1
|
Rowland FE, Muths E, Eagles-Smith CA, Stricker CA, Kraus JM, Harrington RA, Walters DM. Complex Life Histories Alter Patterns of Mercury Exposure and Accumulation in a Pond-Breeding Amphibian. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4133-4142. [PMID: 36848500 DOI: 10.1021/acs.est.2c04896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantifying how contaminants change across life cycles of species that undergo metamorphosis is critical to assessing organismal risk, particularly for consumers. Pond-breeding amphibians can dominate aquatic animal biomass as larvae and are terrestrial prey as juveniles and adults. Thus, amphibians can be vectors of mercury exposure in both aquatic and terrestrial food webs. However, it is still unclear how mercury concentrations are affected by exogenous (e.g., habitat or diet) vs endogenous factors (e.g., catabolism during hibernation) as amphibians undergo large diet shifts and periods of fasting during ontogeny. We measured total mercury (THg), methylmercury (MeHg), and isotopic compositions (δ 13C, δ15N) in boreal chorus frogs (Pseudacris maculata) across five life stages in two Colorado (USA) metapopulations. We found large differences in concentrations and percent MeHg (of THg) among life stages. Frog MeHg concentrations peaked during metamorphosis and hibernation coinciding with the most energetically demanding life cycle stages. Indeed, life history transitions involving periods of fasting coupled with high metabolic demands led to large increases in mercury concentrations. The endogenous processes of metamorphosis and hibernation resulted in MeHg bioamplification, thus decoupling it from the light isotopic proxies of diet and trophic position. These step changes are not often considered in conventional expectations of how MeHg concentrations within organisms are assessed.
Collapse
Affiliation(s)
- Freya E Rowland
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201, United States
| | - Erin Muths
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado 80526, United States
| | - Collin A Eagles-Smith
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon 97331, United States
| | - Craig A Stricker
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado 80526, United States
| | - Johanna M Kraus
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201, United States
| | - Rachel A Harrington
- U.S. Environmental Protection Agency, Region 8, Denver, Colorado 80202, United States
| | - David M Walters
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201, United States
| |
Collapse
|
2
|
Smalling KL, Anderson CW, Honeycutt RK, Cozzarelli IM, Preston T, Hossack BR. Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:260-268. [PMID: 30798027 DOI: 10.1016/j.envpol.2019.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Energy production in the Williston Basin, located in the Prairie Pothole Region of central North America, has increased rapidly over the last several decades. Advances in recycling and disposal practices of saline wastewaters (brines) co-produced during energy production have reduced ecological risks, but spills still occur often and legacy practices of releasing brines into the environment caused persistent salinization in many areas. Aside from sodium and chloride, these brines contain elevated concentrations of metals and metalloids (lead, selenium, strontium, antimony and vanadium), ammonium, volatile organic compounds, hydrocarbons, and radionuclides. Amphibians are especially sensitive to chloride and some metals, increasing potential effects in wetlands contaminated by brines. We collected bed sediment and larval amphibians (Ambystoma mavortium, Lithobates pipiens and Pseudacris maculata) from wetlands in Montana and North Dakota representing a range of brine contamination history and severity to determine if contamination was associated with metal concentrations in sediments and if metal accumulation in tissues varied by species. In wetland sediments, brine contamination was positively associated with the concentrations of sodium and strontium, both known to occur in oil and gas wastewater, but negatively correlated with mercury. In amphibian tissues, selenium and vanadium were associated with brine contamination. Metal tissue concentrations were higher in tadpoles that graze compared to predatory salamanders; this suggests frequent contact with the sediments could lead to greater ingestion of metal-laden materials. Although many of these metals may not be directly linked with energy development, the potential additive or synergistic effects of exposure along with elevated chloride from brines could have important consequences for aquatic organisms. To effectively manage amphibian populations in wetlands contaminated by saline wastewaters we need a better understanding of how life history traits, species-specific susceptibilities and the physical-chemical properties of metals co-occurring in wetland sediments interact with other stressors like chloride and wetland drying.
Collapse
Affiliation(s)
- Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ, 08648, USA.
| | - Chauncey W Anderson
- U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5th Ave, Portland, OR, 97215, USA
| | - R Ken Honeycutt
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 800 E. Beckwith Ave., Missoula, MT, 59801, USA
| | - Isabelle M Cozzarelli
- U.S. Geological Survey, Earth System Processes Division of Water Mission Area, 12201 Sunrise Valley Dr., Reston, VA, 20192, USA
| | - Todd Preston
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT, 59715, USA
| | - Blake R Hossack
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 800 E. Beckwith Ave., Missoula, MT, 59801, USA
| |
Collapse
|
3
|
Boczulak SA, Vanderwel MC, Hall BD. Survey of mercury in boreal chorus frog (Pseudacris maculata) and wood frog (Rana sylvatica) tadpoles from wetland ponds in the Prairie Pothole Region of Canada. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tadpoles are important prey items for many aquatic organisms and often represent the largest vertebrate biomass in many fishless wetland ecosystems. Neurotoxic mercury (Hg) can, at elevated levels, decrease growth, lower survival, and cause developmental instability in amphibians. We compared total Hg (THg) body burden and concentration in boreal chorus frog ( Pseudacris maculata) and wood frog ( Rana sylvatica) tadpoles. Overall, body burden and concentration were lower in boreal chorus frog tadpoles than wood frog tadpoles, as expected, because boreal chorus frog tadpoles consume at lower trophic levels. The variables species, stage, and mass explained 21% of total variation for body burden in our models but had negligible predictive ability for THg concentration. The vast majority of the remaining variation in both body burden and THg concentration was attributable to differences among ponds; tadpoles from ponds in three areas had considerably higher THg body burden and concentration. The pond-to-pond differences were not related to any water chemistry or physical parameter measured, and we assumed that differences in wetland geomorphology likely played an important role in determining Hg levels in tadpoles. This is the first report of Hg in frog tadpoles in the Prairie Pothole Region of North America.
Collapse
Affiliation(s)
- Stacy A. Boczulak
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Mark C. Vanderwel
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Britt D. Hall
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|