compare the genome size of both species and to confirm the diversification between them. The rrn16-trnV intergenic regions in the genus varied in length caused by Mobile Open Reading Frames in Fern Organelles (MORFFO). We investigated enlarged noncoding regions containing MORFFO throughout the fern plastomes and found that they were strongly associated with tRNA genes or palindromic elements. Sequence identity between plastomes of H. polyanthos and H. coreanum is quite low at 93.35% in the whole sequence and 98.13% even if the variation in trnV-rrn16 intergenic spacer was ignored. In addition, different genome sizes were found for these species based on the 1C-value. Consequently, there is no reason to consider them as a conspecies.
Collapse
|
49
|
Xu J, Shen X, Liao B, Xu J, Hou D. Comparing and phylogenetic analysis chloroplast genome of three Achyranthes species. Sci Rep 2020; 10:10818. [PMID: 32616875 PMCID: PMC7331806 DOI: 10.1038/s41598-020-67679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the chloroplast genome sequencing of the Achyranthes longifolia, Achyranthes bidentata and Achyranthes aspera were performed by Next-generation sequencing technology. The results revealed that there were a length of 151,520 bp (A. longifolia), 151,284 bp (A. bidentata), 151,486 bp (A. aspera), respectively. These chloroplast genome have a highly conserved structure with a pair of inverted repeat (IR) regions (25,150 bp; 25,145 bp; 25,150 bp), a large single copy (LSC) regions (83,732 bp; 83,933 bp; 83,966 bp) and a small single copy (SSC) regions (17,252 bp; 17,263 bp; 17,254 bp) in A. bidentate, A. aspera and A. longifolia. There were 127 genes were annotated, which including 8 rRNA genes, 37 tRNA genes and 82 functional genes. The phylogenetic analysis strongly revealed that Achyranthes is monophyletic, and A. bidentata was the closest relationship with A. aspera and A. longifolia. A. bidentata and A. longifolia were clustered together, the three Achyranthes species had the same origin, then the gunes of Achyranthes is the closest relative to Alternanthera, and that forms a group with Alternanthera philoxeroides. The research laid a foundation and provided relevant basis for the identification of germplasm resources in the future.
Collapse
Affiliation(s)
- Jingya Xu
- Agricultural College, Henan University of Science and Technology, Luoyang, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-Di Herbs, Luoyang, China
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dianyun Hou
- Agricultural College, Henan University of Science and Technology, Luoyang, China.
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-Di Herbs, Luoyang, China.
| |
Collapse
|
50
|
Comparing chloroplast genomes of traditional Chinese herbs Schisandra sphenanthera and S. chinensis. CHINESE HERBAL MEDICINES 2020; 12:247-256. [PMID: 36119003 PMCID: PMC9476811 DOI: 10.1016/j.chmed.2019.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 11/25/2022] Open
Abstract
Objective Schisandra sphenanthera and S. chinensis are the two important medicinal plants that have long been used under the names of “Nan-Wuweizi” and “Wuweizi”, respectively. The misuse of “Nan-Wuweizi” and “Wuweizi” in herbal medical products calls for an accurate method to distinguish these herbs. Chloroplast (cp) genomes have been widely used in species delimitation and phylogeny due to their uniparental inheritance and lower substitution rates than that of the nuclear genomes. To develop more efficient DNA markers for distinguishing S. sphenanthera, S. chinensis, and the related species, we sequenced the cp genome of S. sphenanthera and compared it to that of S. chinensis. Methods The cp genome of S. sphenanthera was sequenced at the Illumina HiSeq platform, and the reference-guided mapping of contigs was obtained with a de novo assembly procedure. Then, comparative analyses of the cp genomes of S. sphenanthera and S. chinensis were carried out. Results The cp genome of S. sphenanthera was 146 853 bp in length and consisted of a large single copy (LSC) region of 95 627 bp, a small single copy (SSC) region of 18 292 bp, and a pair of inverted repeats (IR) of 16 467 bp. GC content was 39.6%. A total of 126 functional genes were predicted, of which 113 genes were unique, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Five tRNA, four protein-coding genes, and all rRNA were duplicated in the IR regions. There were 18 intron-containing genes, including six tRNA genes and 12 protein-coding genes. In addition, 45 SSRs were detected. The whole cp genome of S. sphenanthera was 123 bp longer than that of S. chinensis. A total of 474 SNPs and 97 InDels were identified. Five genetic regions with high levels of variation (Pi > 0.015), trnS-trnG, ccsA-ndhD, psbI-trnS, trnT-psbD and ndhF-rpl32 were revealed. Conclusion We reported the cp genome of S. sphenanthera and revealed the SNPs and InDels between the cp genomes of S. sphenanthera and S. chinensis. This study shed light on the species identification and further phylogenetic study within the genus of Schisandra.
Collapse
|