1
|
Cao C, Li F, Ding Q, Jin X, Tu W, Zhu H, Sun M, Zhu J, Yang D, Fan B. Potassium sodium hydrogen citrate intervention on gut microbiota and clinical features in uric acid stone patients. Appl Microbiol Biotechnol 2024; 108:51. [PMID: 38183479 PMCID: PMC10771603 DOI: 10.1007/s00253-023-12953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
The high recurrence rate of renal uric acid stone (UAS) poses a significant challenge for urologists, and potassium sodium hydrogen citrate (PSHC) has been proven to be an effective oral dissolution drug. However, no studies have investigated the impact of PSHC on gut microbiota and its metabolites during stone dissolution therapy. We prospectively recruited 37 UAS patients and 40 healthy subjects, of which 12 patients completed a 3-month pharmacological intervention. Fasting vein blood was extracted and mid-stream urine was retained for biochemical testing. Fecal samples were collected for 16S ribosomal RNA (rRNA) gene sequencing and short chain fatty acids (SCFAs) content determination. UAS patients exhibited comorbidities such as obesity, hypertension, gout, and dyslipidemia. The richness and diversity of the gut microbiota were significantly decreased in UAS patients, Bacteroides and Fusobacterium were dominant genera while Subdoligranulum and Bifidobacterium were poorly enriched. After PSHC intervention, there was a significant reduction in stone size accompanied by decreased serum uric acid and increased urinary pH levels. The abundance of pathogenic bacterium Fusobacterium was significantly downregulated following the intervention, whereas there was an upregulation observed in SCFA-producing bacteria Lachnoclostridium and Parasutterella, leading to a significant elevation in butyric acid content. Functions related to fatty acid synthesis and amino acid metabolism within the microbiota showed upregulation following PSHC intervention. The correlation analysis revealed a positive association between stone pathogenic bacteria abundance and clinical factors for stone formation, while a negative correlation with SCFAs contents. Our preliminary study revealed that alterations in gut microbiota and metabolites were the crucial physiological adaptation to PSHC intervention. Targeted regulation of microbiota and SCFA holds promise for enhancing drug therapy efficacy and preventing stone recurrence. KEY POINTS: • Bacteroides and Fusobacterium were identified as dominant genera for UAS patients • After PSHC intervention, Fusobacterium decreased and butyric acid content increased • The microbiota increased capacity for fatty acid synthesis after PSHC intervention.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Feng Li
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Qi Ding
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Xiaohua Jin
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Wenjian Tu
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Hailiang Zhu
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Mubin Sun
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Fan
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China.
| |
Collapse
|
2
|
Qiao S, Yang J, Yang L. Association between Urinary Flora and Urinary Stones. Urol Int 2024:1-8. [PMID: 39236682 DOI: 10.1159/000540990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Urinary system stones are a common clinical disease, with significant differences in incidence and recurrence rates between different countries and regions. The etiology and pathogenesis of urinary system stones have not been fully elucidated, but many studies have found that some bacteria and fungi that are difficult to detect in urine constitute a unique urinary microbiome. This special urinary microbiome is closely related to the occurrence and development of urinary system stones. By analyzing the urinary microbiome and its metabolic products, early diagnosis and treatment of urinary system stones can be carried out. SUMMARY This article reviews the relationship between the urinary microbiome and urinary system stones, discusses the impact of the microbiome on the formation of urinary system stones and its potential therapeutic value, with the aim of providing a reference for the early diagnosis, prevention, and treatment of urinary system stones. KEY MESSAGES (i) Urinary stones are a common and recurrent disease, and there is no good way to prevent them. (ii) With advances in testing technology, studies have found that healthy human urine also contains various types of bacteria. (iii) Is there a potential connection between the urinary microbiota and urinary stones, and if so, can understanding these connections offer fresh perspectives and strategies for the diagnosis, treatment, and prevention of urinary stones?
Collapse
Affiliation(s)
- Sihang Qiao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China,
| | - Jianwei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Joubran P, Roux FA, Serino M, Deschamps JY. Gut and Urinary Microbiota in Cats with Kidney Stones. Microorganisms 2024; 12:1098. [PMID: 38930480 PMCID: PMC11205531 DOI: 10.3390/microorganisms12061098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Upper urinary tract urolithiasis is an emerging disease in cats, with 98% of kidney stones composed of calcium oxalate. In humans, disturbances in the intestinal and urinary microbiota are suspected to contribute to the formation of calcium oxalate stones. We hypothesized that similar mechanisms may be at play in cats. This study examines the intestinal and urinary microbiota of nine cats with kidney stones compared to nine healthy cats before, during, and after treatment with the antibiotic cefovecin, a cephalosporin. Initially, cats with kidney stones displayed a less diverse intestinal microbiota. Antibiotic treatment reduced microbiota diversity in both groups. The absence of specific intestinal bacteria could lead to a loss of the functions these bacteria perform, such as oxalate degradation, which may contribute to the formation of calcium oxalate stones. This study confirms the presence of a distinct urobiome in cats with kidney stones, characterized by greater richness and diversity compared to healthy cats. These findings highlight the potential of microbiota modulation as a strategy to prevent renal lithiasis in cats.
Collapse
Affiliation(s)
- Patrick Joubran
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
| | - Françoise A. Roux
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France
| | - Matteo Serino
- IRSD, Institut de Recherche en Santé Digestive, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse III-Paul Sabatier (UPS), CS 60039, 31 024 Toulouse, France
| | - Jack-Yves Deschamps
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France; (P.J.); (F.A.R.)
- Emergency and Critical Care Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44 307 Nantes, France
| |
Collapse
|
4
|
Tran NT, Chaidee A, Surapinit A, Yingklang M, Roytrakul S, Charoenlappanit S, Pinlaor P, Hongsrichan N, Nguyen Thi H, Anutrakulchai S, Cha'on U, Pinlaor S. Strongyloides stercoralis infection reduces Fusicatenibacter and Anaerostipes in the gut and increases bacterial amino-acid metabolism in early-stage chronic kidney disease. Heliyon 2023; 9:e19859. [PMID: 37809389 PMCID: PMC10559256 DOI: 10.1016/j.heliyon.2023.e19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Understanding gut bacterial composition and proteome changes in patients with early-stage chronic kidney disease (CKD) could lead to better methods of controlling the disease progression. Here, we investigated the gut microbiome and microbial functions in patients with S. stercoralis infection (strongyloidiasis) and early-stage CKD. Thirty-five patients with early stages (1-3) of CKD were placed in two groups matched for population characteristics and biochemical parameters, 12 patients with strongyloidiasis in one group and 23 uninfected patients in the other. From every individual, a sample of their feces was obtained and processed for 16S rRNA sequencing and metaproteomic analysis using tandem liquid chromatography-mass spectrometry (LC-MS/MS). Strongyloides stercoralis infection per se did not significantly alter gut microbial diversity. However, certain genera (Bacteroides, Faecalibacterium, Fusicatenibacter, Sarcina, and Anaerostipes) were significantly more abundant in infection-free CKD patients than in infected individuals. The genera Peptoclostridium and Catenibacterium were enriched in infected patients. Among the significantly altered genera, Fusicatenibacter and Anaerostipes were the most correlated with renal parameters. The relative abundance of members of the genus Fusicatenibacter was moderately positively correlated with estimated glomerular filtration rate (eGFR) (r = 0.335, p = 0.049) and negatively with serum creatinine (r = -0.35, p = 0.039). Anaerostipes, on the other hand, showed a near-significant positive correlation with eGFR (r = 0.296, p = 0.084). Individuals with S. stercoralis infection had higher levels of bacterial proteins involved in amino-acid metabolism. Analysis using STITCH predicted that bacterial amino-acid metabolism may also be involved in the production of colon-derived uremic toxin (indole), a toxic substance known to promote CKD. Strongyloides stercoralis infection is, therefore, associated with reduced abundance of Fusicatenibacter and Anaerostipes (two genera possibly beneficial for kidney function) and with increased bacterial amino-acid metabolism in the early-stages of CKD, potentially producing uremic toxin. This study provides useful information for prevention of progression of CKD beyond the early stages.
Collapse
Affiliation(s)
- Na T.D. Tran
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medical Laboratory Science, Danang University of Medical Technology and Pharmacy, Danang, Viet Nam
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Achirawit Surapinit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sitiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Hai Nguyen Thi
- Department of Parasitology, Faculty of Basic Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Viet Nam
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha'on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Baltazar P, de Melo Junior AF, Fonseca NM, Lança MB, Faria A, Sequeira CO, Teixeira-Santos L, Monteiro EC, Campos Pinheiro L, Calado J, Sousa C, Morello J, Pereira SA. Oxalate (dys)Metabolism: Person-to-Person Variability, Kidney and Cardiometabolic Toxicity. Genes (Basel) 2023; 14:1719. [PMID: 37761859 PMCID: PMC10530622 DOI: 10.3390/genes14091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Oxalate is a metabolic end-product whose systemic concentrations are highly variable among individuals. Genetic (primary hyperoxaluria) and non-genetic (e.g., diet, microbiota, renal and metabolic disease) reasons underlie elevated plasma concentrations and tissue accumulation of oxalate, which is toxic to the body. A classic example is the triad of primary hyperoxaluria, nephrolithiasis, and kidney injury. Lessons learned from this example suggest further investigation of other putative factors associated with oxalate dysmetabolism, namely the identification of precursors (glyoxylate, aromatic amino acids, glyoxal and vitamin C), the regulation of the endogenous pathways that produce oxalate, or the microbiota's contribution to oxalate systemic availability. The association between secondary nephrolithiasis and cardiovascular and metabolic diseases (hypertension, type 2 diabetes, and obesity) inspired the authors to perform this comprehensive review about oxalate dysmetabolism and its relation to cardiometabolic toxicity. This perspective may offer something substantial that helps advance understanding of effective management and draws attention to the novel class of treatments available in clinical practice.
Collapse
Affiliation(s)
- Pedro Baltazar
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Antonio Ferreira de Melo Junior
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Nuno Moreira Fonseca
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Miguel Brito Lança
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
| | - Ana Faria
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal;
| | - Catarina O. Sequeira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
| | - Luísa Teixeira-Santos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Emilia C. Monteiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Luís Campos Pinheiro
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Joaquim Calado
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Cátia Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Judit Morello
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
| | - Sofia A. Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| |
Collapse
|
6
|
Cao C, Jin X, Ding Q, Zhu J, Yang D, Fan B. The altered composition of gut microbiota and biochemical features as well as dietary patterns in a southern Chinese population with recurrent renal calcium oxalate stones. Urolithiasis 2023; 51:95. [PMID: 37458823 DOI: 10.1007/s00240-023-01467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The correlation among gut microbiota, biochemical features, and dietary patterns in recurrent stone formers has been inadequately investigated in the Chinese population. Forty-two patients with calcium oxalate stones (CaOxS group), including 34 recurrent stone formers (RS group), and 40 nonstone healthy subjects (NS group) from Changshu Hospital Affiliated with Soochow University, were prospectively recruited. Food frequency questionnaires were completed by participants, fasting vein blood was extracted, 24-h urine was collected for biochemical detection, and fecal samples were gathered for 16S ribosomal RNA (rRNA) gene sequencing. BMI; serum levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), magnesium, and creatinine; and urine levels of magnesium in stone formers were significantly different from those of controls, and RS patients showed significantly low serum phosphate and high urine phosphate levels. Celery, bamboo shoots, and pickled food were the favored foods of local stone formers. Patients with recurrent stones had altered microbiota composition, with Escherichia, Fusobacterium, and Epulopiscium being the predominant pathogenic genera. The gut microbiota in RS patients had stronger functions in fatty acid and amino acid degradation but weaker functions in their biosynthesis. The pathogenic genera were positively correlated with BMI; serum levels of TGs and creatinine; urine levels of calcium, phosphate, and uric acid (UA); and celery, bamboo shoots, and pickled food intake. The abundance of Escherichia and Fusobacterium and the levels of serum magnesium and creatinine were the most relevant factors associated with stone recurrence and could be validated as biomarkers of recurrence. Our research provides a novel prevention strategy for the recurrence of renal calcium oxalate stones in the Han Chinese population of southern China.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Xiaohua Jin
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Qi Ding
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Fan
- Department of Urology, The Changshu Hospital Affiliated to Soochow University, Changshu, China.
| |
Collapse
|
7
|
Liu M, Zhang Y, Wu J, Gao M, Zhu Z, Chen H. Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1204311. [PMID: 37502408 PMCID: PMC10368867 DOI: 10.3389/fmicb.2023.1204311] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Gut microbiota, particularly Oxalobacter formigenes, has been previously reported to be associated with kidney stones. However, the conflicting results from both observational and intervention studies have created substantial uncertainty regarding the contribution of Oxalobacter formigenes to the formation of kidney stone. Methods We employed a two-sample MR analysis to investigate the causal relationship between gut microbiota and kidney stones using GWASs summary statistics obtained from the MiBioGen and FinnGen consortia. Moreover, we conducted a reserve MR analysis to assess the direction of the causal associations between gut microbiota and kidney stones. The inverse variance weighted (IVW) approach represents the primary method of Mendelian Randomization (MR) analysis. Results Our analyses do not yield supportive evidence for a causal link between the genus Oxalobacter (OR = 0.99, 95% CI: 0.90-1.09, p = 0.811) and the formation of kidney stones. The order Actinomycetales (OR = 0.79, 95% CI: 0.65-0.96, p = 0.020), family Actinomycetaceae (OR = 0.79, 95% CI: 0.65-0.96, p = 0.019), family Clostridiaceae 1 (OR = 0.80, 95% CI: 0.67-0.96, p = 0.015), genus Clostridiumsensustricto 1 (OR = 0.81, 95% CI: 0.67-0.98, p = 0.030) and genus Hungatella (OR = 0.86, 95% CI: 0.74-0.99, p = 0.040) had protective effects on kidney stones, and the genus Haemophilus (OR = 1.16, 95% CI: 1.01-1.33, p = 0.032), genus Ruminococcaceae (UCG010) (OR = 1.38, 95% CI: 1.04-1.84, p = 0.028), genus Subdoligranulum (OR = 1.27, 95% CI: 1.06-1.52, p = 0.009) were risk factors for kidney stones. Differential abundance analysis provide no evidence of a association between Oxalobacter formigenes and kidney stones, and showed genus Subdoligranulum were risk factors for kidney stones. Reverse MR analysis did not indicate any causal association of kidney stones on gut microbiota. No considerable heterogeneity of instrumental variables or horizontal pleiotropy was observed. Conclusion Our two-sample MR study did not find any causal relationship between genus Oxalobacter and kidney stones. The association between gut microbiota and kidney stones does not solely depend on the presence of genus Oxalobacter/Oxalobacter formigenes. A more integrated approach using multiple omics platforms is needed to better understand the pathogenesis of kidney stones in the context of complex gene-environment interactions over time.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Youjie Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Yuan T, Xia Y, Li B, Yu W, Rao T, Ye Z, Yan X, Song B, Li L, Lin F, Cheng F. Gut microbiota in patients with kidney stones: a systematic review and meta-analysis. BMC Microbiol 2023; 23:143. [PMID: 37208622 DOI: 10.1186/s12866-023-02891-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Mounting evidence indicates that the gut microbiome (GMB) plays an essential role in kidney stone (KS) formation. In this study, we conducted a systematic review and meta-analysis to compare the composition of gut microbiota in kidney stone patients and healthy individuals, and further understand the role of gut microbiota in nephrolithiasis. RESULTS Six databases were searched to find taxonomy-based comparison studies on the GMB until September 2022. Meta-analyses were performed using RevMan 5.3 to estimate the overall relative abundance of gut microbiota in KS patients and healthy subjects. Eight studies were included with 356 nephrolithiasis patients and 347 healthy subjects. The meta-analysis suggested that KS patients had a higher abundance of Bacteroides (35.11% vs 21.25%, Z = 3.56, P = 0.0004) and Escherichia_Shigella (4.39% vs 1.78%, Z = 3.23, P = 0.001), and a lower abundance of Prevotella_9 (8.41% vs 10.65%, Z = 4.49, P < 0.00001). Qualitative analysis revealed that beta-diversity was different between the two groups (P < 0.05); Ten taxa (Bacteroides, Phascolarctobacterium, Faecalibacterium, Flavobacterium, Akkermansia, Lactobacillus, Escherichia coli, Rhodobacter and Gordonia) helped the detection of kidney stones (P < 0.05); Genes or protein families of the GMB involved in oxalate degradation, glycan synthesis, and energy metabolism were altered in patients (P < 0.05). CONCLUSIONS There is a characteristic gut microbiota dysbiosis in kidney stone patients. Individualized therapies like microbial supplementation, probiotic or synbiotic preparations and adjusted diet patterns based on individual gut microbial characteristics of patients may be more effective in preventing stone formation and recurrence.
Collapse
Affiliation(s)
- Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Peerapen P, Thongboonkerd V. Kidney Stone Prevention. Adv Nutr 2023; 14:555-569. [PMID: 36906146 DOI: 10.1016/j.advnut.2023.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Kidney stone disease (KSD) (alternatively nephrolithiasis or urolithiasis) is a global health care problem that affects almost people in developed and developing countries. Its prevalence has been continuously increasing with a high recurrence rate after stone removal. Although effective therapeutic modalities are available, preventive strategies for both new and recurrent stones are required to reduce physical and financial burdens of KSD. To prevent kidney stone formation, its etiology and risk factors should be first considered. Low urine output and dehydration are the common risks of all stone types, whereas hypercalciuria, hyperoxaluria, and hypocitraturia are the major risks of calcium stones. In this article, up-to-date knowledge on strategies (nutrition-based mainly) to prevent KSD is provided. Important roles of fluid intake (2.5-3.0 L/d), diuresis (>2.0-2.5 L/d), lifestyle and habit modifications (for example, maintain normal body mass index, fluid compensation for working in high-temperature environment, and avoid cigarette smoking), and dietary management [for example, sufficient calcium at 1000-1200 mg/d, limit sodium at 2 or 3-5 g/d of sodium chloride (NaCl), limit oxalate-rich foods, avoid vitamin C and vitamin D supplements, limit animal proteins to 0.8-1.0 g/kg body weight/d but increase plant proteins in patients with calcium and uric acid stone and those with hyperuricosuria, increase proportion of citrus fruits, and consider lime powder supplementation] are summarized. Moreover, uses of natural bioactive products (for example, caffeine, epigallocatechin gallate, and diosmin), medications (for example, thiazides, alkaline citrate, other alkalinizing agents, and allopurinol), bacterial eradication, and probiotics are also discussed. Adv Nutr 2023;x:xx-xx.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Jung HD, Cho S, Lee JY. Update on the Effect of the Urinary Microbiome on Urolithiasis. Diagnostics (Basel) 2023; 13:diagnostics13050951. [PMID: 36900094 PMCID: PMC10001284 DOI: 10.3390/diagnostics13050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Microbiota are ecological communities of commensal, symbiotic, and pathogenic microorganisms. The microbiome could be involved in kidney stone formation through hyperoxaluria and calcium oxalate supersaturation, biofilm formation and aggregation, and urothelial injury. Bacteria bind to calcium oxalate crystals, which causes pyelonephritis and leads to changes in nephrons to form Randall's plaque. The urinary tract microbiome, but not the gut microbiome, can be distinguished between cohorts with urinary stone disease (USD) and those without a history of the disease. In the urine microbiome, the role is known of urease-producing bacteria (Proteus mirabilis, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Providencia stuartii, Serratia marcescens, and Morganella morganii) in stone formation. Calcium oxalate crystals were generated in the presence of two uropathogenic bacteria (Escherichia coli and K. pneumoniae). Non-uropathogenic bacteria (S. aureus and Streptococcus pneumoniae) exhibit calcium oxalate lithogenic effects. The taxa Lactobacilli and Enterobacteriaceae best distinguished the healthy cohort from the USD cohort, respectively. Standardization is needed in urine microbiome research for urolithiasis. Inadequate standardization and design of urinary microbiome research on urolithiasis have hampered the generalizability of results and diminished their impact on clinical practice.
Collapse
Affiliation(s)
- Hae Do Jung
- Department of Urology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Seok Cho
- Department of Urology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Center of Evidence Based Medicine, Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2228-2320; Fax: +82-2-312-2538
| |
Collapse
|
11
|
Zhao H, Ren Q, Wang HY, Zong Y, Zhao W, Wang Y, Qu M, Wang J. Alterations in gut microbiota and urine metabolomics in infants with yin-deficiency constitution aged 0–2 years. Heliyon 2023; 9:e14684. [PMID: 37064462 PMCID: PMC10102239 DOI: 10.1016/j.heliyon.2023.e14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Background Based on the constitution theroy, infants are classified into balanced constitution (BC) and unbalanced constitution. Yin-deficiency constitution (YINDC) is a common type of unbalanced constitutions in Chinese infants. An infant's gut microbiota directly affects the child's health and has long-term effects on the maturation of the immune and endocrine systems throughout life. However, the gut microbiota of infants with YINDC remains unknown. Herein, we aimed to evaluate the intestinal flora profiles and urinary metabolites in infant with YINDC, find biomarkers to identify YINDC, and promote our understanding of infant constitution classification. Methods Constitutional Medicine Questionnaires were used to assess the infants' constitution types. 47 infants with 21 cases of YINDC and 26 cases of BC were included, and a cross-sectional sampling of stool and urine was conducted. Fecal microbiota was characterized using 16S rRNA sequencing, and urinary metabolomics was profiled using UPLC-Q-TOF/MS method. YINDC markers with high accuracy were identified using receiver operating characteristic (ROC) analysis. Results The diversity and composition of intestinal flora and urinary metabolites differed significantly between the YINDC and BC groups. A total of 13 obviously different genera and 55 altered metabolites were identified. Stool microbiome shifts were associated with urine metabolite changes. A combined marker comprising two genera may have a high potential to identify YINDC with an AUC of 0.845. Conclusions Infants with YINDC had a unique gut microbiota and metabolomic profile resulting in a constitutional microclassification. The altered gut microbiome in YINDC may account for the higher risk of cardiovascular diseases. Metabolomic analysis of urine showed that metabolic pathways, including histidine metabolism, proximal tubule bicarbonate reclamation, arginine biosynthesis, and steroid hormone biosynthesis, were altered in infants with YINDC. Additionally, the combined bacterial biomarker had the ability to identify YINDC. Identifying YINDC in infancy and intervening at an early stage is crucial for preventing cardiovascular diseases.
Collapse
|
12
|
Kim JK, Song SH, Jung G, Song B, Hong SK. Possibilities and limitations of using low biomass samples for urologic disease and microbiome research. Prostate Int 2022; 10:169-180. [PMID: 36570648 PMCID: PMC9747588 DOI: 10.1016/j.prnil.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022] Open
Abstract
With the dogma of sterile urine no longer held as truth, numerous studies have implicated distinct changes in microbial diversity and composition to diseased subgroups in both benign and malignant urological diseases, ranging from overactive bladder to bladder and prostate cancer. Further facilitated by novel and effective techniques of urine culture and sequencing, analysis of the genitourinary microbiome holds high potential to identify biomarkers for disease and prognosis. However, the low biomass of samples included in microbiome studies of the urinary tract challenge researchers to draw definitive conclusions, confounded by technical and procedural considerations that must be addressed. Lack of samples and adequate true negative controls can lead to overestimation of microbial influence with clinical relevance. As such, results from currently available studies and assessment of their limitations required a thorough understanding. The purpose of this narrative review was to summarize notable microbiome studies in the field of urology with a focus on significant findings and limitations of study design. Methodological considerations in future research are also discussed.
Collapse
Affiliation(s)
- Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gyoohwan Jung
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byeongdo Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Urology, Seoul National University College of Medicine, Seoul, Korea,Corresponding author. Department of Urology, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, Korea.
| |
Collapse
|