1
|
Kali SE, Österlund H, Viklander M, Blecken GT. Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams. WATER RESEARCH 2024; 271:122973. [PMID: 39700609 DOI: 10.1016/j.watres.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems. River water was sampled during dry (DW) and wet weather (WW) upstream, immediately downstream, and further downstream of three urbanized areas with separate sewer systems and with and without point sources (i.e. waste water treatment plant, airports). Water samples were analyzed for 34 targeted PFAS compounds and sediment samples for 35 targeted PFAS and 30 PFAS compounds using a total oxidizable precursor assay. The sum of the quantified PFAS concentrations ranged from the reporting limit (RL) to 84.7 ng/L during DW and increased as the streams were affected by WW discharges (0.87 to 102.3 ng/L). The highest PFAS concentrations were found downstream of urban areas and/or point sources (i.e. airports) during WW, indicating a clear contribution from stormwater discharges. A consistent PFAS contribution from the WWTP was observed under both DW and WW conditions. During WW events, concentrations of perfluorooctanesulfonic acid (PFOS) and total PFAS (PFOA equivalents) exceeded the annual average environmental quality standards, which are an established limit of 0.65 ng/L for PFOS and a proposed limit of 4.4 ng/L for total PFAS. Notably, except for the legacy PFAS, PFOS and perfluorooctanoic acid (PFOA), the most frequently quantified PFAS during DW were short-chain. For WW, long-chain perfluorocarboxylic acids (PFCAs) and a precursor, 6:2 Fluorotelomer sulfonic acid (6:2 FTS), were more frequently quantified, suggesting stormwater is a source of these longer-chain and particle-associated PFAS. The detection of unregulated fluorotelomer sulfonates (FTSs) such as 6:2 and 8:2 FTS during WW suggests a need for regulatory action, as these compounds can degrade into more stable PFAS. In sediment, higher concentrations, and a greater variety of PFAS were found at sites with known point sources i.e. airports. Long-chain PFCAs (C7-C13), perfluoroalkyl sulfonates (PFSAs) (C6), and precursors (i.e. N-Ethyl perfluorooctane sulfonamidoacetic acid), were more prevalent in sediments than in the water. Notably, PFOS concentrations in sediment exceeded the lowest Predicted No-Effect Concentration (PNEC) across sites, posing a potential long-term environmental risk, though current PNECs for other PFAS may underestimate such risks. The findings of the study highlight urban stormwater as a source of PFAS to urban streams indicating the need to minimize PFAS sources in the urban environment and to effectively treat stormwater to protect receiving water bodies.
Collapse
Affiliation(s)
- Suna Ekin Kali
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| |
Collapse
|
2
|
Beryani A, Furén R, Österlund H, Tirpak A, Smith J, Dorsey J, Winston RJ, Viklander M, Blecken GT. Occurrence, Concentration, and Distribution of 35 PFASs and Their Precursors Retained in 20 Stormwater Biofilters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14518-14529. [PMID: 39078743 PMCID: PMC11325539 DOI: 10.1021/acs.est.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Current knowledge about the fate and transport behaviors of per- and polyfluoroalkyl substances (PFASs) in urban stormwater biofilter facilities is very limited. C5-14,16 perfluoroalkyl carboxylic acids [perfluorinated carboxylic acids (PFCAs)], C4,8,10 perfluoroalkanesulfonic acids (PFSAs), methyl-perfluorooctane sulfonamide acetic acid (MeFOSAA, a PFSA precursor), and unknown C6-8 PFCA and perfluorooctanesulfonic acid precursors were frequently found in bioretention media and forebay sediments at Σ35PFAS concentrations of <0.03-19 and 0.064-16 μg/kg-DW, respectively. Unknown C6-8 PFCA precursor concentrations were up to ten times higher than the corresponding PFCAs, especially at forebays and biofilters' top layer. No significant trend could be attributed to PFAS and precursor concentrations versus depth of filter media, though PFAS concentrations were 2-3 times higher in the upper layers on average (significant difference between the upper (0-5 cm) and deepest (35-50 cm) layer). PFASs had a similar spatial concentration distribution in each filter media (no clear difference between short- and long-chain PFASs). Commercial land use and organic matter were important factors explaining the concentration variations among the biofilters and between the sampling depths, respectively. Given the comparable PFAS accumulations in deeper and superficial layers and possible increased mobility after precursor biotransformation, designing shallow-depth, nonamended sand biofilters or maintaining only the top layer may be insufficient for stormwater PFAS management.
Collapse
Affiliation(s)
- Ali Beryani
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Robert Furén
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
- NCC
Sverige AB, Department of Research, and Innovation, 170 80 Solna, Sweden
| | - Heléne Österlund
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Andrew Tirpak
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Joseph Smith
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Jay Dorsey
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Ryan J. Winston
- Department
of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
- Department
of Civil, Environmental, and Geodetic Engineering, Ohio State University, Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio 43210, United States
- Core
Faculty, Sustainability Institute, Ohio
State University, Smith
Lab 174 W, 18th Avenue, Columbus, Ohio 43210, United States
| | - Maria Viklander
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department
of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
3
|
Lalonde B, Garron C. NP, OP and Derivatives in Freshwater Sediment Downstream of Textile Associated Municipal Wastewater Discharges. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:375-382. [PMID: 38775938 PMCID: PMC11142977 DOI: 10.1007/s00244-024-01066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Alkylphenol ethoxylates comprise of many anthropogenic chemicals such as nonylphenol (NP), octylphenol (OP) and nonylphenol ethoxylates (NPEOs). The objectives of this study were to assess the frequency and magnitude of detections of 4-NP, OP and NPEOs in Canadian sediment downstream of textile associated municipal wastewater treatment plants (MWWTPs) to determine if regulatory actions have had a beneficial impact on the receiving environment. Surficial sediments were obtained in four locations in the province of Québec (Canada) and were analyzed for nonylphenol, nonylphenol monoethoxylates (NP1EO), nonylphenol diethoxylates (NP2EO) and octylphenol from 2015 to 2018. Individual concentrations of the compounds varied from non detect to 419 ng/g. Of the four compounds analyzed, NP was detected the most frequently with a 75% detection rate while OPs were not detected in any of the samples. Since the Canadian regulatory actions have drastically reduced NP/NPEOs usage in textile mill factories and manufactured products, the potential source of these compounds in sediment for this study could stem from the outfall from the MWWTPs but not related to textile mills as well as from the usage of these compounds as formulants in pesticide products. Lastly, there were no exceedances to the Canadian Sediment Quality guideline toxic equivalency approach (TEQ) of 1400 ng/g or the 1310 ng/g guideline for NP in freshwater sediment from the European Scientific Committee on Health, Environmental and Emerging Risks. We hypothesize that the significant concentrations of these compounds in sediment may be a relevant and continuous source of 4NP in surface waters due to resuspension of sediment in the water column.
Collapse
Affiliation(s)
- Benoit Lalonde
- Water Quality Monitoring and Surveillance Division, Science and Technology Branch, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS, B2Y2N6, Canada.
| | - Christine Garron
- Water Quality Monitoring and Surveillance Division, Science and Technology Branch, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS, B2Y2N6, Canada
| |
Collapse
|
4
|
Furén R, Flanagan K, Winston RJ, Tirpak RA, Dorsey JD, Viklander M, Blecken GT. Occurrence, concentration, and distribution of 38 organic micropollutants in the filter material of 12 stormwater bioretention facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157372. [PMID: 35850337 DOI: 10.1016/j.scitotenv.2022.157372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The increased use of bioretention facilities as a low impact development measure for treating stormwater runoff underscores the need to further understand their long-term function. Eventually, bioretention filter media must be (partly) replaced and disposed of at the end of its functional lifespan. While there are several studies of metal accumulation and distributions in bioretention media, less is known about organic pollutant pathways and accumulation in these filters. The present study considers the occurrence and accumulation of 16 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls, 13 phthalates, and two alkylphenols throughout 12 older bioretention facilities (7-13 years old) used for stormwater treatment in Michigan and Ohio, USA. These pollutant groups appear to behave similarly, with greater instances of detection and higher concentrations in the upper media layers which decrease with increased depth from the surface. The patterns of detection and concentration in the filter material may be explained by characteristics of the pollutants, such as molecular structures and solubility that affect the removal of the organic pollutants by the filter material. There is also a large variation in concentration magnitudes between the bioretention sites, most likely due to differences in pollutant sources, contributing catchment size and/or land uses.
Collapse
Affiliation(s)
- Robert Furén
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden; NCC Sverige AB, Department of Research & Innovation, 170 80 Solna, Sweden.
| | - Kelsey Flanagan
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Ryan J Winston
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, United States; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - R Andrew Tirpak
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Jay D Dorsey
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
5
|
Baldwin AK, Corsi SR, Stefaniak OM, Loken LC, Villeneuve DL, Ankley GT, Blackwell BR, Lenaker PL, Nott MA, Mills MA. Risk-Based Prioritization of Organic Chemicals and Locations of Ecological Concern in Sediment From Great Lakes Tributaries. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1016-1041. [PMID: 35170813 PMCID: PMC9306483 DOI: 10.1002/etc.5286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 05/24/2023]
Abstract
With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals. Multiple risk-based lines of evidence were used to prioritize chemicals and locations, including comparing sediment concentrations and estimated porewater concentrations with established whole-organism benchmarks (i.e., sediment and water quality criteria and screening values) and with high-throughput toxicity screening data from the US Environmental Protection Agency's ToxCast database, estimating additive effects of chemical mixtures on common ToxCast endpoints, and estimating toxic equivalencies for mixtures of alkylphenols and polycyclic aromatic hydrocarbons (PAHs). This multiple-lines-of-evidence approach enabled the screening of more chemicals, mitigated the uncertainties of individual approaches, and strengthened common conclusions. Collectively, at least one benchmark/screening value was exceeded for 54 of the 87 chemicals, with exceedances observed at all 71 of the monitoring sites. Chemicals with the greatest potential for biological effects, both individually and as mixture components, were bisphenol A, 4-nonylphenol, indole, carbazole, and several PAHs. Potential adverse outcomes based on ToxCast gene targets and putative adverse outcome pathways relevant to individual chemicals and chemical mixtures included tumors, skewed sex ratios, reproductive dysfunction, hepatic steatosis, and early mortality, among others. The results provide a screening-level prioritization of chemicals with the greatest potential for adverse biological effects and an indication of sites where they are most likely to occur. Environ Toxicol Chem 2022;41:1016-1041. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
6
|
Waara S, Johansson F. Ecological risk assessment of trace elements accumulated in stormwater ponds within industrial areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27026-27041. [PMID: 34932183 PMCID: PMC8989822 DOI: 10.1007/s11356-021-18102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Stormwater ponds can provide flood protection and efficiently treat stormwater using sedimentation. As the ponds also host aquatic biota and attract wildlife, there is a growing concern that the sediment bound pollutants negatively affect aquatic organisms and the surrounding ecosystem. In this study, we used three methods to assess the accumulation and the potential ecological risk of 13 different heavy metals and metalloids (e.g. trace elements) including both elements that are frequently monitored and some which are rarely monitored in sediment from 5 stormwater ponds located within catchments with predominately industrial activities. Ecological risk for organisms in the older ponds was observed for both commonly (e.g. Cd, Cu, Zn) and seldom (e.g. Ag, Sb) monitored trace elements. The 3 methods ranked the degree of contamination similarly. We show that methods usually used for sediment quality assessment in aquatic ecosystems can also be used for screening the potential risk of other trace elements in stormwater ponds and may consequently be useful in stormwater monitoring and management. Our study also highlights the importance of establishing background conditions when conducting ecological risk assessment of sediment in stormwater ponds.
Collapse
Affiliation(s)
- Sylvia Waara
- Department of Environmental and Biosciences, Rydberg Laboratory of Applied Sciences, Halmstad University, Box 823, 301 18 Halmstad, Sweden
| | - Frida Johansson
- Department of Environmental and Biosciences, Rydberg Laboratory of Applied Sciences, Halmstad University, Box 823, 301 18 Halmstad, Sweden
- Present Address: SWECO Sverige AB, Halmstad, 302 20 Halmstad, Sweden
| |
Collapse
|
7
|
Zhao L, Hu M, Muslim H, Hou T, Bian B, Yang Z, Yang W, Zhang L. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production. CHEMOSPHERE 2022; 287:132145. [PMID: 34500330 DOI: 10.1016/j.chemosphere.2021.132145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lake sediment and algal sludge with large output posed significant environmental risks. In this work, an idea of co-utilization of both solid wastes for the production of ceramsite (a sort of porous lightweight aggregates as building materials) was proposed and validated for the first time. The treatment process contained a dewatering step by a flocculation-pressure filtration method, and a sintered ceramsite preparation step. Effects of flocculant type and dosage on the dewatering performance were studied in the first step. An environmental-friendly amphoteric starch flocculant with a dosage of 12 mg/(g dried sample) was found to achieve the best dewatering performance. Effects of raw material mass ratio, sintering temperature and time in the second step were investigated. Under the optimal conditions (60 wt% of dewatered sediment; 20 wt% of dewatered algal sludge; 20 wt% of additives (fly ash: calcium oxide: kaolin = 2:1:2); sintering temperature: 1100 °C; time: 35 min), the obtained ceramsite met the Chinese National Standard as a qualified building material, with reliable environmental safety according to the leaching results for both heavy metals and microcystins. Both environmental and economic benefits of the proposed treatment were assessed. The process completely followed the rules of "reduction, harmlessness and resource utilization" for solid waste treatment and disposal; Meanwhile, the profit of the proposed ceramsite production could be more than 2.3 US dollar/m3. The co-utilization method in this work acted as a good example for the comprehensive management of solid wastes in water-rich areas.
Collapse
Affiliation(s)
- Lina Zhao
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Min Hu
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Halimi Muslim
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Tianyang Hou
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Bo Bian
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Zhen Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China.
| | - Weiben Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Limin Zhang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| |
Collapse
|
8
|
Jin Q, Liu S, Huang X, Ren R, Zhu G. Determination of Ionic and Nonionic Perfluoroalkyl Substances (PFASs) in the Surface Water of the Qiantang River, China by Solid-Phase Extraction (SPE) and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1783280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Quan Jin
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Shaoying Liu
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Xihui Huang
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Ren Ren
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Flanagan K, Blecken GT, Österlund H, Nordqvist K, Viklander M. Contamination of Urban Stormwater Pond Sediments: A Study of 259 Legacy and Contemporary Organic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3009-3020. [PMID: 33606502 PMCID: PMC8026099 DOI: 10.1021/acs.est.0c07782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 05/20/2023]
Abstract
Stormwater ponds improve water quality by facilitating the sedimentation of particles and particulate contaminants from urban runoff. Over time, this function entails the accumulation of contaminated sediments, which must be removed periodically to maintain a pond's hydraulic and treatment capacity. In this study, sediments from 17 stormwater sedimentation facilities from four Swedish municipalities were analyzed for 259 organic substances likely to be found in the urban environment. A total of 92 substances were detected in at least one sample, while as many as 52 substances were detected in a single sample. A typical profile of urban contamination was identified, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, organotins, aliphatic hydrocarbons, phthalates, aldehydes, polybrominated diphenyl ethers, perfluorinated substances, and alkylphenols. However, levels of contamination varied greatly between ponds, influenced heavily by the dilution of urban pollutants and wear particles from other sources of particles such as eroded soil, sand, or natural organic matter. For 22 of 32 samples, the observed concentrations of at least one organic substance exceeded the regulatory threshold values derived from toxicity data for both sediment and soil.
Collapse
|
10
|
Rodak CM, Jayakaran AD, Moore TL, David R, Rhodes ER, Vogel JR. Urban stormwater characterization, control, and treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1552-1586. [PMID: 32663352 DOI: 10.1002/wer.1403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This review summarizes over 280 studies published in 2019 related to the characterization, control, and management of urban stormwater runoff. A summary of quantity and quality concerns is provided in the first section of the review, serving as the foundation for the following sections which focus on the control and treatment of stormwater runoff. Finally, the impact of stormwater control devices at the watershed scale is discussed. Each section provides a self-contained overview of the 2019 literature, common themes, and future work. Several themes emerged from the 2019 literature including exploration of substrate amendments for improved water quality effluent from stormwater controls, the continued study of the role of vegetation in green infrastructure practices, and a call to action for the development of new models which generate reliable, computationally efficient results under the physical, chemical, biological, and social complexity of stormwater management. PRACTITIONER POINTS: Over 280 studies were published in 2019 related to the characterization, control, and treatment of urban stormwater. Studies on bioretention and general stormwater characteristics represented the two most common subtopics in 2019. Trends in 2019 included novel substrate amendments, studies on the role of vegetation, and advancements in computational models.
Collapse
Affiliation(s)
- Carolyn M Rodak
- Civil Engineering, State University of New York Polytechnic Institute, Utica, New York, USA
| | - Anand D Jayakaran
- Washington Stormwater Center, Washington State University, Puyallup, Washington, USA
| | - Trisha L Moore
- Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Ray David
- Greeley and Hansen, San Francisco, California, USA
| | - Emily R Rhodes
- Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Jason R Vogel
- Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
11
|
Wang L, Xu J, Zeng F, Fu X, Xu W, Yu J. Influence of nonylphenol exposure on basic growth, development, and thyroid tissue structure in F1 male rats. PeerJ 2019; 7:e7039. [PMID: 31245175 PMCID: PMC6586153 DOI: 10.7717/peerj.7039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
Objective Environmental endocrine disruptors (EEDs) with a weak ability to mimic estrogen have been associated with thyroid dysfunction. However, little is known about the effect of nonylphenol (NP), a well-known EED, on thyroid structure. The present study evaluates whether gestational and lactational exposure to NP impacts growth and thyroid structure in F1 male rats. Methods A total of 60 rats were gavaged with NP (25, 50, and 100 mg/kg), estradiol (E2, 30 μg/kg/day), and corn oil alone (vehicle control) from gestational day 6 to postnatal day (PND) 21. Serum thyroid hormones free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone levels were detected by automated chemiluminescence immunoassay analyzer. The NP level in the thyroid was measured using high-performance liquid chromatography. The ultrastructure of follicular epithelial cells was examined using transmission electron microscopy. Histopathology was conducted using hematoxylin and eosin staining. Results On PND 0, exposure to 50 and 100 mg/kg/day NP led to a significant decrease in the average litter size, litter weight and number of live pups per litter compared to the control group (P < 0.05). Dams exposed to NP during perinatal period demonstrated decreased serum levels of FT3 and FT4 in F1 male rats, when compared to the control group (P < 0.05). The NP level in the control group was 3.39 ± 0.08 ng/mg, while NP levels in the low, middle, and high dose groups ranged from 5.20 to 11.00 ng/mg. Exposure caused a dose-related increase in NP level in the thyroid of male pups (P < 0.01). The thicknesses of the thyroid follicular epithelium were 2.06 ± 0.37 μm in the control group and 3.97 ± 1.61 μm in the high-dose group. The thickness of the thyroid follicular epithelium increased with an increase in treatment dose in a dose-dependent manner (P < 0.05). The sizes of the thyroid follicles were 1,405.53 ± 866.62 μm2 in the control group and 317.49 ± 231.15 μm2 in the high-dose group. With increasing NP dosages, animals showed a decreased size of the thyroid follicle (P < 0.01). Thyroid follicular cells of NP-treated rats showed mildly swollen mitochondria and dilated rough endoplasmic reticulum in the cytoplasm. Conclusion Nonylphenol can cross the placental barrier and accumulate in the thyroid of F1 male rats. Gestational and lactational exposure to NP in dams impacted both development and growth of pups and damaged the ultrastructure of their thyroid tissue, which may further negatively influence normal thyroid function.
Collapse
Affiliation(s)
- Lin Wang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Feng Zeng
- Breast & Thyroid Disease Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Weihong Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|