1
|
Mutahir Z, Christiansen LS, Clausen AR, Berchtold MW, Gojkovic Z, Munch-Petersen B, Knecht W, Piškur J. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:677-690. [PMID: 27906638 DOI: 10.1080/15257770.2016.1143557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of dCK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters of the dCK/dGK enzymes encoded by these genes. The two dCK enzymes in G. gallus have broader substrate specificity than their human or X. laevis counterparts. Additionally, the duplicated dCK enzyme in G. gallus might have become mitochondria. Based on our study we postulate that changing and adapting substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs.
Collapse
Affiliation(s)
| | - Louise Slot Christiansen
- a Department of Biology , Lund University , Lund , Sweden.,e Lund Protein Production Platform, Lund University , Lund , Sweden
| | | | - Martin W Berchtold
- b Department of Biology , University of Copenhagen , Copenhagen , Denmark
| | | | - Birgitte Munch-Petersen
- a Department of Biology , Lund University , Lund , Sweden.,d Department of Science , Systems and Models, Roskilde University , Roskilde , Denmark
| | - Wolfgang Knecht
- a Department of Biology , Lund University , Lund , Sweden.,e Lund Protein Production Platform, Lund University , Lund , Sweden
| | - Jure Piškur
- a Department of Biology , Lund University , Lund , Sweden
| |
Collapse
|
2
|
Proctor EA, Dokholyan NV. Applications of Discrete Molecular Dynamics in biology and medicine. Curr Opin Struct Biol 2015; 37:9-13. [PMID: 26638022 DOI: 10.1016/j.sbi.2015.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 11/27/2022]
Abstract
Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications.
Collapse
Affiliation(s)
- Elizabeth A Proctor
- Department of Biological Engineering, Massachusetts Institute of Technology, United States.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
3
|
Slot Christiansen L, Munch-Petersen B, Knecht W. Non-Viral Deoxyribonucleoside Kinases--Diversity and Practical Use. J Genet Genomics 2015; 42:235-48. [PMID: 26059771 DOI: 10.1016/j.jgg.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of great medical interest. However, during the last 20 years, research on dNKs has gone into non-mammalian organisms. In this review, we focus on non-viral dNKs, in particular their diversity and their practical applications. The diversity of this enzyme family in different organisms has proven to be valuable in studying the evolution of enzymes. Some of these newly discovered enzymes have been useful in numerous practical applications in medicine and biotechnology, and have contributed to our understanding of the structural basis of nucleoside and nucleoside analogue activation.
Collapse
Affiliation(s)
| | - Birgitte Munch-Petersen
- Department of Biology, Lund University, Lund 22362, Sweden; Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; Lund Protein Production Platform, Lund University, Lund 22362, Sweden.
| |
Collapse
|