1
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
2
|
Zambrano-Fernández S, Zamora-Camacho FJ, Aragón P. Direct and indirect effects of chronic exposure to ammonium on anuran larvae survivorship, morphology, and swimming speed. CHEMOSPHERE 2022; 287:132349. [PMID: 34826957 DOI: 10.1016/j.chemosphere.2021.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Several constituents of the current global change are usually deemed accountable for the worldwide declines of amphibian populations. Among these, water contamination poses a major threat, especially to larval stages, which are unable to escape a polluted water body. This problem is remarkable in agrosystems, one of the main sources of water pollution and whose area is forecasted to increase in the forthcoming decades. However, pollutants represent a selective pressure that may result in tolerance in affected areas. In this work, we tested whether chronic exposure to a sublethal concentration of ammonium (10 mg/L), one of the most frequent agrochemicals, affects differently hatching success, survivorship, morphology and swimming performance of Pelophylax perezi tadpoles from agrosystem and pine grove habitats. Ammonium diminished survivorship at the earliest stages after hatching. Thus, lower density was a by-product of exposure to ammonium. Higher density slowed down development, reduced snout-vent length, and had a sharper negative effect on body mass and tail length and depth of ammonium treated individuals with respect to the control. In turn, ammonium accelerated development and increased body mass, SVL, and tail length and depth. These effects did not depend on provenance habitat. However, only pine grove tadpoles' swimming speed was negatively affected by ammonium, which supports the hypothesis that agrosystem tadpoles are more tolerant to ammonium. Finally, corroborating previous findings, tadpoles with larger bodies and tails were faster swimmers, whereas proportionally more massive individuals were slower, and tail depth was unrelated to swimming speed.
Collapse
Affiliation(s)
| | - Francisco Javier Zamora-Camacho
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, 2804, Madrid, Spain.
| | - Pedro Aragón
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, 2804, Madrid, Spain
| |
Collapse
|
3
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
4
|
Rodgers EM, Opinion AGR, Gomez Isaza DF, Rašković B, Poleksić V, De Boeck G. Double whammy: Nitrate pollution heightens susceptibility to both hypoxia and heat in a freshwater salmonid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142777. [PMID: 33077222 DOI: 10.1016/j.scitotenv.2020.142777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Species persistence in a changing world will depend on how they cope with co-occurring stressors. Stressors can interact in unanticipated ways, where exposure to one stressor may heighten or reduce resilience to another stressor. We examined how a leading threat to aquatic species, nitrate pollution, affects susceptibility to hypoxia and heat stress in a salmonid, the European grayling (Thymallus thymallus). Fish were exposed to nitrate pollution (0, 50 or 200 mg NO3- L-1) at two acclimation temperatures (18 °C or 22 °C) for eight weeks. Hypoxia- and heat-tolerance were subsequently assessed, and the gills of a subset of fish were sampled for histological analyses. Nitrate-exposed fish were significantly more susceptible to acute hypoxia at both acclimation temperatures. Similarly, in 18 °C- acclimated fish, exposure to 200 mg NO3- L- 1 caused a 1 °C decrease in heat tolerance (critical thermal maxima, CTMax). However, the opposite effect was observed in 22 °C-acclimated fish, where nitrate exposure increased heat tolerance by ~1 °C. Further, nitrate exposure induced some histopathological changes to the gills, which limit oxygen uptake. Our findings show that nitrate pollution can heighten the susceptibility of fish to additional threats in their habitat, but interactions are temperature dependent.
Collapse
Affiliation(s)
- Essie M Rodgers
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp 2020, Belgium.
| | - April Grace R Opinion
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Božidar Rašković
- University of Belgrade, Faculty of Agriculture, Institute of Animal Science, 11080 Belgrade, Serbia
| | - Vesna Poleksić
- University of Belgrade, Faculty of Agriculture, Institute of Animal Science, 11080 Belgrade, Serbia
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
5
|
Zhao J, Xie G, Xu Y, Zheng L, Ling J. Accumulation and toxicity of multi-walled carbon nanotubes in Xenopus tropicalis tadpoles. CHEMOSPHERE 2020; 257:127205. [PMID: 32502735 DOI: 10.1016/j.chemosphere.2020.127205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), a common nanomaterial widely used and discharged in environment, might exert toxic effects on aquatic animals. In this paper, filter-feeding tadpole of Xenopus tropicalis was selected as bioindicator to study the exposure effects of MWCNTs suspensions of 0.5, 1, 2, 4 and 8 mg/L for 72 h. The results showed that the tadpoles could remain high survival rate of over 96.7% after 24 h's exposure to MWCNTs, but then decrease considerably, showing a significant time-dependent relationship. The LC50 was 2.53 mg/L for tadpoles exposed to MWCNTs for 72 h, when MWCNTs accumulated in their gills and digestive tracts. Moreover, the enrichment degree of MWCNTs in tadpole was related to exposure density than time. When MWCNTs suspension concentration was not over 1 mg/L, the heart rates increased significantly and then decreased continuously. The survivors from the toxicity test were transferred to fresh filtered water for recovery, but MWCNTs accumulated in the tadpoles' body didn't decrease obviously after 4 days. Although the maximum tadpoles survival rate of 80% was recorded in the exposure group of 0.5 mg/L MWCNTs, only 43.3% of the survivors could recover. Therefore, the final survival rate was negative related to the exposure densities of MWCNTs but positive related to the accumulating degree in tadpoles' body. The results demonstrated that MWCNTs exposure posed potential health risks to filter-feeding organisms by intake and accumulation in organs, which could provide useful information for the reasonable evaluation and scientific management of nanomaterials.
Collapse
Affiliation(s)
- Jianbin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Analysis and Testing Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Gomez Isaza DF, Cramp RL, Franklin CE. Living in polluted waters: A meta-analysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114091. [PMID: 32062099 DOI: 10.1016/j.envpol.2020.114091] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/27/2023]
Abstract
Nutrient effluents from urban and agricultural inputs have resulted in high concentrations of nitrate in freshwater ecosystems. Exposure to nitrate can be particularly threatening to aquatic organisms, but a quantitative synthesis of the overall effects on amphibians, amphipods and fish is currently unavailable. Moreover, in disturbed ecosystems, organisms are unlikely to face a single stressor in isolation, and interactions among environmental stressors can enhance the negative effects of nitrate on organisms. Here, the effects of elevated nitrate on activity level, deformity rates, hatching success, growth and survival of three taxonomic groups of aquatically respiring organisms are documented. Effect sizes were extracted from 68 studies and analysed using meta-analytical techniques. The influence of nitrate on life-stages was also assessed. A factorial meta-analysis was conducted to examine the effect of nitrate and its interaction with other ecological stressors on organismal survival. Overall, the impacts of nitrate are biased towards amphibians (46 studies) and fish (13 studies), and less is known about amphipods (five studies). We found that exposure to nitrate translates to a 79% decrease in activity, a 29% decrease in growth, and reduces survival by 62%. Nitrate exposure also increases developmental deformities but does not affect hatching success. Nitrate exposure was found to influence all life-stages except embryos. Differences in the sensitivity of nitrate among taxonomic groups tended to be negligible. The factorial meta-analysis (14 amphibians and two amphipod studies) showed that nitrate in combination with other stressors affects survival in a non-additive manner. Our results indicate that nitrate can have strong effects on aquatic organisms and can interact with other environmental stressors which compound the negative effects on survival. Overall, the impacts of nitrate and additional stressors are complex requiring a holistic approach to better conserve freshwater biodiversity in the face of ongoing global change.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Rebecca L Cramp
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
do Amaral DF, Guerra V, Motta AGC, de Melo E Silva D, Rocha TL. Ecotoxicity of nanomaterials in amphibians: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:332-344. [PMID: 31181520 DOI: 10.1016/j.scitotenv.2019.05.487] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NMs) have been used in a growing number of commercial products, and their rapid expansion could lead to their release into the aquatic environments. However, there is limited knowledge about the impact of NMs in the biota, especially the amphibians. The present study revised the historical use of amphibian species as a model system for nanoecotoxicological studies and summarized the data available in the scientific literature about the genotoxic, mutagenic, histopathological, embryotoxic and reproductive effects of NMs in different groups of amphibians. The interaction, bioaccumulation, mode of action (MoA) and ecotoxicity of NMs on amphibians were also revised. The nanoecotoxicological studies were conducted with 11 amphibian species, being eight species of the order Anura and three species of the order Caudata. Xenopus laevis was the most studied species. The studies were conducted mainly with inorganic NMs (72%) compared to organic ones. The nanoecotoxicity depends on NM behavior and transformation in the environment, as well as the developmental stages of amphibians. The known effects of NMs in amphibians were mainly reported with reactive oxygen species (ROS) production, oxidative stress, and genotoxic effects. Results emphasize the need for further studies testing the ecotoxicity of different NMs, concentrations and exposure periods at environmentally relevant approaches. Furthermore, standard protocols for nanoecotoxicological tests using amphibians are required. Revised data showed that amphibians are suitable organisms to assess the environmental impact of NMs and indicated significant research gaps concerning the ecotoxicity of NMs on freshwater ecosystems and recommendations for future researches.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vinicius Guerra
- Laboratory of Herpetology and Animal Behavior, Department of Ecology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Andreya Gonçalves Costa Motta
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|