1
|
Malik M, Malik F, Fatma T, Qasim Hayat M, Jamal A, Gul A, Faraz Bhatti M. The complete mitochondrial genome of Penicillium expansum: Insights into the fungal evolution and phylogeny. Gene 2024; 910:148315. [PMID: 38417689 DOI: 10.1016/j.gene.2024.148315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Penicillium expansum is an important phytopathogenic fungus that causes blue mold disease. In this study, the novel mitochondrial genome of P. expansum was sequenced, assembled, annotated, and compared with the previously published Penicillium mitogenomes. P. expansum mitogenome is composed of circular DNA molecules with a genome size of 25,496 bp. It encodes 16 protein-encoding genes (PCGs), two rRNA genes, and 25 tRNA genes. Comparative analysis with six other Penicillium species revealed that gene length, GC content, AT skew, and GC skew were variable among the core protein-coding genes. The Penicillium species' gene synteny analysis identified several gene rearrangements. Among the core 15 PCGs, atp8 had the lowest K2P genetic distance, which shows that this gene is highly conserved. The Ka/Ks value of most PCGs was less than 1, which shows that these genes have undergone purifying selection. Phylogenetic analysis based on 14 concatenated core mitochondrial genes revealed that P. expansum shares a close relationship with P. solitum. This study served as a first report on the complete mitochondrial genome of P. expansum and its comparative analysis that will contribute to population genetics and rapid evolutionary studies among Penicillium species.
Collapse
Affiliation(s)
- Mahnoor Malik
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Fatima Malik
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| |
Collapse
|
2
|
Castrillo ML, Bich GÁ, Amerio NS, Barengo MP, Zapata PD, Saparrat MCN, Villalba LL. Trichoderma koningiopsis (Hypocreaceae) has the smallest mitogenome of the genus Trichoderma. Front Microbiol 2023; 14:1141087. [PMID: 37383640 PMCID: PMC10294050 DOI: 10.3389/fmicb.2023.1141087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Fungal mitogenomes exhibit remarkable variation in conformation, size, gene content, arrangement and expression, including their intergenic spacers and introns. Methods The complete mitochondrial genome sequence of the mycoparasitic fungus Trichoderma koningiopsis was determined using the Illumina next-generation sequencing technology. We used data from our recent Illumina NGS-based project of T. koningiopsis genome sequencing to study its mitochondrial genome. The mitogenome was assembled, annotated, and compared with other fungal mitogenomes. Results T. koningiopsis strain POS7 mitogenome is a circular molecule of 27,560 bp long with a GC content of 27.80%. It harbors the whole complement of the 14 conserved mitochondrial protein-coding genes (PCG) such as atp6, atp8, atp9, cox1, cox2, cox3, cob, nad1, nad2, nad3, nad4, nad4L, nad5, and nad6, also found in the same gene order to other Hypocreales. The mitogenome also contains 26 transfer RNA genes (tRNAs), 5 of them with more than one copy. Other genes also present in the assembled mitochondrial genome are a small rRNA subunit and a large rRNA subunit containing ribosomal protein S3 gene. Despite the small genome size, two introns were detected in the T. koningiopsis POS7 mitogenome, one of them in cox3 gene and the other in rnl gene, accounting 7.34% of this mitogenome with a total size of 2,024 bp. A phylogenetic analysis was done using the 14 PCGs genes of T. koningiopsis strain POS7 mitogenome to compare them with those from other fungi of the Subphyla Pezizomycotina and Saccharomycotina. T. koningiopsis strain POS7 was clustered together with other representatives of Trichoderma lineage, within the Hypocreales group, which is also supported by previous phylogenetic studies based on nuclear markers. Discussion The mitochondrial genome of T. koningiopsis POS7 will allow further investigations into the taxonomy, phylogenetics, conservation genetics, and evolutionary biology of this important genus as well as other closely related species.
Collapse
Affiliation(s)
- María Lorena Castrillo
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Ángel Bich
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Soledad Amerio
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Paola Barengo
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mario Carlos Nazareno Saparrat
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Instituto de Botánica Carlos Spegazzini, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Laura Lidia Villalba
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| |
Collapse
|
3
|
Wai A, Hausner G. The compact mitogenome of Ceratocystiopsis pallidobrunnea. Can J Microbiol 2022; 68:569-575. [PMID: 35675707 DOI: 10.1139/cjm-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ceratocystiopsis is a fungal genus that has been assigned to the Ophiostomatales, fungi known for their association with various bark beetles and other arthropods. The mitochondrial genome of Ceratocystiopsis pallidobrunnea has been characterized and compared with other members of the genus Ceratocystiopsis and Ophiostomatales. At 29 022 bp, the mitogenome of C. pallidobrunnea is the smallest reported so far for this genus. Gene arrangement was observed to be conserved for this group of fungi and mitogenome variation appears to be mostly due to the absence and presence of introns. The long-term goal is to apply mitogenomes to resolve taxonomic issues within the Ophiostomatales and within the various genera that comprise the Ophiostomataceae.
Collapse
Affiliation(s)
- Alvan Wai
- University of Manitoba, 8664, Winnipeg, Canada;
| | - Georg Hausner
- University of Manitoba, 8664, Buller Building 213, Winnipeg, Manitoba, Canada;
| |
Collapse
|
4
|
Ali SS, Amoako-Attah I, Shao J, Kumi-Asare E, Meinhardt LW, Bailey BA. Mitochondrial Genomics of Six Cacao Pathogens From the Basidiomycete Family Marasmiaceae. Front Microbiol 2021; 12:752094. [PMID: 34777305 PMCID: PMC8581569 DOI: 10.3389/fmicb.2021.752094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Thread blight disease has recently been described as an emerging disease on cacao (Theobroma cacao) in Ghana. In Ghana, thread blight disease is caused by multiple species of the Marasmiaceae family: Marasmius tenuissimus, M. crinis-equi, M. palmivorus, and Marasmiellus scandens. Interestingly, two additional members of the Marasmiaceae; Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease), are major pathogens of cacao in the Western hemisphere. It is important to accurately characterize the genetic relationships among these economically important species in support of their disease management. We used data from Illumina NGS-based genome sequencing efforts to study the mitochondrial genomes (mitogenomes) of the four cacao thread blight associated pathogens from Ghana and compared them with published mitogenomes of Mon. roreri and Mon. perniciosa. There is a remarkable interspecies variation in mitogenome size within the six cacao-associated Marasmiaceae species, ranging from 43,121 to 109,103 bp. The differences in genome lengths are primarily due to the number and lengths of introns, differences in intergenic space, and differences in the size and numbers of unidentified ORFs (uORF). Among seven M. tenuissimus mitogenomes sequenced, there is variation in size and sequence pointing to divergent evolution patterns within the species. The intronic regions show a high degree of sequence variation compared to the conserved sequences of the 14 core genes. The intronic ORFs identified, regardless of species, encode GIY-YIG or LAGLIDADG domain-containing homing endonuclease genes. Phylogenetic relationships using the 14 core proteins largely mimic the phylogenetic relationships observed in gene order patterns, grouping M. tenuissimus with M. crinis-equi, and M. palmivorus with Mon. roreri and Mon. perniciosa, leaving Mar. scandens as an outlier. The results from this study provide evidence of independent expansion/contraction events and sequence diversification in each species and establish a foundation for further exploration of the evolutionary trajectory of the fungi in Marasmiaceae family.
Collapse
Affiliation(s)
- Shahin S Ali
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville Agricultural Research Center-West, Beltsville, MD, United States.,Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | | | - Jonathan Shao
- U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville, MD, United States
| | | | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville Agricultural Research Center-West, Beltsville, MD, United States
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville Agricultural Research Center-West, Beltsville, MD, United States
| |
Collapse
|
5
|
Nie Y, Zhao H, Wang Z, Zhou Z, Liu X, Huang B. The Gene Rearrangement, Loss, Transfer, and Deep Intronic Variation in Mitochondrial Genomes of Conidiobolus. Front Microbiol 2021; 12:765733. [PMID: 34858376 PMCID: PMC8632527 DOI: 10.3389/fmicb.2021.765733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
The genus Conidiobolus s.s. was newly delimited from Conidiobolus s.l. In order to gain insight into its mitochondrial genetic background, this study sequenced six mitochondrial genomes of the genus Conidiobolus s.s. These mitogenomes were all composed of circular DNA molecules, ranging from 29,253 to 48,417 bp in size and from 26.61 to 27.90% in GC content. The order and direction for 14 core protein-coding genes (PCGs) were identical, except for the atp8 gene lost in Conidiobolus chlamydosporus, Conidiobolus polyspermus, and Conidiobolus polytocus, and rearranged in the other Conidiobolus s.s. species. Besides, the atp8 gene split the cox1 gene in Conidiobolus taihushanensis. Phylogenomic analysis based on the 14 core PCGs confirmed that all Conidiobolus s.s. species formed a monophyly in the Entomophthoromycotina lineage. The number and length of introns were the main factors contributing to mitogenomic size, and deep variations and potential transfer were detected in introns. In addition, gene transfer occurred between the mitochondrial and nuclear genomes. This study promoted the understanding of the evolution and phylogeny of the Conidiobolus s.s. genus.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan, China
| | - Heng Zhao
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zimin Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan, China
| | - Zhengyu Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan, China
| | - Xiaoyong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Kwak Y. An Update on Trichoderma Mitogenomes: Complete De Novo Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma harzianum (Hypocreales, Sordariomycetes), an Ex-Neotype Strain CBS 226.95, and Tracing the Evolutionary Divergences of Mitogenomes in Trichoderma. Microorganisms 2021; 9:1564. [PMID: 34442643 PMCID: PMC8401334 DOI: 10.3390/microorganisms9081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Trichoderma (Hypocreales), widely used as biofungicides, biofertilizers, and as model fungi for the industrial production of CAZymes, have actively been studied for the applications of their biological functions. Recently, the study of the nuclear genomes of Trichoderma has expanded in the directions of adaptation and evolution to gain a better understanding of their ecological traits. However, Trichoderma's mitochondria have received much less attention despite mitochondria being the most necessary element for sustaining cell life. In this study, a mitogenome of the fungus Trichoderma harzianum CBS 226.95 was assembled de novo. A 27,632 bp circular DNA molecule was revealed with specific features, such as the intronless of all core PCGs, one homing endonuclease, and a putative overlapping tRNA, on a closer phylogenetic relationship with T. reesei among hypocrealean fungi. Interestingly, the mitogenome of T. harzianum CBS 226.95 was predicted to have evolved earlier than those of other Trichoderma species and also assumed with a selection pressure in the cox3. Considering the bioavailability, both for the ex-neotype strain of the T. harzianum species complex and the most globally representative commercial fungal biocontrol agent, our results on the T. harzianum CBS 226.95 mitogenome provide crucial information which will be helpful criteria in future studies on Trichoderma.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, 91400 Orsay, France;
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
7
|
Yildiz G, Ozkilinc H. Pan-Mitogenomics Approach Discovers Diversity and Dynamism in the Prominent Brown Rot Fungal Pathogens. Front Microbiol 2021; 12:647989. [PMID: 34054750 PMCID: PMC8149612 DOI: 10.3389/fmicb.2021.647989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 01/26/2023] Open
Abstract
Monilinia fructicola and Monilinia laxa species are the most destructive and economically devastating fungal plant pathogens causing brown rot disease on stone and pome fruits worldwide. Mitochondrial genomes (mitogenomes) play critical roles influencing the mechanisms and directions of the evolution of fungal pathogens. The pan-mitogenomics approach predicts core and accessory regions of the mitochondrial genomes and explains the gain or loss of variation within and between species. The present study is a fungal pan-mitogenome of M. fructicola (N = 8) and M. laxa (N = 8) species. The completely sequenced and annotated mitogenomes showed high variability in size within and between the species. The mitogenomes of M. laxa were larger, ranging from 178,351 to 179,780bp, than the mitogenomes of M. fructicola, ranging from 158,607 to 167,838bp. However, size variation within the species showed that M. fructicola isolates were more variable in the size range than M. laxa isolates. All the mitogenomes included conserved mitochondrial genes, as well as variable regions including different mobile introns encoding homing endonucleases or maturase, non-coding introns, and repetitive elements. The linear model analysis supported the hypothesis that the mitogenome size expansion is due to presence of variable (accessory) regions. Gene synteny was mostly conserved among all samples, with the exception for order of the rps3 in the mitogenome of one isolate. The mitogenomes presented AT richness; however, A/T and G/C skew varied among the mitochondrial genes. The purifying selection was detected in almost all the protein-coding genes (PCGs) between the species. However, cytochrome b was the only gene showing a positive selection signal among the total samples. Combined datasets of amino acid sequences of 14 core mitochondrial PCGs and rps3 obtained from this study together with published mitochondrial genome sequences from some other species from Heliotales were used to infer a maximum likelihood (ML) phylogenetic tree. ML tree indicated that both Monilinia species highly diverged from each other as well as some other fungal species from the same order. Mitogenomes harbor much information about the evolution of fungal plant pathogens, which could be useful to predict pathogenic life strategies.
Collapse
Affiliation(s)
- Gozde Yildiz
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hilal Ozkilinc
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.,Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
8
|
Mitogenome of Tolypocladium guangdongense. Appl Microbiol Biotechnol 2020; 104:9295-9308. [PMID: 32918580 DOI: 10.1007/s00253-020-10889-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
Tolypocladium guangdongense is a high-value edible fungus with various medicinal and food safety properties. However, its evolutionary and genetic information is still limited. Mitochondrial genomes are potential models for molecular evolution and phylogenetic studies. In this study, we sequenced the complete mitogenome of T. guangdongense, demonstrating circular sequence of 46,102 bp, containing 14 standard protein-coding genes (PCGs), 2 ribosomal RNA subunit genes, and 28 tRNA genes. Phylogenetic analysis based on mitochondrial genes indicated that T. guangdongense was clustered into the Tolypocladium genus with high support value, based on the core PCG dataset. In addition, rps3 is also a suitable marker in the phylogenetic analysis in Hypocreales. Gene rearrangement analysis indicated that the gene order of PCGs was highly consistent in Hypocreales, and tRNA rearrangement events occurred in most species of Hypocreales; however, the rearrangement rates were not taxonomically correlated. Divergence time estimation based on the old fossil record and previous reports revealed that T. guangdongense originated approximately in the middle Cenozoic (42 Mya, 95% highest posterior density interval: 43-116) with the Tolypocladium genus differentiation. Our results provided more mitogenomic information of T. guangdongense and shed new insights into evolution of the Tolypocladium genus. KEY POINTS: • The general and unique features of T. guangdongense mitogenome are firstly reported. • Phylogenetic analysis further verified the taxonomic status of T. guangdongense. • Divergence time estimation provides more evolutionary information of T. guangdongense.
Collapse
|
9
|
Seshadri SR, Banarjee C, Barros MH, Fontanesi F. The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis. Nucleic Acids Res 2020; 48:6759-6774. [PMID: 32449921 PMCID: PMC7337963 DOI: 10.1093/nar/gkaa424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitoribosome biogenesis is an expensive metabolic process that is essential to maintain cellular respiratory capacity and requires the stoichiometric accumulation of rRNAs and proteins encoded in two distinct genomes. In yeast, the ribosomal protein Var1, alias uS3m, is mitochondrion-encoded. uS3m is a protein universally present in all ribosomes, where it forms part of the small subunit (SSU) mRNA entry channel and plays a pivotal role in ribosome loading onto the mRNA. However, despite its critical functional role, very little is known concerning VAR1 gene expression. Here, we demonstrate that the protein Sov1 is an in bona fide VAR1 mRNA translational activator and additionally interacts with newly synthesized Var1 polypeptide. Moreover, we show that Sov1 assists the late steps of mtSSU biogenesis involving the incorporation of Var1, an event necessary for uS14 and mS46 assembly. Notably, we have uncovered a translational regulatory mechanism by which Sov1 fine-tunes Var1 synthesis with its assembly into the mitoribosome.
Collapse
Affiliation(s)
- Suhas R Seshadri
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chitra Banarjee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario H Barros
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Pszczółkowska A, Androsiuk P, Jastrzębski JP, Paukszto Ł, Okorski A. rps3 as a Candidate Mitochondrial Gene for the Molecular Identification of Species from the Colletotrichum acutatum Species Complex. Genes (Basel) 2020; 11:E552. [PMID: 32422999 PMCID: PMC7290925 DOI: 10.3390/genes11050552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum species form one of the most economically significant groups of pathogenic fungi and lead to significant losses in the production of major crops-in particular, fruits, vegetables, ornamental plants, shrubs, and trees. Members of the genus Colletotrichum cause anthracnose disease in many plants. Due to their considerable variation, these fungi have been widely investigated in genetic studies as model organisms. Here, we report the complete mitochondrial genome sequences of four Colletotrichum species (C. fioriniae, C. lupini, C. salicis, and C. tamarilloi). The reported circular mitogenomes range from 30,020 (C. fioriniae) to 36,554 bp (C. lupini) in size and have identical sets of genes, including 15 protein-coding genes, two ribosomal RNA genes, and 29 tRNA genes. All four mitogenomes are characterized by a rather poor repetitive sequence content with only forward repeat representatives and a low number of microsatellites. The topology of the phylogenetic tree reflects the systematic positions of the studied species, with representatives of each Colletotrichum species complex gathered in one clade. A comparative analysis reveals consistency in the gene composition and order of Colletotrichum mitogenomes, although some highly divergent regions are also identified, like the rps3 gene which appears as a source of potential diagnostic markers for all studied Colletotrichum species.
Collapse
Affiliation(s)
- Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| |
Collapse
|
11
|
Song N, Geng Y, Li X. The Mitochondrial Genome of the Phytopathogenic Fungus Bipolaris sorokiniana and the Utility of Mitochondrial Genome to Infer Phylogeny of Dothideomycetes. Front Microbiol 2020; 11:863. [PMID: 32457727 PMCID: PMC7225605 DOI: 10.3389/fmicb.2020.00863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/09/2020] [Indexed: 12/01/2022] Open
Abstract
A number of species in Bipolaris are important plant pathogens. Due to a limited number of synapomorphic characters, it is difficult to perform species identification and to estimate phylogeny of Bipolaris based solely on morphology. In this study, we sequenced the complete mitochondrial genome of Bipolaris sorokiniana, and presented the detailed annotation of the genome. The B. sorokiniana mitochondrial genome is 137,775 bp long, and contains two ribosomal RNA genes, 12 core protein-coding genes, 38 tRNA genes. In addition, two ribosomal protein genes (rps3 gene and rps5 gene) and the fungal mitochondrial RNase P gene (rnpB) are identified. The large genome size is mostly determined by the presence of numerous intronic and intergenic regions. A total of 28 introns are inserted in eight core protein-coding genes. Together with the published mitochondrial genome sequences, we conducted a preliminary phylogenetic inference of Dothideomycetes under various datasets and substitution models. The monophyly of Capnodiales, Botryosphaeriales and Pleosporales are consistently supported in all analyses. The Venturiaceae forms an independent lineage, with a distant phylogenetic relationship to Pleosporales. At the family level, the Mycosphaerellaceae, Botryosphaeriaceae. Phaeosphaeriaceae, and Pleosporaceae are recognized in the majority of trees.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | | |
Collapse
|
12
|
Fonseca PLC, Badotti F, De-Paula RB, Araújo DS, Bortolini DE, Del-Bem LE, Azevedo VA, Brenig B, Aguiar ERGR, Góes-Neto A. Exploring the Relationship Among Divergence Time and Coding and Non-coding Elements in the Shaping of Fungal Mitochondrial Genomes. Front Microbiol 2020; 11:765. [PMID: 32411111 PMCID: PMC7202290 DOI: 10.3389/fmicb.2020.00765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
The order Hypocreales (Ascomycota) is composed of ubiquitous and ecologically diverse fungi such as saprobes, biotrophs, and pathogens. Despite their phylogenetic relationship, these species exhibit high variability in biomolecules production, lifestyle, and fitness. The mitochondria play an important role in the fungal biology, providing energy to the cells and regulating diverse processes, such as immune response. In spite of its importance, the mechanisms that shape fungal mitogenomes are still poorly understood. Herein, we investigated the variability and evolution of mitogenomes and its relationship with the divergence time using the order Hypocreales as a study model. We sequenced and annotated for the first time Trichoderma harzianum mitochondrial genome (mtDNA), which was compared to other 34 mtDNAs species that were publicly available. Comparative analysis revealed a substantial structural and size variation on non-coding mtDNA regions, despite the conservation of copy number, length, and structure of protein-coding elements. Interestingly, we observed a highly significant correlation between mitogenome length, and the number and size of non-coding sequences in mitochondrial genome. Among the non-coding elements, group I and II introns and homing endonucleases genes (HEGs) were the main contributors to discrepancies in mitogenomes structure and length. Several intronic sequences displayed sequence similarity among species, and some of them are conserved even at gene position, and were present in the majority of mitogenomes, indicating its origin in a common ancestor. On the other hand, we also identified species-specific introns that advocate for the origin by different mechanisms. Investigation of mitochondrial gene transfer to the nuclear genome revealed that nuclear copies of the nad5 are the most frequent while atp8, atp9, and cox3 could not be identified in any of the nuclear genomes analyzed. Moreover, we also estimated the divergence time of each species and investigated its relationship with coding and non-coding elements as well as with the length of mitogenomes. Altogether, our results demonstrated that introns and HEGs are key elements on mitogenome shaping and its presence on fast-evolving mtDNAs could be mostly explained by its divergence time, although the intron sharing profile suggests the involvement of other mechanisms on the mitochondrial genome evolution, such as horizontal transference.
Collapse
Affiliation(s)
- Paula L. C. Fonseca
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Ruth B. De-Paula
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel S. Araújo
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dener E. Bortolini
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A. Azevedo
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Eric R. G. R. Aguiar
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Kwak Y. Complete Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma atroviride: Genomic Features, Comparative Analysis and Insight Into the Mitochondrial Evolution in Trichoderma. Front Microbiol 2020; 11:785. [PMID: 32457712 PMCID: PMC7228111 DOI: 10.3389/fmicb.2020.00785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The improvement of biopesticides for use in the agriculture industry requires an understanding of the biological- and ecological principles underlying their behavior in natural environments. The nuclear genomes of members of the genus Trichoderma, which are representative fungal biocontrol agents, have been actively studied in relation to the unique characteristics of these species as effective producers of CAZymes/secondary metabolites and biopesticides, but their mitochondrial genomes have received much less attention. In this study, the mitochondrial genome of Trichoderma atroviride (Hypocreales, Sordariomycetes), which targets wood-decaying fungal pathogens and has the ability to degrade chemical fungicides, was assembled de novo. A 32,758 bp circular DNA molecule was revealed with specific features, such as a few more protein CDS and trn genes, two homing endonucleases (LAGLIDADG-/GIY-YIG-type), and even a putative overlapping tRNA gene, on a closer phylogenetic relationship with T. gamsii among hypocrealean fungi. Particularly, introns were observed with several footprints likely to be evolutionarily associated with the intron dynamics of the Trichoderma mitochondrial genomes. This study is the first to report the complete de novo mitochondrial genome of T. atroviride, while comparative analyses of Trichoderma mitochondrial genomes were also conducted from the perspective of mitochondrial evolution for the first time.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, Orsay, France
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
14
|
Wang G, Lin J, Shi Y, Chang X, Wang Y, Guo L, Wang W, Dou M, Deng Y, Ming R, Zhang J. Mitochondrial genome in Hypsizygus marmoreus and its evolution in Dikarya. BMC Genomics 2019; 20:765. [PMID: 31640544 PMCID: PMC6805638 DOI: 10.1186/s12864-019-6133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hypsizygus marmoreus, a high value commercialized edible mushroom is widely cultivated in East Asia, and has become one of the most popular edible mushrooms because of its rich nutritional and medicinal value. Mitochondria are vital organelles, and play various essential roles in eukaryotic cells. RESULTS In this study, we provide the Hypsizygus marmoreus mitochondrial (mt) genome assembly: the circular sequence is 102,752 bp in size and contains 15 putative protein-coding genes, 2 ribosomal RNAs subunits and 28 tRNAs. We compared the mt genomes of the 27 fungal species in the Pezizomycotina and Basidiomycotina subphyla, with the results revealing that H. marmoreus is a sister to Tricholoma matsutake and the phylogenetic distribution of this fungus based on the mt genome. Phylogenetic analysis shows that Ascomycetes mitochondria started to diverge earlier than that of Basidiomycetes and supported the robustness of the hyper metric tree. The fungal sequences are highly polymorphic and gene order varies significantly in the dikarya data set, suggesting a correlation between the gene order and divergence time in the fungi mt genome. To detect the mt genome variations in H. marmoreus, we analyzed the mtDNA sequences of 48 strains. The phylogeny and variation sited type statistics of H. marmoreus provide clear-cut evidence for the existence of four well-defined cultivations isolated lineages, suggesting female ancestor origin of H. marmoreus. Furthermore, variations on two loci were further identified to be molecular markers for distinguishing the subgroup containing 32 strains of other strains. Fifteen conserved protein-coding genes of mtDNAs were analyzed, with fourteen revealed to be under purifying selection in the examined fungal species, suggesting the rapid evolution was caused by positive selection of this gene. CONCLUSIONS Our studies have provided new reference mt genomes and comparisons between species and intraspecies with other strains, and provided future perspectives for assessing diversity and origin of H. marmoreus.
Collapse
Affiliation(s)
- Gang Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jingxian Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yang Shi
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoguang Chang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuanyuan Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lin Guo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wenhui Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meijie Dou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
15
|
Wai A, Shen C, Carta A, Dansen A, Crous PW, Hausner G. Intron-encoded ribosomal proteins and N-acetyltransferases within the mitochondrial genomes of fungi: here today, gone tomorrow? Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:573-584. [DOI: 10.1080/24701394.2019.1580272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chen Shen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrell Carta
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alexandra Dansen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Pedro W. Crous
- The Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, The Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Zubaer A, Wai A, Hausner G. The mitochondrial genome of Endoconidiophora resinifera is intron rich. Sci Rep 2018; 8:17591. [PMID: 30514960 PMCID: PMC6279837 DOI: 10.1038/s41598-018-35926-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Endoconidiophora resinifera (=Ceratocystis resinifera) is a blue-stain fungus that occurs on conifers. The data showed that the Endoconidiophora resinifera mitochondrial genome is one of the largest mitochondrial genomes (>220 kb) so far reported among members of the Ascomycota. An exceptional large number of introns (81) were noted and differences among the four strains were restricted to minor variations in intron numbers and a few indels and single nucleotide polymorphisms. The major differences among the four strains examined are due to size polymorphisms generated by the absence or presence of mitochondrial introns. Also, these mitochondrial genomes encode the largest cytochrome oxidase subunit 1 gene (47.5 kb) reported so far among the fungi. The large size for this gene again can be attributed to the large number of intron insertions. This study reports the first mitochondrial genome for the genus Endoconidiophora, previously members of this genus were assigned to Ceratocystis. The latter genus has recently undergone extensive taxonomic revisions and the mitochondrial genome might provide loci that could be applied as molecular markers assisting in the identification of taxa within this group of economically important fungi. The large mitochondrial genome also may provide some insight on mechanisms that can lead to mitochondrial genome expansion.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
17
|
Korovesi AG, Ntertilis M, Kouvelis VN. Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes. Mol Phylogenet Evol 2018; 127:74-86. [PMID: 29763662 DOI: 10.1016/j.ympev.2018.04.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/24/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
The nuclear ribosomal protein S3 (Rps3) is implicated in the assembly of the ribosomal small subunit. Fungi and plants present a gene copy in their mitochondrial (mt) genomes. An analysis of 303 complete fungal mt genomes showed that, when rps3 is found, it is either a free-standing gene or an anchored gene within the omega intron of the rnl gene. Early divergent fungi, Basidiomycota and all yeasts but the CTG group belong to the first case, and Pezizomycotina to the second. Its position, size and genetic code employed are conserved within species of the same Order. Size variability is attributed to different number of repeats. These repeats consist of AT-rich sequences. MtRps3 proteins lack the KH domain, necessary for binding to rRNA, in their N-terminal region. Their C-terminal region is conserved in all Domains of life. Phylogenetic analysis showed that nuclear and mtRps3 proteins are descendants of archaeal and a-proteobacterial homologues, respectively. Thus, fungal mt-rps3 gene is an ancient gene which evolved within the endosymbiotic model and presents different evolutionary routes: (a) coming from a-proteobacteria, it was relocated to another region of the mt genome, (b) via its insertion to the omega intron, it was transferred to the nucleus and/or got lost, and (c) it was re-routed to the mt genome again. Today, Basidiomycota and Saccharomycetales seem to follow the first evolutionary route and almost all Pezizomycotina support the second scenario with their exceptions being the result of the third scenario, i.e., the gene's re-entry to the mt genome.
Collapse
Affiliation(s)
- Artemis G Korovesi
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Ntertilis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
18
|
Abboud TG, Zubaer A, Wai A, Hausner G. The complete mitochondrial genome of the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. Can J Microbiol 2018; 64:339-348. [DOI: 10.1139/cjm-2017-0605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ophiostoma novo-ulmi, a member of the Ophiostomatales (Ascomycota), is the causal agent of the current Dutch elm disease pandemic in Europe and North America. The complete mitochondrial genome (mtDNA) of Ophiostoma novo-ulmi subsp. novo-ulmi, the European component of O. novo-ulmi, has been sequenced and annotated. Gene order (synteny) among the currently available members of the Ophiostomatales was examined and appears to be conserved, and mtDNA size variability among the Ophiostomatales is due in part to the presence of introns and their encoded open reading frames. Phylogenetic analysis of concatenated mitochondrial protein-coding genes yielded phylogenetic estimates for various members of the Ophiostomatales, with strong statistical support showing that mtDNA analysis may provide valuable insights into the evolution of the Ophiostomatales.
Collapse
Affiliation(s)
- Talal George Abboud
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
19
|
Pogoda CS, Keepers KG, Lendemer JC, Kane NC, Tripp EA. Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol Ecol 2018; 27:1155-1169. [DOI: 10.1111/mec.14519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/21/2017] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
|
20
|
de Queiroz CB, Santana MF, Pereira Vidigal PM, de Queiroz MV. Comparative analysis of the mitochondrial genome of the fungus Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Appl Microbiol Biotechnol 2018; 102:2763-2778. [PMID: 29453633 DOI: 10.1007/s00253-018-8812-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 01/25/2023]
Abstract
Fungi of the genus Colletotrichum are economically important and are used as models in plant-pathogen interaction studies. In this study, the complete mitochondrial genomes of two Colletotrichum lindemuthianum isolates were sequenced and compared with the mitochondrial genomes of seven species of Colletotrichum. The mitochondrial genome of C. lindemuthianum is a typical circular molecule 37,446 bp (isolate 89 A2 2-3) and 37,440 bp (isolate 83.501) in length. The difference of six nucleotides between the two genomes is the result of a deletion in the ribosomal protein S3 (rps3) gene in the 83.501 isolate. In addition, substitution of adenine for guanine within the rps3 gene in the mitochondrial genome of the 83.501 isolate was observed. Compared to the previously sequenced C. lindemuthianum mitochondrial genome, an exon no annotated in the cytochrome c oxidase I (cox1) gene and a non-conserved open reading frame (ncORF) were observed. The size of the mitochondrial genomes of the seven species of Colletotrichum was highly variable, being attributed mainly to the ncORF, ranging from one to 10 and also from introns ranging from one to 11 and which encode a total of up to nine homing endonucleases. This paper reports for the first time by means of transcriptome that then ncORFs are transcribed in Colletotrichum spp. Phylogeny data revealed that core mitochondrial genes could be used as an alternative in phylogenetic relationship studies in Colletotrichum spp. This work contributes to the genetic and biological knowledge of Colletotrichum spp., which is of great economic and scientific importance.
Collapse
Affiliation(s)
- Casley Borges de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Mateus Ferreira Santana
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Pedro M Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Centro de Ciências Biológicas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil.
| |
Collapse
|
21
|
Franco MEE, López SMY, Medina R, Lucentini CG, Troncozo MI, Pastorino GN, Saparrat MCN, Balatti PA. The mitochondrial genome of the plant-pathogenic fungus Stemphylium lycopersici uncovers a dynamic structure due to repetitive and mobile elements. PLoS One 2017; 12:e0185545. [PMID: 28972995 PMCID: PMC5626475 DOI: 10.1371/journal.pone.0185545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Stemphylium lycopersici (Pleosporales) is a plant-pathogenic fungus that has been associated with a broad range of plant-hosts worldwide. It is one of the causative agents of gray leaf spot disease in tomato and pepper. The aim of this work was to characterize the mitochondrial genome of S. lycopersici CIDEFI-216, to use it to trace taxonomic relationships with other fungal taxa and to get insights into the evolutionary history of this phytopathogen. The complete mitochondrial genome was assembled into a circular double-stranded DNA molecule of 75,911 bp that harbors a set of 37 protein-coding genes, 2 rRNA genes (rns and rnl) and 28 tRNA genes, which are transcribed from both sense and antisense strands. Remarkably, its gene repertoire lacks both atp8 and atp9, contains a free-standing gene for the ribosomal protein S3 (rps3) and includes 13 genes with homing endonuclease domains that are mostly located within its 15 group I introns. Strikingly, subunits 1 and 2 of cytochrome oxidase are encoded by a single continuous open reading frame (ORF). A comparative mitogenomic analysis revealed the large extent of structural rearrangements among representatives of Pleosporales, showing the plasticity of their mitochondrial genomes. Finally, an exhaustive phylogenetic analysis of the subphylum Pezizomycotina based on mitochondrial data reconstructed their relationships in concordance with several studies based on nuclear data. This is the first report of a mitochondrial genome belonging to a representative of the family Pleosporaceae.
Collapse
Affiliation(s)
- Mario Emilio Ernesto Franco
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Silvina Marianela Yanil López
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Rocio Medina
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - César Gustavo Lucentini
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Maria Inés Troncozo
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Graciela Noemí Pastorino
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales y Museo-Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
22
|
Kang X, Hu L, Shen P, Li R, Liu D. SMRT Sequencing Revealed Mitogenome Characteristics and Mitogenome-Wide DNA Modification Pattern in Ophiocordyceps sinensis. Front Microbiol 2017; 8:1422. [PMID: 28798740 PMCID: PMC5529405 DOI: 10.3389/fmicb.2017.01422] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022] Open
Abstract
Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis, with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3, 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis, and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.
Collapse
Affiliation(s)
- Xincong Kang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural UniversityChangsha, China
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Liqin Hu
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Pengyuan Shen
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Rui Li
- Nextomics BiosciencesWuhan, China
| | - Dongbo Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural UniversityChangsha, China
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional IngredientsChangsha, China
| |
Collapse
|
23
|
Complete Mitochondrial Genome Sequence of the Pezizomycete Pyronema confluens. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00355-16. [PMID: 27174271 PMCID: PMC4866847 DOI: 10.1128/genomea.00355-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes.
Collapse
|
24
|
Jelen V, de Jonge R, Van de Peer Y, Javornik B, Jakše J. Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae. PLoS One 2016; 11:e0148525. [PMID: 26839950 PMCID: PMC4739603 DOI: 10.1371/journal.pone.0148525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 01/04/2023] Open
Abstract
Verticillium nonalfalfae is a fungal plant pathogen that causes wilt disease by colonizing the vascular tissues of host plants. The disease induced by hop isolates of V. nonalfalfae manifests in two different forms, ranging from mild symptoms to complete plant dieback, caused by mild and lethal pathotypes, respectively. Pathogenicity variations between the causal strains have been attributed to differences in genomic sequences and perhaps also to differences in their mitochondrial genomes. We used data from our recent Illumina NGS-based project of genome sequencing V. nonalfalfae to study the mitochondrial genomes of its different strains. The aim of the research was to prepare a V. nonalfalfae reference mitochondrial genome and to determine its phylogenetic placement in the fungal kingdom. The resulting 26,139 bp circular DNA molecule contains a full complement of the 14 "standard" fungal mitochondrial protein-coding genes of the electron transport chain and ATP synthase subunits, together with a small rRNA subunit, a large rRNA subunit, which contains ribosomal protein S3 encoded within a type IA-intron and 26 tRNAs. Phylogenetic analysis of this mitochondrial genome placed it in the Verticillium spp. lineage in the Glomerellales group, which is also supported by previous phylogenetic studies based on nuclear markers. The clustering with the closely related Verticillium dahliae mitochondrial genome showed a very conserved synteny and a high sequence similarity. Two distinguishing mitochondrial genome features were also found-a potential long non-coding RNA (orf414) contained only in the Verticillium spp. of the fungal kingdom, and a specific fragment length polymorphism observed only in V. dahliae and V. nubilum of all the Verticillium spp., thus showing potential as a species specific biomarker.
Collapse
Affiliation(s)
- Vid Jelen
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ronnie de Jonge
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Gent University, Gent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Gent University, Gent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052 Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Branka Javornik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Complete mitochondrial genome of the medicinal fungus Ophiocordyceps sinensis. Sci Rep 2015; 5:13892. [PMID: 26370521 PMCID: PMC4570212 DOI: 10.1038/srep13892] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
As part of a genome sequencing project for Ophiocordyceps sinensis, strain 1229, a complete mitochondrial (mt) genome was assembled as a single circular dsDNA of 157,510 bp, one of the largest reported for fungi. Conserved genes including the large and small rRNA subunits, 27 tRNA and 15 protein-coding genes, were identified. In addition, 58 non-conserved open reading frames (ncORFs) in the intergenic and intronic regions were also identified. Transcription analyses using RNA-Seq validated the expression of most conserved genes and ncORFs. Fifty-two introns (groups I and II) were found within conserved genes, accounting for 68.5% of the genome. Thirty-two homing endonucleases (HEs) with motif patterns LAGLIDADG (21) and GIY-YIG (11) were identified in group I introns. The ncORFs found in group II introns mostly encoded reverse transcriptases (RTs). As in other hypocrealean fungi, gene contents and order were found to be conserved in the mt genome of O. sinensis, but the genome size was enlarged by longer intergenic regions and numerous introns. Intergenic and intronic regions were composed of abundant repetitive sequences usually associated with mobile elements. It is likely that intronic ncORFs, which encode RTs and HEs, may have contributed to the enlarged mt genome of O. sinensis.
Collapse
|
26
|
Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane. PLoS One 2015; 10:e0129318. [PMID: 26065709 PMCID: PMC4466345 DOI: 10.1371/journal.pone.0129318] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions.
Collapse
|
27
|
Lin R, Liu C, Shen B, Bai M, Ling J, Chen G, Mao Z, Cheng X, Xie B. Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiol 2015; 15:5. [PMID: 25636983 PMCID: PMC4360972 DOI: 10.1186/s12866-015-0341-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in Hypocreales. Results The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50% of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04% identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium spp.) and Hypocrea jecorina. A comparison of mitogenome sizes shows that the length of the intergenic regions or the intronic regions is the major size contributor in most of mitogenomes in Sordariomycetes. Evolutionary analysis shows that rps3 is under positive selection, leading to the display of unique evolutionary characteristics in Hypocreales. Moreover, the variability of trn distribution has a clear impact on gene order in mitogenomes. Gene rearrangement analysis shows that operation of transposition drives the rearrangement events in Pezizomycotina, and most events involve in trn position changes, but no rearrangement was found in Clavicipitaceae. Conclusions We present the complete annotated mitogenome sequence of P. chlamydosporia. Based on evolutionary and phylogenetic analyses, we have determined the relationships between the invertebrate-pathogenic fungi in Hypocreales. The invertebrate-pathogenic fungi in Hypocreales referred to in this paper form a monophyletic group sharing a most recent common ancestor. Our rps3 and trn gene order results also establish a foundation for further exploration of the evolutionary trajectory of the fungi in Hypocreales. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chichuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Baoming Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Miao Bai
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guohua Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
28
|
Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV. The 203 kbp mitochondrial genome of the phytopathogenic fungus Sclerotinia borealis reveals multiple invasions of introns and genomic duplications. PLoS One 2014; 9:e107536. [PMID: 25216190 PMCID: PMC4162613 DOI: 10.1371/journal.pone.0107536] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/19/2014] [Indexed: 01/13/2023] Open
Abstract
Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.
Collapse
Affiliation(s)
| | | | | | | | - Nikolai V. Ravin
- Centre “Bioengineering”, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis. Fungal Biol 2013; 117:791-806. [DOI: 10.1016/j.funbio.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
|
30
|
Ambrosio AB, do Nascimento LC, Oliveira BV, Teixeira PJPL, Tiburcio RA, Toledo Thomazella DP, Leme AFP, Carazzolle MF, Vidal RO, Mieczkowski P, Meinhardt LW, Pereira GAG, Cabrera OG. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics 2013; 14:91. [PMID: 23394930 PMCID: PMC3605234 DOI: 10.1186/1471-2164-14-91] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/27/2013] [Indexed: 12/02/2022] Open
Abstract
Background The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated “omics” approaches. Results The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. Conclusions The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.
Collapse
Affiliation(s)
- Alinne Batista Ambrosio
- Laboratório de Genômica e Expressão, Departamento de Genética Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CEP: 13083-970, Campinas, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rudski SM, Hausner G. The mtDNA rps3 locus has been invaded by a group I intron in some species of Grosmannia. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-012-0183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Duò A, Bruggmann R, Zoller S, Bernt M, Grünig CR. Mitochondrial genome evolution in species belonging to the Phialocephala fortinii s.l. - Acephala applanata species complex. BMC Genomics 2012; 13:166. [PMID: 22559219 PMCID: PMC3434094 DOI: 10.1186/1471-2164-13-166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/04/2012] [Indexed: 01/01/2023] Open
Abstract
Background Mitochondrial (mt) markers are successfully applied in evolutionary biology and systematics because mt genomes often evolve faster than the nuclear genomes. In addition, they allow robust phylogenetic analysis based on conserved proteins of the oxidative phosphorylation system. In the present study we sequenced and annotated the complete mt genome of P. subalpina, a member of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC). PAC belongs to the Helotiales, which is one of the most diverse groups of ascomycetes including more than 2,000 species. The gene order was compared to deduce the mt genome evolution in the Pezizomycotina. Genetic variation in coding and intergenic regions of the mtDNA was studied for PAC to assess the usefulness of mt DNA for species diagnosis. Results The mt genome of P. subalpina is 43,742 bp long and codes for 14 mt genes associated with the oxidative phosphorylation. In addition, a GIY-YIG endonuclease, the ribosomal protein S3 (Rps3) and a putative N-acetyl-transferase were recognized. A complete set of tRNA genes as well as the large and small rRNA genes but no introns were found. All protein-coding genes were confirmed by EST sequences. The gene order in P. subalpina deviated from the gene order in Sclerotinia sclerotiorum, the only other helotialean species with a fully sequenced and annotated mt genome. Gene order analysis within Pezizomycotina suggests that the evolution of gene orders is mostly driven by transpositions. Furthermore, sequence diversity in coding and non-coding mtDNA regions in seven additional PAC species was pronounced and allowed for unequivocal species diagnosis in PAC. Conclusions The combination of non-interrupted ORFs and EST sequences resulted in a high quality annotation of the mt genome of P. subalpina, which can be used as a reference for the annotation of other mt genomes in the Helotiales. In addition, our analyses show that mtDNA loci will be the marker of choice for future analysis of PAC communities.
Collapse
Affiliation(s)
- Angelo Duò
- Forest Pathology and Dendrology, Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Al-Reedy RM, Malireddy R, Dillman CB, Kennell JC. Comparative analysis of Fusarium mitochondrial genomes reveals a highly variable region that encodes an exceptionally large open reading frame. Fungal Genet Biol 2012; 49:2-14. [DOI: 10.1016/j.fgb.2011.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/25/2023]
|
34
|
Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 2011; 4:136-54. [PMID: 22179582 PMCID: PMC3318907 DOI: 10.1093/gbe/evr136] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Oxytricha trifallax mitochondrial genome contains the largest sequenced ciliate mitochondrial chromosome (~70 kb) plus a ~5-kb linear plasmid bearing mitochondrial telomeres. We identify two new ciliate split genes (rps3 and nad2) as well as four new mitochondrial genes (ribosomal small subunit protein genes: rps- 2, 7, 8, 10), previously undetected in ciliates due to their extreme divergence. The increased size of the Oxytricha mitochondrial genome relative to other ciliates is primarily a consequence of terminal expansions, rather than the retention of ancestral mitochondrial genes. Successive segmental duplications, visible in one of the two Oxytricha mitochondrial subterminal regions, appear to have contributed to the genome expansion. Consistent with pseudogene formation and decay, the subtermini possess shorter, more loosely packed open reading frames than the remainder of the genome. The mitochondrial plasmid shares a 251-bp region with 82% identity to the mitochondrial chromosome, suggesting that it most likely integrated into the chromosome at least once. This region on the chromosome is also close to the end of the most terminal member of a series of duplications, hinting at a possible association between the plasmid and the duplications. The presence of mitochondrial telomeres on the mitochondrial plasmid suggests that such plasmids may be a vehicle for lateral transfer of telomeric sequences between mitochondrial genomes. We conjecture that the extreme divergence observed in ciliate mitochondrial genomes may be due, in part, to repeated invasions by relatively error-prone DNA polymerase-bearing mobile elements.
Collapse
Affiliation(s)
- Estienne C Swart
- Department of Ecology and Evolutionary Biology, Princeton University, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The highly variable mitochondrial small-subunit ribosomal RNA gene of Ophiostoma minus. Fungal Biol 2011; 115:1122-37. [DOI: 10.1016/j.funbio.2011.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 05/28/2011] [Accepted: 07/15/2011] [Indexed: 12/18/2022]
|
36
|
Baidyaroy D, Hausner G, Hafez M, Michel F, Fulbright DW, Bertrand H. A 971-bp insertion in the rns gene is associated with mitochondrial hypovirulence in a strain of Cryphonectria parasitica isolated from nature. Fungal Genet Biol 2011; 48:775-83. [DOI: 10.1016/j.fgb.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 03/18/2011] [Accepted: 05/08/2011] [Indexed: 01/16/2023]
|
37
|
Hendrickson PG, Silliker ME. RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis. Curr Genet 2010; 56:203-13. [PMID: 20169440 DOI: 10.1007/s00294-010-0292-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
Similarity searches with Didymium iridis mitochondrial genomic DNA identified six possible ribosomal protein-coding regions, however, each region contained stop codons that would need to be removed by RNA editing to produce functional transcripts. RT-PCR was used to amplify these regions from total RNA for cloning and sequencing. Six functional transcripts were verified for the following ribosomal protein genes: rpS12, rpS7, rpL2, rpS19, rpS3, and rpL16. The editing events observed, such as single C and U nucleotide insertions and a dinucleotide insertion, were consistent with previously observed editing patterns seen in D. iridis. Additionally, a new form of insertional editing, a single A insertion, was observed in a conserved region of the rpL16 gene. While the majority of codons created by editing specify hydrophobic amino acids, a greater proportion of the codons created in these hydrophilic ribosomal proteins called for positively charged amino acids in comparison to the previously characterized hydrophobic respiratory protein genes. This first report of edited soluble mitochondrial ribosomal proteins in myxomycetes expands upon the RNA editing patterns previously seen; there was: a greater proportion of created codons specifying positively charged amino acids, a shift in the codon position edited, and the insertion of single A nucleotides.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Immunology Department, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | |
Collapse
|