1
|
Ullah S, Liu Q, Wang S, Jan AU, Sharif HMA, Ditta A, Wang G, Cheng H. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165726. [PMID: 37495153 DOI: 10.1016/j.scitotenv.2023.165726] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Sadeeq Ullah
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Amin Ullah Jan
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Hafiz M Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Li H, Zhang Y, Li S, Wang Y, Li H. Toxicity of chromium to wheat (Triticum aestivum L.) in two soils: influence of soil properties and chromium form. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100466-100476. [PMID: 37626197 DOI: 10.1007/s11356-023-29383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The toxicity of Cr to plants depends on Cr form and soil properties. Currently, the phytotoxicity differences of Cr(VI) and Cr(III) in different soils are not clear. In this study, the toxicity of Cr(VI) and Cr(III) to root growth and root morphology of wheat (Triticum aestivum L.) were compared in Shandong fluvo-aquic soil (SD soil) and Jiangxi red soil (JX soil) that is differing in soil properties. The toxicity thresholds of Cr(VI) and Cr(III) on wheat root elongation were determined by fitting the dose-effect curves. Results showed that the 10% and 50% root length inhibitory concentrations (EC10 and EC50) of Cr(III) were 53.1 and 125 times of Cr(VI) in SD soil and 8.11 and 1.36 times of Cr(VI) in JX soil, indicating that Cr(VI) was more toxic to wheat roots than Cr(III) in both soils and the toxicity discrepancy of the two forms of Cr was more prominent in SD soil. Cr(VI) exhibited higher toxicity in SD soil (alkaline) than in JX soil (acidic), whereas Cr(III) showed the opposite pattern. In addition, the ethylene diamine tetraacetic acid extractable Cr (EDTA-Cr) concentrations in soils were correlated well with the relative wheat root elongation (R2=0.854, P<0.01), indicating that soil EDTA-Cr concentration can be used as a predictor of Cr phytotoxicity. Both Cr(VI) and Cr(III) showed significant biphasic dose effects on wheat root morphology (root length, root surface area, root volume, and root tip number) in JX soil. These findings are helpful for the risk evaluation of Cr contamination in agricultural soils.
Collapse
Affiliation(s)
- Haipeng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yuqing Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Shiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | | | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
3
|
Das PK, Das BP, Das BK, Dash P. Rhizospheric soil chromium toxicity and its remediation using plant hyperaccumulators. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:193-207. [PMID: 37417937 DOI: 10.1080/15226514.2023.2231572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The hyper-accumulation of chromium in its hexavalent form is treated as a hazardous soil pollutant at industrial and mining sites. Excessive accumulation of Cr6+ in soil threatens the environmental health and safety of living organisms. Out of two stable forms of chromium, Cr6+ is highly responsible for ecotoxicity. The expression of the high toxicity of Cr6+ at low concentrations in the soil environment indicates its lethality. It is usually released into the soil during various socio-economic activities. Sustainable remediation of Cr6+ contaminated soil is of utmost need and can be carried out by employing suitable plant hyperaccumulators. Alongside the plant's ability to sequester toxic metals like Cr6+, the rhizospheric soil parameters play a significant role in this technique and are mostly overlooked. Here we review the application of a cost-effective and eco-friendly remediation technology at hyperaccumulators rhizosphere to minimize the Cr6+ led soil toxicity. The use of selected plant species along with effective rhizospheric activities has been suggested as a technique to reduce Cr6+ toxicity on soil and its associated biota. This soil rectification approach may prove to be sustainable and advantageous over other possible techniques. Further, it may open up new solutions for soil Cr6+ management at polluted sites.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bidyut Prava Das
- Department of Botany, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Bikash Kumar Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Patitapaban Dash
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Campillo-Cora C, González-Feijoo R, Arias-Estévez M, Fernández-Calviño D. Do heavy metals affect bacterial communities more in small repeated applications or in a single large application? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116494. [PMID: 36308956 DOI: 10.1016/j.jenvman.2022.116494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals from anthropogenic sources accumulate slowly but steadily, leading to high metal concentration levels in soil. However, the effect of each heavy metal on soil bacterial communities is usually assessed in laboratories by a single application of individually spiked metals. We evaluated the differences between single individual application and repeated individual applications of Cr, Cu, Ni, Pb, and Zn on bacterial communities, through pollution-induced community tolerance (PICT), using bacterial growth as the endpoint (3H-leucine incorporation method). We found that PICT development was higher when soil was spiked in individual single application than individual repeated applications for Cu, Ni and Zn. In contrast, bacterial communities did not show different tolerance between singly or repeatedly when soil was spiked with Cr. In the case of Pb any increase of bacterial community tolerance to this metal was found despite high doses applied (up to 2000 mg kg-1). These results are relevant for the interpretation of the effects of heavy metals on soil microbes in order to avoid laboratory overestimations of the real effects of heavy metals on soil microbes.
Collapse
Affiliation(s)
- Claudia Campillo-Cora
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain.
| | - Rocío González-Feijoo
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain
| | - David Fernández-Calviño
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain
| |
Collapse
|
5
|
Sun X, Qin L, Wang L, Zhao S, Yu L, Wang M, Chen S. Aging factor and its prediction models of chromium ecotoxicity in soils with various properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157622. [PMID: 35901894 DOI: 10.1016/j.scitotenv.2022.157622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aging of pollutants determines bioavailability and toxicity thresholds of environmental pollutants in soil. However, the ecotoxicity of chromium (Cr) rarely considers the effect of aging as well as soil properties. In order to explore the aging characteristics and establish their quantitative relationship with different soil properties, this study selected 7 soils with different properties through exogenous addition of Cr and determined its toxicity on barley root elongation. From 14d to 540d, EC10 and EC50 of barley root elongation ranged from 21.40 to 312.52 (mg·kg-1) and 50.15 to 883.88 (mg·kg-1) respectively. The hormesis appeared in the dose-response curve of acid soil as relative barley root elongation reached >110 % compared with the control. Extended aging time of Cr from 14d to 540d was associated with the attenuation of the toxicity of Cr, as the aging factor increased from 1.26 to 6.09 for EC50, from 0.88 to 4.98 for EC10. The prediction model of AFEC50 and soil properties is lg (AF360d) = 0.306lg Clay+0.026lg CEC + 0.240 (R2 = 0.872, P < 0.01). The results demonstrated that with the extension of aging time, the toxicity of Cr decreased at 360d and reached a slow reaction stage, after that soil OC, Clay and CEC could well explain the aging procedure of Cr (VI). These results are beneficial for risk assessment of Cr contaminated soils and establishment of a soil environmental quality criteria for Cr.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lifu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shuwen Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
6
|
Zhang X, Zhang X, Li L, Fu G, Liu X, Xing S, Feng H, Chen B. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time. ENVIRONMENTAL RESEARCH 2022; 204:111941. [PMID: 34474034 DOI: 10.1016/j.envres.2021.111941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution has attracted much attention due to its biological toxicity. However, little is known regarding Cr toxicity to soil microorganisms. The present study assesses the toxicity of Cr(VI) on two microbial processes, potential nitrification rate (PNR) and substrate-induced respiration (SIR), in a wide range of agricultural soils and detected the abundance of soil bacteria, fungi, ammonia-oxidizing bacteria and archaea. The toxicity thresholds of 10% and 50% effective concentrations (EC10 and EC50) for PNR varied by 32.18- and 38.66-fold among different soils, while for SIR they varied by 391.21- and 16.31-fold, respectively. Regression model analysis indicated that for PNR, CEC as a single factor explained 27% of the variation in EC10, with soil clay being the key factor explaining 47.3% of the variation in EC50. For SIR, organic matter and pH were found to be the most vital predictors for EC10 and EC50, explaining 34% and 61.1% of variation, respectively. In addition, extended aging time was found to significantly attenuate the toxicity of Cr on PNR. SIR was mainly driven by total bacteria rather than fungi, while PNR was driven by both AOA and AOB. These results were helpful in deriving soil Cr toxicity threshold based on microbial processes, and provided a theoretical foundation for ecological risk assessments and establishing a soil environmental quality criteria for Cr.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linfeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Gengxue Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Xiaoying Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Feng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Assessment of Soil Contamination with Potentially Toxic Elements and Soil Ecotoxicity of Botanical Garden in Brno, Czech Republic: Are Urban Botanical Gardens More Polluted Than Urban Parks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147622. [PMID: 34300073 PMCID: PMC8307407 DOI: 10.3390/ijerph18147622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
Though botanical gardens are an important and widely visited component of urban green spaces (UGS) worldwide, their pollution is rarely studied. The aim of this study was to assess botanical garden soil contamination and ecotoxicity and to evaluate whether urban botanical gardens are more contaminated than urban parks. Soil assessments showed serious contamination with Cd, Pb and Zn, emitted predominantly by traffic, agrochemicals and past construction and demolition waste. The discovery of hazardous historical ecological burden in the UGS calls for the necessity of detailed surveys of such areas. Despite prevailing moderate-to-heavy contamination, the soil was only slightly ecotoxic. Maximum immobilisation inhibition of Daphnia magna reached 15%. Growth of Sinapis alba L. was predominantly stimulated (73%), and Desmodesmus subspicatus Chodat was exclusively stimulated, possibly due to soil alkalinity and fertiliser-related nutrients. The hypothesis of a higher contamination of urban botanical gardens compared to urban parks was confirmed. However, urban parks can face a greater risk of soil ecotoxicity, hypothetically due to decreased activity of soil organisms resulting from adverse soil conditions caused by active recreation. The results highlight the need for an increased focus on botanical and ornamental gardens when assessing and managing UGS as areas potentially more burdened with contamination.
Collapse
|
8
|
Jani Y, Burlakovs J, Augustsson A, Marques M, Hogland W. Physicochemical and toxicological characterization of hazardous wastes from an old glasswork dump at southeastern part of Sweden. CHEMOSPHERE 2019; 237:124568. [PMID: 31549666 DOI: 10.1016/j.chemosphere.2019.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
More than 34 old glasswork sites in the southeastern part of Sweden pose a permanent threat to human and environmental health due to the presence of toxic trace elements in open dumps with glass waste. The possibility of leaching of trace elements from different fractions of the disposed waste needed to be assessed. In the present investigation, leachate from a mixture of soil and waste glass of particle sizes of less than 2 mm (given the name fine fraction) was characterized by analyzing the pH (7.3), total organic content (TOC < 2%), organic matter content (4.4%), moisture content (9.7%), chemical oxygen demand (COD, 163 mg/kg) and trace elements content, being the values in accordance to the Swedish guidelines for landfilling of inert materials. However, very high trace elements content was found in the fine fraction as well as in all colors of waste glass, whose values were compatible to hazardous waste landfill class. Tests with Lepidium sativum growing in the fine fraction as substrate revealed chronic toxicity expressed as inhibition of root biomass growth in 11 out of 15 samples. Additionally, leachate from fine fractions posed acute toxicity to genetically modified E. coli (Toxi-Chromotest). This study highlights the importance of combining physicochemical characterization with toxicity tests for both solid waste and leachate obtained from different waste fractions for proper hazardousness assessment supporting decision making on remediation demands.
Collapse
Affiliation(s)
- Yahya Jani
- Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden.
| | - Juris Burlakovs
- Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Anna Augustsson
- Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University UERJ, R. São Francisco Xavier, 524, CEP 20551-013, Rio de Janeiro, Brazil
| | - William Hogland
- Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
9
|
Xiao S, Zhang Q, Chen X, Dong F, Chen H, Liu M, Ali I. Speciation Distribution of Heavy Metals in Uranium Mining Impacted Soils and Impact on Bacterial Community Revealed by High-Throughput Sequencing. Front Microbiol 2019; 10:1867. [PMID: 31456781 PMCID: PMC6700481 DOI: 10.3389/fmicb.2019.01867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated the influence of heavy metals on bacterial community structure in a uranium mine. Soils from three differently polluted ditches (Yangchang ditch, Zhongchang ditch, and Sulimutang ditche) were collected from Zoige County, Sichuan province, China. Soil physicochemical properties and heavy metal concentrations were measured. Differences between bacterial communities were investigated using the high-throughput sequencing of the 16S rRNA genes. The obtained results demonstrated that bacterial richness index (Chao and Ace) were similar among three ditches, while the highest bacterial diversity index was detected in the severely contaminated soils. The compositions of bacterial communities varied among three examined sites, but Proteobacteria and Acidobacteria were abundant in all samples. Redundancy analysis revealed that soil organic matter, Cr and pH were the three major factors altering the bacterial community structure. Pearson correlation analysis indicated that the most significant correlations were observed between the contents of non-residual Cr and the abundances of bacterial genera, including Thiobacillus, Nitrospira, and other 10 genera. Among them, the abundances of Sphingomonas and Pseudomonas were significant and positively correlated with the concentrations of non-residual U and As. The results highlighted the factors influencing the bacterial community in uranium mines and contributed a better understanding of the effects of heavy metals on bacterial community structure by considering the fraction of heavy metals.
Collapse
Affiliation(s)
- Shiqi Xiao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
| | - Qian Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoming Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China.,State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Faqin Dong
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Imran Ali
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
10
|
Lin X, Sun Z, Zhao L, Ma J, Li X, He F, Hou H. Toxicity of exogenous hexavalent chromium to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time. CHEMOSPHERE 2019; 224:734-742. [PMID: 30851525 DOI: 10.1016/j.chemosphere.2019.02.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Chromium (Cr) is a well-known toxic metal, but studies on Cr toxicity to soil-dwelling springtails are fairly limited, and did not consider the effects of various soil properties and long aging time. To address this, the chronic toxicity of Cr(VI) to survival and reproduction of model organism-Folsomia candida were evaluated in the laboratory studies. The results showed that compared to the soils aged only for 2 and 21 d, the concentrations inhibiting 50% reproduction (EC50) significantly increased by 2.8-5.2 fold and 1.7-2.6 fold, the concentrations causing 50% mortality (LC50) were higher than the highest test concentration in four soils aged for 150 d. Furthermore, the aging effects correlated significantly with soil amorphous Fe oxides. The EC50 values of Cr significantly differed in ten soils aged for 150 d, ranging from 27 to 512 mg kg-1, which were associated with the variations in reduction and sorption capacity in different soils. Regression analysis indicated that soil clay was the most important single factor predicting soil Cr toxicity to reproduction, and the inclusion of cation exchange capacity in the clay regression could best explain the toxicity variance (87.2%). Additionally, soil pH, organic matter and amorphous Fe oxides could also well explain the toxicity variance (>55%).
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Xing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Fei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650000, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
11
|
Marchand C, Jani Y, Kaczala F, Hijri M, Hogland W. Physicochemical and Ecotoxicological Characterization of Petroleum Hydrocarbons and Trace Elements Contaminated Soil. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1517101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Charlotte Marchand
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Yahya Jani
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Fabio Kaczala
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - William Hogland
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
12
|
Zhang X, Tong J, Hu BX, Wei W. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:459-468. [PMID: 29043590 DOI: 10.1007/s11356-017-0263-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium (Cr(VI)) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(VI). Breakthrough curve were used to evaluate the capacity of Cr(VI) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(VI). The adsorption of Cr(VI) was strongly sensitive to pH value. The capacity of Cr(VI) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(VI). In a strongly acidic environment, the reaction of Cr(VI) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(VI) is more likely to leach from this soil, but if the eluent is a strong acid solution, the leaching process will be slow and persistent. During the experiment, the pH value of the effluent was in the range of 7-8.5, which tends to the original pH value of the soil. It is indicating that the soil has a strong buffer on the acid liquid. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(VI) well, and the parameters calculated by the CXTFIT can be used to explain the behavior of Cr(VI) migration and transformation in soil columns. When pH = 2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are instantaneous in this adsorption process and non-equilibrium affects the Cr(VI) transport process in this soil.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
- Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083, People's Republic of China
| | - Juxiu Tong
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
- Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083, People's Republic of China.
| | - Bill X Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
- Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083, People's Republic of China
| | - Wenshuo Wei
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
- Key Laboratory of Groundwater Circulation and Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083, People's Republic of China
| |
Collapse
|
13
|
Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. CHEMOSPHERE 2017; 178:513-533. [PMID: 28347915 DOI: 10.1016/j.chemosphere.2017.03.074] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Marina Rafiq
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Antonio Machado, 31058 Toulouse Cedex 9, France
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Maccotta A, Cosentino C, Coccioni R, Frontalini F, Scopelliti G, Caruso A. Distribution of Cr and Pb in artificial sea water and their sorption in marine sediments: an example from experimental mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24068-24080. [PMID: 27638807 DOI: 10.1007/s11356-016-7630-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The uptake of two heavy metals (chromium and lead) in sediments in experimental mesocosms under exposure to different metal concentrations was evaluated by monitoring their concentrations over time both in seawater and in sediment. Two separate experiments under laboratory-controlled conditions were carried out for the two metals. Sediments were collected from a protected natural area characterized by low anthropic influence and were placed in mesocosms that were housed in aquaria each with seawater at a different metal concentration. At pre-established time intervals, seawater and sediment samples were collected from each mesocosm for chemical analyses. Quantification of chromium and lead concentration in seawater and sediment samples was carried out by atomic absorption spectrometer with graphite furnace. Low doses of chromium and lead (<1 mg L-1) do not entail an uptake in sediments and waters. At doses ≥1 mg L-1, evolution of concentrations over time shows significant differences between these two metals: (i) chromium absorption from seawater is twice faster than lead; (ii) lead accumulates in considerable amount in sediments. The different behaviour of the two investigated heavy metals could be ascribed to different interactions existing between metal ions and different components of sediment.
Collapse
Affiliation(s)
- A Maccotta
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
| | - Claudia Cosentino
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 20-22, 90123, Palermo, Italy.
| | - R Coccioni
- Dipartimento di Scienze Pure e Applicate, Università di Urbino "Carlo BO", via Ca' le Suore, 61029, Urbino, Italy
| | - F Frontalini
- Dipartimento di Scienze Pure e Applicate, Università di Urbino "Carlo BO", via Ca' le Suore, 61029, Urbino, Italy
| | - G Scopelliti
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
| | - A Caruso
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
| |
Collapse
|
15
|
Marchand C, Hogland W, Kaczala F, Jani Y, Marchand L, Augustsson A, Hijri M. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1136-47. [PMID: 27216854 DOI: 10.1080/15226514.2016.1186594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg(-1) dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.
Collapse
Affiliation(s)
- Charlotte Marchand
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| | - William Hogland
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Fabio Kaczala
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Yahya Jani
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | | | - Anna Augustsson
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Mohamed Hijri
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
16
|
Zhao NN, He XJ, Li ZS, Zhao HZ. Effects of paper sludge addition on the bioavailability and distribution of Pb in contaminated soil. CHEMICAL SPECIATION AND BIOAVAILABILITY 2016. [DOI: 10.1080/09542299.2015.1121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wang Y, Wang Y, Zhan Y, Zhang J, Liang W, Fang X, Yu D, Feng Y. DNA binding ability of histone-like protein HPhA is negatively affected by interaction with Pb2+. Biometals 2015; 28:207-17. [DOI: 10.1007/s10534-014-9816-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/20/2014] [Indexed: 11/28/2022]
|