1
|
Hu Y, Lu F, Yang H, Pan Q, Wu X. Effect of artificial sugar supplement on the lifespan and learning memory ability of honey bee (Apis cerana) worker bee offspring. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1723-1728. [PMID: 39120062 DOI: 10.1093/jee/toae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Honeybees maintain their growth and reproduction mainly by collecting nutrients from nectar-source plants. Apis cerana, a unique species of honeybee in China, is capable of sporadically collecting nectar. In traditional beekeeping, sugar syrup or a honey-water solution must be artificially fed to bees to supplement their diet during rainy weather or nectar-deficient periods. In this study, 2 groups of honeybee colonies were each fed sugar syrup or a honey-water solution, and a third group consisting of colonies that were allowed to naturally forage without any dietary supplement was used as the control. The effects of the 2 sugar sources on A. cerana worker bee offspring were compared. The results showed that the sugar source affected the lifespan and learning memory of the worker bee offspring. The lifespan, learning memory ability, and expression of related genes in the sugar syrup group were significantly lower than those in the honey-water solution and natural nectar foraging groups (P < 0.05). A honey-water solution supplement was more beneficial to the healthy development of worker bee offspring than a sugar syrup supplement when the colonies lacked dietary resources. These findings provide a theoretical basis that can guide beekeepers in choosing the appropriate dietary supplements for honeybees.
Collapse
Affiliation(s)
- Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
- Jiangxi Anyuan Honeybee Science and Technology Backyard, Anyuan 342100, PR China
| | - Fangming Lu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
- Jiangxi Anyuan Honeybee Science and Technology Backyard, Anyuan 342100, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Qizhong Pan
- Jiangxi Ganzhou Agricultural College, Ganzhou 341199, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
- Jiangxi Anyuan Honeybee Science and Technology Backyard, Anyuan 342100, PR China
| |
Collapse
|
2
|
Choi JY, Chon K, Kim J, Vasamsetti BMK, Kim BS, Yoon CY, Hwang S, Park KH, Lee JH. Assessment of Lambda-Cyhalothrin and Spinetoram Toxicity and Their Effects on the Activities of Antioxidant Enzymes and Acetylcholinesterase in Honey Bee ( Apis mellifera) Larvae. INSECTS 2024; 15:587. [PMID: 39194792 DOI: 10.3390/insects15080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Honeybees play a crucial role as agricultural pollinators and are frequently exposed to various pollutants, including pesticides. In this study, we aimed to evaluate the toxicity of lambda-cyhalothrin (LCY) and spinetoram (SPI) in honey bee larvae reared in vitro through single (acute) and repeated (chronic) exposure. The acute LD50 values for LCY and SPI were 0.058 (0.051-0.066) and 0.026 (0.01-0.045) μg a.i./larva, respectively. In chronic exposure, the LD50 values of LCY and SPI were 0.040 (0.033-0.046) and 0.017 (0.014-0.019) μg a.i./larva, respectively. The chronic no-observed-effect dose of LCY and SPI was 0.0125 μg a.i./larva. Adult deformation rates exceeded 30% in all LCY treatment groups, showing statistically significant differences compared to the solvent control group (SCG). Similarly, SPI-treated bees exhibited significantly more deformities than SCG. Furthermore, we examined the activities of several enzymes, namely, acetylcholinesterase (AChE), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD), in larvae, pupae, and newly emerged bees after chronic exposure at the larval stage (honey bee larval chronic LD50, LD50/10 (1/10th of LD50), and LD50/20 (1/20th of LD50)). LCY and SPI induced significant changes in detoxification (GST), antioxidative (SOD and CAT), and signaling enzymes (AChE) during the developmental stages (larvae, pupae, and adults) of honey bees at sublethal and residue levels. Our results indicate that LCY and SPI may affect the development of honey bees and alter the activity of enzymes associated with oxidative stress, detoxification, and neurotransmission. These results highlight the potential risks that LCY and SPI may pose to the health and normal development of honey bees.
Collapse
Affiliation(s)
- Ji-Yeong Choi
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyongmi Chon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Juyeong Kim
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo-Seon Kim
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Chang-Young Yoon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sojeong Hwang
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyeong-Hun Park
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| |
Collapse
|
3
|
Shi J, Liu C, Zhang Y, Wu X. Early larval exposure to flumethrin induces long-term impacts on survival and memory behaviors of adult worker bees Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105909. [PMID: 38685230 DOI: 10.1016/j.pestbp.2024.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Flumethrin has been supplied as an acaricide for Varroa mite control in world-wide apiculture due to its low lethal effects on honey bees. However, little is known about the effects of short-term flumethrin exposure in the larval stage on adult life stage of bees involving survival status, foraging and memory-related behaviors. Here, we found that exposure to flumethrin at 1 mg/L during larval stage reduced survival and altered foraging activities including induced precocious foraging activity, decreased foraging trips and time, and altered rotating day-off status of adult worker bees using the radio frequency identification system. Furthermore, larval exposure at 1 mg/L flumethrin influenced the correct proboscis extension responses of 7-day-old worker bees and decreased homing rates of 20-day-old worker bees, suggesting that 1 mg/L flumethrin exposure at larval stage could affect memory-related behaviors of adult bees; meanwhile, three genes related to memory (GluRA, Nmdar1 and Tyr1) were certainly down-regulated varying different flumethrin concentrations (0.01, 0.1, and 1 mg/L). Combined with transcriptomic sequencing, differentially expressed genes involved in olfactory memory of adult bees were completely down-regulated under flumethrin exposure. Our findings highlight the unprecedented impact of short-term exposure of insecticides on honey bees in long-term health monitoring under field conditions.
Collapse
Affiliation(s)
- Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Chen Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
4
|
Abuagla MIB, Iqbal J, Raweh HSA, Alqarni AS. Olfactory Learning Behavior and Mortality of the Honey Bee Apis mellifera jemenitica in Response to Pyrethroid Insecticide (Deltamethrin). TOXICS 2023; 12:25. [PMID: 38250981 PMCID: PMC10818679 DOI: 10.3390/toxics12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Honey bees are constantly threatened due to the wide use of pesticides. This study presents the effects of deltamethrin on the mortality, olfactory learning, and memory formation of the native Saudi bee Apis mellifera jemenitica. Topical and oral application of realistic field and serial dilutions of deltamethrin (250, 125, 62.5, and 25 ppm) caused significant mortality at 4, 12, 24, and 48 h posttreatment. Bee mortality increased with the increasing concentration of insecticide at all tested posttreatment times. Highest mortality was observed at 24 h and 48 h after both exposure routes. Food consumption gradually decreased with increasing concentration of deltamethrin during oral exposure. The LC50 of deltamethrin was determined at 12, 24, and 48 h for topical (86.28 ppm, 36.16 ppm, and 29.19 ppm, respectively) and oral (35.77 ppm, 32.53 ppm, and 30.78 ppm, respectively) exposure. Oral exposure led to significantly higher bee mortality than topical exposure of deltamethrin at 4 h and 12 h, but both exposure routes were equally toxic to bees at 24 h and 48 h. The sublethal concentrations (LC10, LC20, and LC30) of deltamethrin significantly impaired the learning during conditioning trials, as well as the memory formation of bees at 2, 12, and 24 h after topical and oral exposure. Thus, deltamethrin inhibits learning, and bees were unable to memorize the learned task.
Collapse
Affiliation(s)
| | | | | | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (J.I.)
| |
Collapse
|
5
|
Kumar A, Jasrotia S, Dutta J, Kyzas GZ. Pyrethroids toxicity in vertebrates and invertebrates and amelioration by bioactive compounds: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105615. [PMID: 37945252 DOI: 10.1016/j.pestbp.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Generations of different synthetic pesticides have been launched over time to maintain balance between production and consumption of the agricultural yield, control various disease programmes, store grains, etc. Pyrethroids, which are supposed to be non-toxic, have been excessively implemented and have contaminated soil and water bodies. Thus, pyrethroids cause severe and dreadful pernicious effects on various life forms residing in soil, air, and water. Various obnoxious effects of pyrethroids have been analyzed in the vertebrate and invertebrate systems of the animal kingdom. Pyrethroids, namely, Cypermethrin, Deltamethrin, Beta-cyfluthrin, Esfenvalerate, Fenvalerate, and Bifenthrin, have set out various types of degenerative and toxic impacts that include oxidative stress, hepatotoxicity, immunotoxicity involving thymic and splenic toxicity, neurotoxicity, nephrotoxicity, foetal toxicity, alterations in serum calcium and phosphate levels, cerebral and bone marrow degeneration, degeneration of the reproductive system, histological alteration, and DNA damage. Bioactive compounds like Diosmin, Curcumin, Rutin, Spirulina platensis, sesame oil, Naringin, Allicin, Piperine, alpha-lipoic acid, alpha-tocopherol, Cyperus rotundus L. tuber extract, herbal syrup from chicory and artichoke leaves, green tea extract, Quercetin, Trans-ferulic acid, Ascorbic acid, Propolis, ethanolic extract of grape pomace, and Melatonin have been reported to sublime the toxic effects of these pesticides. The expanding harmfulness of pesticides is a real and demanding issue that needs to be overcome, and bioactive compounds have been shown to reduce the toxicity in vivo as well as in vitro.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| | - Shailja Jasrotia
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| |
Collapse
|
6
|
Akça R, Saruhan I. The effects of some insecticides on honeybees (Apis mellifera). Isr J Ecol Evol 2022. [DOI: 10.1163/22244662-bja10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
In the study, the topical application (1 µl/bee), contact (5 ml/pot/10 bees) and residual (5 ml/pot/10 bees) effects of eight insecticides (Methiocarb, Alphacypermethrin, Indoxacarb, Spinosad, Thiacloprid + Deltamethrin, Thiamethoxam, Thiamethoxam + Lambda-Cyhalothrin and Zeta Cypermethrin), which are commonly used in pest control in hazelnut cultivation, were investigated on Apis mellifera L. (Hymenoptera:Apidae). The study was conducted with 10 young worker bees in 4 replicates. Knock-down effect and 48-hour mortality were determined in all three methods. The study was conducted under 65–70% humidity and 24 ± 1oC laboratory conditions. The study findings demonstrated that the impact of the topical application was low in all pesticides, while the other two methods led to 100% mortality after 48 hours at the recommended dose. The highest contact effect was observed with thiamethoxam + lambda-cyhalothrin, thiamethoxam, zeta cypermethrin, methiocarb and indoxacarb, followed by thiacloprid + deltamethrin, Spinosad and alphacypermethrin. Among the insecticides tested for residual effects, thiamethoxam + lambda-cyhalothrin, thiamethoxam, zeta cypermethrin and Spinosad led to over 90% mortality after 5 days.
Collapse
Affiliation(s)
- Rıfat Akça
- Department of Plant Protection, Ondokuz Mayıs Üniversitesi Ziraat Fakültesi, Samsun, 55139. Turkey
| | - Islam Saruhan
- Department of Plant Protection, Ondokuz Mayıs Üniversitesi Ziraat Fakültesi, Samsun, 55139. Turkey
| |
Collapse
|
7
|
Bickerton M, Rochlin I, González J, McSorley K, Toledo A. Field applications of granular and liquid pyrethroids, carbaryl, and IGRs to control the asian longhorned tick (Haemaphysalis longicornis) and impacts on nontarget invertebrates. Ticks Tick Borne Dis 2022; 13:102054. [PMID: 36215766 DOI: 10.1016/j.ttbdis.2022.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Few documented control strategies exist for the invasive tick, Haemaphysalis longicornis, despite its potential to reach extremely high numbers and vector human and animal pathogens. In 2020, we evaluated the effects of single applications of five granular and liquid acaricides on H. longicornis in a public park in northern New Jersey. Acaricides tested included pyrethroids (lambda-cyhalothrin, bifenthrin), a carbamate (carbaryl), and the insect growth regulators (IGRs) pyriproxyfen and novaluron. We also monitored the impact of each treatment on non-target soil and above-ground invertebrate species using pitfall and sticky traps, respectively. We recorded over 70,000 H. longicornis ticks in the study area from July to October 2020. An average of 99% control was achieved with lambda-cyhalothrin spray and 95% with granular bifenthrin. In contrast, granular carbaryl did not significantly reduce any life stages of H. longicornis. The IGR (pyriproxyfen/novaluron) resulted in a significant 45% reduction of the larval stage following treatments in July. No other stages were significantly impacted by pyriproxyfen alone or in combination with novaluron. Analysis of non-target species revealed that the community composition of soil-dwelling arthropods was strongly impacted by pyrethroid treatments and, to a lesser extent, by the carbamate treatment. The granular pyrethroid bifenthrin had more pronounced effects and impacted a broader range of non-target groups in the pitfall traps than the liquid pyrethroid lambda-cyhalothrin. Arthropod groups that were negatively impacted included Isopoda, Formicidae, Coleoptera, Araneae, Acari, and Grylloidea. Collembola numbers, however, were elevated in both pyrethroid treatments. The community composition of arthropods collected on the above-ground sticky traps was strongly impacted only in the liquid lambda-cyhalothrin treatment. The primary groups impacted in the sticky trap analysis were Collembola and Hemiptera. Community composition in traps remained distinct in the pyrethroid treatments through the entire survey period up to 62 days post-treatment. The results of this study indicate that pyrethroid acaricides were highly effective at controlling H. longicornis, while other compounds, including carbaryl and IGRs, did not achieve consistent levels of control. Further research is needed to find effective and environmentally sustainable alternatives. Integrated management programs can include the judicious use of pyrethroids to control H. longicornis.
Collapse
Affiliation(s)
- Matthew Bickerton
- Bergen County Department of Health Services, USA; Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA
| | - Ilia Rochlin
- Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA
| | - Julia González
- Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA
| | | | - Alvaro Toledo
- Department of Entomology, Rutgers University, USA; Center for Vector Biology, Rutgers University, USA.
| |
Collapse
|
8
|
Liégeois S, Delaunay M, Lécureuil C, Goubault M. Sublethal doses of pyriproxyfen stimulate reproduction and aggressive behavior in a non-target parasitoid wasp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156880. [PMID: 35753446 DOI: 10.1016/j.scitotenv.2022.156880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Insecticides are commonly used to control populations of pests and disease vectors. However, they can have multiple unintended effects on non-target species. Assessing their impacts on the physiology and behavior of beneficial insects, such as biological control agents, is thus necessary to gain insight into the diversity and nature of such side effects. Here, we investigated the effect of sublethal doses of the endocrine disrupting insecticide pyriproxyfen, a juvenile hormone agonist, on females of the solitary ectoparasitoid Eupelmus vuilleti (Hymenoptera: Eupelmidae). These parasitoid wasps can be used as biological control agents to control the cowpea weevil, Callosobruchus maculatus (Coleoptera: Bruchidae), that infests cowpea seeds, Vigna unguiculata (Fabacea). To do so, in addition to classical measures on female fecundity and survival, we focused on female behaviors that can have important consequences on female fitness and host exploitation. First, we showed that pyriproxyfen stimulated egg production without affecting female survival. Second, we observed that low doses of this insecticide had no effect on females' exploration and host discrimination ability but stimulated their aggressiveness when fighting for host access. Although a negative impact on other life-history traits cannot be ruled out at this point, these results showed low doses of pyriproxyfen can have unintended positive effects on ectoparasitoid E. vuilleti females, by enhancing at least temporarily their reproduction and host access in a situation of competition. Our work thus highlights the importance of studying the diversity of possible unintended sublethal effects of pesticides on beneficial insects.
Collapse
Affiliation(s)
- Solène Liégeois
- IRBI UMR 7261 CNRS-Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - Manon Delaunay
- IRBI UMR 7261 CNRS-Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - Charlotte Lécureuil
- IRBI UMR 7261 CNRS-Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - Marlène Goubault
- IRBI UMR 7261 CNRS-Université de Tours, Parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
9
|
Kaila L, Ketola J, Toivonen M, Loukola O, Hakala K, Raiskio S, Hurme T, Jalli M. Pesticide residues in honeybee-collected pollen: does the EU regulation protect honeybees from pesticides? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18225-18244. [PMID: 34689272 PMCID: PMC8873129 DOI: 10.1007/s11356-021-16947-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Researchers globally identify pesticides as one of the main reasons for pollinator decline. In the European Union (EU), extensive legislation is implemented to protect pollinators from harmful pesticide exposure. The aim of our study was to discover whether the pesticide residue levels in honeybee matrices, such as nectar and pollen, exceeded the chronic or acute toxicity levels when beehives were located next to fields treated with specific insecticides. The insecticides were used according to the EU legislation and its national implementation. The experiments were conducted in turnip rape, oilseed rape, and caraway fields in southern Finland during the years 2019 and 2020. The pesticides used in the experiments contained the active substances lambda-cyhalothrin (2019), esfenvalerate (2020), and tau-fluvalinate (2020). However, the honeybee-collected pollen and nectar were analyzed for residues of more than 100 active substances. The results showed that the pesticide residue levels clearly remained under the oral acute toxicity for honeybees, although we found high levels of thiacloprid residues in the pollen collected in 2019. The pesticide residues in nectar were below LOQ values, which was most likely due to the rainy weather conditions together with the chosen sampling method. No statistically significant differences were observed between the insecticide-treated and untreated fields. In light of our research, the EU legislation protected honeybees from oral acute toxicity during the years 2019 and 2020. However, potential sublethal effects of thiacloprid and other pesticide compounds found in the collected pollen cannot be ruled out. In the future, constant monitoring of pesticide exposure of honeybees and wild pollinators should be established to ensure that pesticide legislation, and its implementation across the EU successfully protects pollinators and their services in agricultural environments.
Collapse
Affiliation(s)
- Lotta Kaila
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Jarmo Ketola
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Marjaana Toivonen
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Finnish Environment Institute (SYKE), Biodiversity Centre, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Olli Loukola
- Ecology and Genetics Research Unit, University of Oulu, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Kati Hakala
- Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | - Sakari Raiskio
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Timo Hurme
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Marja Jalli
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| |
Collapse
|
10
|
The current strategies and underlying mechanisms in the control of the vector tick, Haemaphysalis longicornis: Implications for future integrated management. Ticks Tick Borne Dis 2022; 13:101905. [DOI: 10.1016/j.ttbdis.2022.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
|
11
|
Wu X, Liao C, He X, Zhang L, Yan W, Zeng Z. Sublethal fluvalinate negatively affect the development and flight capacity of honeybee (Apis mellifera L.) workers. ENVIRONMENTAL RESEARCH 2022; 203:111836. [PMID: 34352230 DOI: 10.1016/j.envres.2021.111836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Fluvalinate has been heavily used to control the pest Varroa destructor and residues in honeybee colony causing long-term exposure threat for bees. But, little is known about the lifetime trips and homing ability of worker bees under fluvalinate stresses during the development period. In this study, honeybees from 2-day-old larvae to 7-day-old adults were continuously fed with different concentrations of fluvalinate (0, 0.5, 5 and 50 mg/kg) and the effects of fluvalinate on the development of larvae were examined. And then, all the treated bees were reintroduced into the original source colony and were monitored, and the homing ability of 20 days old bees at 1000 and 2000 m away from the beehive were tested using the radio frequency identification (RFID). We found that fluvalinate significantly activates the superoxide dismutase (SOD) activities of larvae and 5 mg/kg fluvalinate reduced the homing rate of workers at 2000 m away from colony. 50 mg/kg fluvalinate reduced proportion of capped worker cells, activated Cytochrome P450 (CYP450) activity of larvae, affected the foraging times, influenced the homing rate and homing time of one trip at 2000 m away from colony. Our results showed that the larvae can activate the activities of SOD and detoxification enzymes in detoxification of fluvalinate and reduce the influence on honeybees. But, when the concentration is higher than 5 mg/kg fluvalinate, it is difficult for bees to detoxify fluvalinate completely, which affect the homing rate. The results reflect the potential risk for honeybees in the development stage continuously exposed to fluvalinate.
Collapse
Affiliation(s)
- Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China.
| | - Chunhua Liao
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Guangyuan City Animal Husbandry and Seed Management Station, Guangyuan, 628017, Sichuan, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Lizhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China.
| |
Collapse
|
12
|
Yu L, Yang H, Cheng F, Wu Z, Huang Q, He X, Yan W, Zhang L, Wu X. Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118107. [PMID: 34500395 DOI: 10.1016/j.envpol.2021.118107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Collapse
Affiliation(s)
- Longtao Yu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Fuping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Zhihao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Lizhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China.
| |
Collapse
|
13
|
Mauduit E, Lécureuil C, Meunier J. Sublethal exposure to deltamethrin stimulates reproduction and has limited effects on post-hatching maternal care in the European earwig. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39501-39512. [PMID: 33754270 DOI: 10.1007/s11356-021-13511-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Although pesticides are typically used to limit pest population, the diversity and nature of their unintentional effects on non-target organisms remain unclear. Better understanding these effects requires to carry out risk assessments on key physiological and behavioral processes specific to beneficial insects. In this study, we addressed this question by exposing mothers of the European earwig (a beneficial insect) to two sublethal doses of deltamethrin (a common pesticide in agriculture) during family life and measured the short- and long-term effects on a series of behavioral, physiological, and reproductive traits. Somewhat surprisingly, our results first revealed that high and low doses of deltamethrin enhanced mothers' future reproduction by augmenting their likelihood to produce a second clutch, shortening the number of days until its production, and increasing the resulting number of eggs and their hatching rate. Conversely, the high dose of deltamethrin was detrimental, as it limited maternal brood defence, and reduced food consumption and expression of self-grooming. Finally, other traits were independent of deltamethrin exposure, such as three proxies of family interactions (i.e., distance to the brood, occurrence, and duration of mother-offspring contacts), mothers' walking distance, and mother weight gain during family life. Our study overall demonstrates that sublethal exposure to a pesticide such as deltamethrin can have both positive and negative effects on non-target beneficial insects. It thus emphasizes that focusing on narrow parameters can lead to misleading conclusions about the unintended impacts of pesticides in treated agro-ecosystems and call for better considering this parameters diversity in integrated pest management programs.
Collapse
Affiliation(s)
- Emilie Mauduit
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
14
|
Green Synthesis of Flower-Shaped Copper Oxide and Nickel Oxide Nanoparticles via Capparis decidua Leaf Extract for Synergic Adsorption-Photocatalytic Degradation of Pesticides. Catalysts 2021. [DOI: 10.3390/catal11070806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Green manufacturing of catalysts enables sustainable advanced oxidation processes and water treatment processes for removing trace contaminants such as pesticides. An environmentally friendly biosynthesis process produced high-surface-area CuO and NiO nanocatalysts using phytochemicals in the Capparis decidua leaf extract, which served as a reductant and influenced catalyst shape. Capparis decidua is a bushy shrub, widely distributed in dry and arid regions of Africa, Pakistan, India, Egypt, Jordan, Sudan, Saudi Arabia. The synthesized CuO and NiO nanoparticles were characterized by UV-vis spectroscopy (UV-vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) and thermo-gravimetric analysis/differential thermal analysis (TGA/DTA). The produced nanoparticles were spherical and flower-like in shape and have a characteristic face-centered cubic structure of CuO and NiO. Biosynthesized catalysts were photoactive and degraded recalcitrant pesticide Lambda-cyhalothrin (L-CHT). Photocatalytic degradation of L-CHT was affected by the initial L-CHT concentration, solution pH levels between 5 and 9, and photocatalyst concentration. The L-CHT removal percentage attained by CuO photocatalyst (~99%) was higher than for NiO photocatalyst (~89%). The degradation of L-CHT follows a pseudo-first-order kinetic model, and the apparent rate constant (kapp) decreased from 0.033 min−1 for CuO to 0.0084 min−1 for NiO photocatalyst. The novel flower-shaped nanoparticles demonstrated high stability in water and recyclability for removing L-CHT pesticide contamination in water.
Collapse
|
15
|
Nieradko-Iwanicka B, Konopelko M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249240. [PMID: 33321891 PMCID: PMC7764783 DOI: 10.3390/ijerph17249240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
Background: Pyrethroids are synthetic insecticides used for plant protection. They are synthetic analogues of pyrethrins. Lambdacyhalothrin (LCH) is a type II pyrethroid used for wheat, potato, corn farming, and malaria control. There are data that pyrethroids may cause neurotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity in non-target organisms. Methods: The experiment was carried on 32 Albino Swiss mice (16 females and 16 males). The animals were divided into four groups. Controls received canola oil; the rest received LCH orally in oil at a dose of 2 mg/kg bw for 7 days. Memory retention was assessed in a passive avoidance task on day 2 and 7, and spatial memory and motor activity in a Y-maze on day 1 and 7. Blood morphology, biochemical tests, tumor necrosis factor α, and interleukin 1ß were measured. Results: Decreased white blood cell count and red blood cell count, increased creatinine, and increased kidney and liver mass were observed in groups exposed to LCH. In LCH-exposed males’ kidneys and livers, interleukin 1ß was significantly elevated, and it was correlated with creatinine concentration. Conclusions: Subacute poisoning with a low dose of LCH does not significantly affect memory nor locomotor activity but increases proinflammatory interleukin 1ß in male livers and kidneys and reduces white and red blood cell counts.
Collapse
Affiliation(s)
- Barbara Nieradko-Iwanicka
- Chair and Department of Hygiene, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
- Correspondence:
| | - Michał Konopelko
- Department of Otolaryngology and Laryngological Oncology, Independent Public Clinical Hospital No. 4 in Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
16
|
Crowther LI, Gilbert F. The effect of agri-environment schemes on bees on Shropshire farms. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Meunier J, Dufour J, Van Meyel S, Rault M, Lécureuil C. Sublethal exposure to deltamethrin impairs maternal egg care in the European earwig Forficula auricularia. CHEMOSPHERE 2020; 258:127383. [PMID: 32559491 DOI: 10.1016/j.chemosphere.2020.127383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The application of pesticides typically leads to lethal and sublethal exposure of non-target insects. Whereas our current understanding of these sublethal effects typically focuses on reproductive and physiological parameters, recent works emphasize that sublethal effects on behaviors such as maternal care could be of major importance in non-target species. However, it remained unknown whether these sublethal effects occur in insects. Here, we tested if exposure to sublethal doses of deltamethrin - a pyrethroid insecticide commonly used in crops - alters the expression of maternal egg care in females of the European earwig Forficula auricularia, a predator insect and pest control. Our results first reveal that deltamethrin exposure impaired the expression of three forms of maternal egg care: It decreased the likelihood of mothers to gather their otherwise scattered clutch of eggs, increased the time during which the female abandoned the clutch after a predator attack and reduced egg grooming duration. These sublethal effects did not reflect a lower activity of deltamethrin-exposed females, as these females increased their expression of self-grooming, and deltamethrin exposure did not affect females' exploration and mobility. Finally, we found that the negative effects of deltamethrin on egg care did not modify egg development, hatching rate and juvenile weight, possibly due to the transient effects of deltamethrin on maternal behaviors. Overall, our results reveal that sublethal exposure to a pesticide may diminish maternal egg care in a natural pest control and call for the integration of this measurement in assays on pesticides application.
Collapse
Affiliation(s)
- Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| | - Juliette Dufour
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Sophie Van Meyel
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Magali Rault
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
18
|
Shi J, Zhang R, Pei Y, Liao C, Wu X. Exposure to acetamiprid influences the development and survival ability of worker bees (Apis mellifera L.) from larvae to adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115345. [PMID: 32814180 DOI: 10.1016/j.envpol.2020.115345] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
In most cases, honey bees experience pesticide pollution in a long-term period through direct or indirect exposure, such as the development process from larvae to the pre-harvest stage. At present, little is known about how honey bees respond to pesticide stresses during the continuous development period. This study aims to examine effects of long-term acetamiprid exposure on the development and survival of honey bees, and further present the expression profile in larvae, 1-day-old, and 7-day-old adult worker bees that related to immune, detoxification, acetylcholinesterase (AChE) and memory. Honey bees from 2-day-old larvae to 14-day-old adults except the pupal stage were continuously fed with different acetamiprid solutions (0, 5, and 25 mg/L). We found that acetamiprid over 5 mg/L disturbed the development involving birth weight and emergence rate of newly emerged bees, and reduced the proportion of capped cells of larvae at 25 mg/L; gene expression related to immune and detoxification of worker bees exposed to acetamiprid was roughly activated, returned and then inhibited from larval to emerged and to the late adult stage, respectively. Moreover, lifespans of bees treated with acetamiprid at 25 mg/L were significantly reduced. The present study reflects the potential risk for honey bees continuously exposed to acetamiprid in the development stage.
Collapse
Affiliation(s)
- Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, PR China
| | - Ruonan Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yalin Pei
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Chunhua Liao
- Guangyuan City Animal Husbandry and Seed Management Station, Guangyuan, 628017, Sichuan, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
19
|
Evaluation of the expression stability of reference genes in Apis mellifera under pyrethroid treatment. Sci Rep 2020; 10:16140. [PMID: 32999330 PMCID: PMC7527991 DOI: 10.1038/s41598-020-73125-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/04/2020] [Indexed: 11/08/2022] Open
Abstract
Honeybees (Apis mellifera L.), which unquestionably play an economically important role in pollination and agricultural production, are at risk of decline. To study changes in gene expression in insects upon exposure to pesticides or other external stimuli, appropriate reference genes are required for data normalization. Since there is no such gene that is absolutely invariable under all experimental conditions, the aim of this study was to identify the most stable targets suitable for subsequent normalization in quantitative experiments based on real-time polymerase chain reaction in honeybee research. Here, we evaluated the expression of fifteen candidate housekeeping genes from three breeding lines of honeybees treated with pyrethroids to identify the most stable genes. The tested insects were exposed to deltamethrin or lambda-cyhalothrin, and then, changes in the accumulation of selected transcripts were assessed, followed by statistical analyses. We concluded that AmRPL32, AmACT and AmRPL13a were the commonly recorded most stable genes in honeybees treated with the selected pyrethroids.
Collapse
|
20
|
Arthidoro de Castro MB, Martinez LC, Cossolin JFS, Serra RS, Serrão JE. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. CHEMOSPHERE 2020; 248:126075. [PMID: 32028166 DOI: 10.1016/j.chemosphere.2020.126075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The honeybee, Apis mellifera is economically important for its products (honey, wax, and propolis) and for its role in pollination. This insect is threated due to high population losses in both agriculture and beekeeping. Within causes involved in the loss of honeybees is the increased pesticide use on agriculture. Although current testing for the regularization of insecticide use considers its acute toxic effects on pollinators, little is known about the effects of chronic exposure to sublethal concentrations that may persist in the environment. This study investigated the effect of chronic exposure to sublethal concentrations of lambda-cyhalothrin on the midgut, hypopharyngeal glands, and brain of A. mellifera. Honey bees were fed for eight days with LC50/100 insecticide. Subsequently, the midgut, hypopharyngeal glands, and brain were analyzed in light and transmission electron microscopies. The midgut was not affected after exposure, except in the posterior region with cell fragments in the lumen and changes in the mitochondria. The hypopharyngeal glands were severely affected by the insecticide with changes in the rough endoplasmic reticulum and cell death. The brain has extensive gaps in the neuropil as well as in the cellular bodies, especially in the corpora pedunculata. These resembled cellular alterations similar to those seen in death processes. The results of this study indicate that lambda-cyhalothrin is toxic to bees at sublethal concentrations and ingested chronically, causing damage to the midgut, hypopharyngeal glands, and brain, and may affect physiological and behavioral aspects of these insects.
Collapse
Affiliation(s)
| | - Luis Carlos Martinez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | | | - Raissa Santana Serra
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Harwood GP, Dolezal AG. Pesticide-Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020; 12:E566. [PMID: 32455815 PMCID: PMC7291294 DOI: 10.3390/v12050566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how two such stressors, pesticides and viruses, may interact in additive or synergistic ways to affect honey bee health. Despite what appears to be a straightforward comparison, there is a dearth of studies examining this issue likely owing to the complexity of such interactions. Such complexities include the wide array of pesticide chemical classes with different modes of actions, the coupling of many bee viruses with ectoparasitic Varroa mites, and the intricate social structure of honey bee colonies. Together, these issues pose a challenge to researchers examining the effects pesticide-virus interactions at both the individual and colony level.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | | |
Collapse
|
22
|
Effect of Astragalus membranaceus Oral Solution on Lifespan and Learning and Memory Ability of Honey Bees. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5745048. [PMID: 32351998 PMCID: PMC7174962 DOI: 10.1155/2020/5745048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
In this study, the effects of Astragalus membranaceus oral solution on lifespan and learning and memory abilities of honey bees were evaluated. Two groups of bees were fed with sucrose syrup (50%) containing low dose (1.33%) and high dose (13.3%) of A. membranaceus oral solution, respectively. The proboscis extension response (PER) analysis was applied to examine the learning and memory capabilities of bees. Two genes related to memory formation in honey bees were determined by real-time PCR. High dose (13.3%) of A. membranaceus significantly decreased the mean lifespan of bees compared to the bees fed with low dose (1.33%) and control bees. No significant differences in lifespan of bees were found between low-dose-fed bees and control bees. The results of PER experiments showed apparent improvement in the memorizing ability of the high-dose group (in comparison with the control group). Moreover, the relative expression levels of Nmdar1 in the low-dose group and control group were significantly lower than those in the high-dose group. It is preliminarily concluded that A. membranaceus has an adverse effect on the mean lifespan of honey bees but might be helpful in strengthening memories.
Collapse
|
23
|
Zhang ZY, Li Z, Huang Q, Zhang XW, Ke L, Yan WY, Zhang LZ, Zeng ZJ. Deltamethrin Impairs Honeybees (Apis mellifera) Dancing Communication. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:117-123. [PMID: 31642948 DOI: 10.1007/s00244-019-00680-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/03/2019] [Indexed: 05/21/2023]
Abstract
As a commonly used pyrethroid insecticide, deltamethrin is very toxic to honeybees, which seriously threatens the managed and feral honeybee population. Because deltamethrin is a nerve agent, it may interfere with the nervous system of honeybees, such as dance behavior and memory-related characteristics. We found that the waggle dances were less precise in honeybees that consumed syrup containing deltamethrin (pesticide group) than those that consumed normal sucrose syrup (control group). Compared with the control group, honeybees of the pesticide group significantly increased number of circuits per 15 s, the divergence angle, return phases in waggle dances, as well as the crop content of the dance followers. Furthermore, six learning and memory-related genes were significantly interfered with the gene expression levels. Our data suggest that the sublethal dose of deltamethrin impaired the honeybees' learning and memory and resulted in cognitive disorder. The novel results assist in establishing guidelines for the risk assessment of pesticide to honeybee safety and prevention of nontarget biological agriculture pesticide poisoning.
Collapse
Affiliation(s)
- Zu Yun Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
- Sericultural and Apicultural Institute, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xue Wen Zhang
- Sericultural and Apicultural Institute, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, China
| | - Li Ke
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
24
|
Oliveira CR, Domingues CEC, de Melo NFS, Roat TC, Malaspina O, Jones-Costa M, Silva-Zacarin ECM, Fraceto LF. Nanopesticide based on botanical insecticide pyrethrum and its potential effects on honeybees. CHEMOSPHERE 2019; 236:124282. [PMID: 31323552 DOI: 10.1016/j.chemosphere.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Nanotechnology has the potential to overcome the challenges of sustainable agriculture, and nanopesticides can control agricultural pests and increase farm productivity with little environmental impact. However, it is important to evaluate their toxicity on non-target organisms, such as honeybees (Apis mellifera) that forage on crops. The aims of this study were to develop a nanopesticide that was based on solid lipid nanoparticles (SLNs) loaded with pyrethrum extract (PYR) and evaluate its physicochemical properties and short-term toxicity on a non-target organism (honeybee). SLN + PYR was physicochemically stable after 120 days. SLN + PYR had a final diameter of 260.8 ± 3.7 nm and a polydispersion index of 0.15 ± 0.02 nm, in comparison with SLN alone that had a diameter of 406.7 ± 6.7 nm and a polydispersion index of 0.39 ± 0.12 nm. SLN + PYR had an encapsulation efficiency of 99%. The survival analysis of honeybees indicated that PYR10ng presented shorter longevity than those in the control group (P ≤ 0.01). Empty nanoparticles and PYR10ng caused morphological alterations in the bees' midguts, whereas pyrethrum-loaded nanoparticles had no significant effect on digestive cells, so are considered safer, at least in the short term, for honeybees. These results are important in understanding the effects of nanopesticides on beneficial insects and may decrease the environmental impacts of pesticides.
Collapse
Affiliation(s)
- Cristiane R Oliveira
- Universidade Estadual Paulista (UNESP) -"Júlio de Mesquita Filho", Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia (CCHB), Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - Caio E C Domingues
- Universidade Estadual Paulista (UNESP) -"Júlio de Mesquita Filho", Campus Rio Claro, Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Av. 24 A, 1515, Jardim Bela Vista, 13506-900, Rio Claro, SP, Brazil
| | - Nathalie F S de Melo
- Faculdade de Medicina São Leopoldo Mandic, Campus Araras. Av. Dona Renata, 71, Santa Cândida, 13600-001, Araras, SP, Brazil
| | - Thaisa C Roat
- Universidade Estadual Paulista (UNESP) -"Júlio de Mesquita Filho", Campus Rio Claro, Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Av. 24 A, 1515, Jardim Bela Vista, 13506-900, Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) -"Júlio de Mesquita Filho", Campus Rio Claro, Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Av. 24 A, 1515, Jardim Bela Vista, 13506-900, Rio Claro, SP, Brazil
| | - Monica Jones-Costa
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia (CCHB), Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - Elaine C M Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia (CCHB), Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil.
| | - Leonardo F Fraceto
- Universidade Estadual Paulista (UNESP) -"Júlio de Mesquita Filho", Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|