1
|
Gyimah E, Xu H, Fosu S, Kenneth Mensah J, Dong X, Akoto O, Issaka E, Zhang Z. Gene expression patterns and DNA methylation of neuron and pancreatic β-cell developments in zebrafish embryos treated with bisphenol F and AF. Heliyon 2024; 10:e33805. [PMID: 39050442 PMCID: PMC11267006 DOI: 10.1016/j.heliyon.2024.e33805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bisphenol F (BPF) and bisphenol AF (BPAF) are structural analogues of bisphenol A (BPA) that are used in the manufacture of a myriad of BPA-free products; however, there is a paucity of information regarding their developmental effects. The present study investigates the effects of BPF and BPAF on neurodevelopment and pancreatic β-cell differentiation via altering DNA methylation and gene expression patterns using the zebrafish model. BPF and BPAF induced behavioral perturbations: increased average speed, increased maximum acceleration, increased mania time and decreased static time, in 0.3 and 1.0 μM groups in zebrafish embryos. Glucose level was significantly increased in 1.0 μM BPF (28 %); while a monotonic increase of 29 %, 55 %, and 74 % were observed in 0.1, 0.3, and 1.0 μM BPAF, respectively. Consistent with a decreased insulin mRNA level, the expression of two critical transcription factors (pdx-1 and foxa2) essential for the development and functioning of beta-cells decreased following the bisphenols exposure. In addition, embryonic exposure to BPF and BPAF upregulated the transcription of developmental genes (vegfa, wnt8a, and mstn1) and neuron-related genes (mbp, elavl3, gap43, gfap). Also, the expressions of DNA methyltransferases (dnmt1, dnmt3, dnmt4, dnmt5, dnmt6, dnmt7, and dnmt8) were significantly aberrant compared with the control group. The Bisulfite PCR results indicate increased DNA methylation at promoter regions of pdx-1 in BPF (8.2 %) and BPAF (7.6 %); α1-tubulin in BPF (5.3 %) and in BPAF (4.1 %), congruous with the increased dnmt1 and dnmt3 transcription, at early stage of zebrafish development. The present study indicates that zebrafish embryonic exposure to BPF and BPAF elicits islet dysfunction and neuron perturbations resulting in increased DNA methylation levels.
Collapse
Affiliation(s)
- Eric Gyimah
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shadrack Fosu
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - John Kenneth Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eliasu Issaka
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Yuan M, Chen S, Zeng C, Fan Y, Ge W, Chen W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. ENVIRONMENT INTERNATIONAL 2023; 176:107976. [PMID: 37236126 DOI: 10.1016/j.envint.2023.107976] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Bisphenol A (BPA) is the most simple and predominant component of the Bisphenol family. BPA is widely present in the environment and the human body as a result of its extensive usage in the plastic and epoxy resins of consumer goods like water bottles, food containers, and tableware. Since the 1930s, when BPA's estrogenic activity was first observed, and it was labeled as a "mimic hormone of E2", studies on the endocrine-disrupting effects of BPA then have been widely conducted. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades. By using the zebrafish, the negative effects of BPA either through estrogenic signaling pathways or non-estrogenic signaling pathways were largely found. In this review, we tried to draw a full picture of the current state of knowledge on the estrogenic and non-estrogenic effects of BPA with their mechanisms of action through the zebrafish model of the past two decades, which may help to fully understand the endocrine-disrupting effects of BPA and its action mechanism, and give a direction for the future studies.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chu Zeng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China.
| |
Collapse
|
4
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Gyimah E, Zhu X, Zhang Z, Guo M, Xu H, Mensah JK, Dong X, Zhang Z, Gyimah GNW. Oxidative Stress and Apoptosis in Bisphenol AF-Induced Neurotoxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2273-2284. [PMID: 35723417 DOI: 10.1002/etc.5412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is a structural counterpart of bisphenol A that is utilized in the food and beverage industry. The present study investigated the potential mechanisms in BPAF-induced neurotoxicity in zebrafish embryos. The BPAF concentrations (0.03, 0.1, 0.3, and 1.0 µM) had no obvious effect on hatching, mortality, and body length of zebrafish larvae, while curved tail and pericardial edema were observed in the 1.0 μM group at 72 and 96 h postfertilization (hpf). Locomotor activity of the larvae (at 120 hpf) significantly decreased from dark to light but increased from light to dark transitions in BPAF groups (0.1, 0.3, and 1.0 μM). Acridine orange showed that BPAF significantly increased green fluorescence protein intensity (22.6%) in the 1.0 μM group. Consistently, the induced apoptosis significantly up-regulated caspase 3 at 0.3 μM (1.95-fold) and 1.0 μM (2.26-fold) and bax at 0.3 μM (1.60-fold) and 1.0 μM (1.78-fold), whereas bcl-2 expression was significantly decreased at 0.3 μM (0.72-fold) and 1.0 μM (0.53-fold). In addition, increased reactive oxygen species concentrations at 0.3 μM (27%) and 1.0 μM (61.4%) resulted in suppressed superoxide dismutase and catalase activities. Moreover, quantitative polymerase chain reaction results showed that BPAF (0.3 and 1.0 μM) significantly altered normal dopaminergic signaling where dat was up-regulated, while drd2a and th1 were down-regulated, in a concentration-dependent manner. Aberrations in dopamine-related genes were congruous with the dysregulations in neurodevelopment genes (sox11b, pax6a, syn2a, and rob2). Our findings suggest that BPAF-evoked oxidative stress and apoptosis could translate into phenotypical behavioral and neurodevelopmental abnormalities. These highlights could provide theoretical reference for risk assessment and act as an early indicator to BPAF exposure. Environ Toxicol Chem 2022;41:2273-2284. © 2022 SETAC.
Collapse
Affiliation(s)
- Eric Gyimah
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Xian Zhu
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Ziqi Zhang
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Mengyuan Guo
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Hai Xu
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - John Kenneth Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xing Dong
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Zhen Zhang
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | | |
Collapse
|
6
|
Xu YX, Zhang SH, Zhang SZ, Yang MY, Zhao X, Sun MZ, Feng XZ. Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113791. [PMID: 35753272 DOI: 10.1016/j.ecoenv.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Sodium propionate is widely used as a preservative in food. The widespread use of preservatives is known to cause both environmental and public health problems. This study aimed to investigate the effects of sodium propionate on the developmental behavior and glucose metabolism of zebrafish. Our results showed that sodium propionate had no significant effect on the embryonic morphological development of zebrafish embryos but changed the head eye area. Then we found sodium propionate disturbed the thigmotaxis behavior, impaired neural development. Moreover, changes in clock gene expression disrupted the circadian rhythm of zebrafish. Circadian genes regulated insulin sensitivity and secretion in various tissues. Then our results showed that the disorder of circadian rhythm in zebrafish affected glucose metabolism and insulin resistance, which damaged the development of retina. Therefore, the safety of propionate should be further evaluated.
Collapse
Affiliation(s)
- Yi-Xin Xu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shu-Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Meng-Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Ming-Zhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Milesi MM, Lorenz V, Varayoud J. Aberrant Hoxa10 gene methylation as a mechanism for endosulfan-induced implantation failures in rats. Mol Cell Endocrinol 2022; 547:111576. [PMID: 35114330 DOI: 10.1016/j.mce.2022.111576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a well-established epigenetic mechanism controlling gene expression. Environmental chemicals, such as pesticides have been shown to alter DNA methylation. We have previously shown that the insecticide endosulfan impairs female fertility in rats by increasing the rate of preimplantation embryo losses. In this study, we evaluated whether early postnatal exposure to endosulfan affects long-term transcriptional regulation of Homeobox A10 (Hoxa10) gene, which is a key marker of endometrial receptivity. Female rats were neonatally exposed to 6 or 600 μg/kg/day (ENDO6 and ENDO600, respectively) of endosulfan and uterine samples collected on gestational day (GD) 5. Hoxa10 protein and mRNA levels were assessed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), respectively. In silico analysis of enzyme-specific restriction sites and predicted transcription factors were performed to investigate the methylation status of the regulatory regions of Hoxa10 gene by methylation-sensitive restriction enzymes-PCR technique. The expression of the DNA methyltransferases (Dnmts) was also evaluated. ENDO600 showed a decreased uterine Hoxa10 expression at protein and transcript level, while ENDO6 decreased only the level of transcripts, during the receptive stage. In addition, endosulfan increased levels of Dnmt3a and Dnmt3b. Dysregulation of DNA methylation patterns of Hoxa10 regulatory regions was detected in ENDO6- and ENDO600-treated rats. All these results suggest that aberrant DNA methylation in Hoxa10 gene could be an underlining mechanism contributing to explain endosulfan-induced preimplantation losses.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|