1
|
Werner O, Martins D, Bertini F, Bennati E, Collia D, Olivotto I, Spaziani G, Baruteau AE, Pedrizzetti G, Raimondi F. Comparative analysis of left ventricle function and deformation imaging in short and long axis plane in cardiac magnetic resonance imaging. Front Cardiovasc Med 2024; 11:1388171. [PMID: 38756751 PMCID: PMC11097778 DOI: 10.3389/fcvm.2024.1388171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Advancements in cardiac imaging have revolutionized our understanding of ventricular contraction. While ejection fraction (EF) is still the gold standard parameter to assess left ventricle (LV) function, strain imaging (SI) has provided valuable insights into ventricular mechanics. The lack of an integrative method including SI parameters in a single, validated formula may limit its use. Our aim was to compare different methods for evaluating global circumferential strain (GCS) and their relationship with global longitudinal strain (GLS) and EF in CMR and how the different evaluations fit in the theoretical relationship between EF and global strain. Methods Retrospective monocenter study. Inclusion of every patient who underwent a CMR during a 15 months period with various clinical indication (congenital heart defect, myocarditis, cardiomyopathy). A minimum of three LV long-axis planes and a stack of short-axis slices covering the LV using classical steady-state free precession cine sequences. A single assessment of GLS on long axis (LAX) slices and a double assessment of GCS and EF with both short axis (SAX) and LAX slices were made by a single experienced CMR investigator. Results GCS-SAX and GCS-LAX were correlated (r = 0.77, P < 0.001) without being interchangeable with a high reproducibility for GCS, GLS and EF. EF calculated from LAX images showed an overestimation compared to EF derived from SAX images of 7%. The correlation between calculated EF and theoretical EF derived from SI was high (r = 0.88 with EF-SAX, 0.95 with EF-LAX). Data conclusion This study highlights the need to integrate strain imaging techniques into clinical by incorporating strain parameters into EF calculations, because it gives a deeper understanding of cardiac mechanics.
Collapse
Affiliation(s)
- Oscar Werner
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, CHU Nantes, Nantes, France
| | - Duarte Martins
- Pediatric and Adult Congenital Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federico Bertini
- Pediatric Radiology Department, University Hospital Meyer, Florence, Italy
| | - Elena Bennati
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Dario Collia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Iacopo Olivotto
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Gaia Spaziani
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Alban-Elouen Baruteau
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, CHU Nantes, Nantes, France
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesca Raimondi
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
- Pediatric and Adult Congenital Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
2
|
Earl CC, Pyle VI, Clark SQ, Annamalai K, Torres PA, Quintero A, Damen FW, Hor KN, Markham LW, Soslow JH, Goergen CJ. Localized strain characterization of cardiomyopathy in Duchenne muscular dystrophy using novel 4D kinematic analysis of cine cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:14. [PMID: 36793101 PMCID: PMC9933368 DOI: 10.1186/s12968-023-00922-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cardiomyopathy (CMP) is the most common cause of mortality in Duchenne muscular dystrophy (DMD), though the age of onset and clinical progression vary. We applied a novel 4D (3D + time) strain analysis method using cine cardiovascular magnetic resonance (CMR) imaging data to determine if localized strain metrics derived from 4D image analysis would be sensitive and specific for characterizing DMD CMP. METHODS We analyzed short-axis cine CMR image stacks from 43 DMD patients (median age: 12.23 yrs [10.6-16.5]; [interquartile range]) and 25 male healthy controls (median age: 16.2 yrs [13.3-20.7]). A subset of 25 male DMD patients age-matched to the controls (median age: 15.7 yrs [14.0-17.8]) was used for comparative metrics. CMR images were compiled into 4D sequences for feature-tracking strain analysis using custom-built software. Unpaired t-test and receiver operator characteristic area under the curve (AUC) analysis were used to determine statistical significance. Spearman's rho was used to determine correlation. RESULTS DMD patients had a range of CMP severity: 15 (35% of total) had left ventricular ejection fraction (LVEF) > 55% with no findings of myocardial late gadolinium enhancement (LGE), 15 (35%) had findings of LGE with LVEF > 55% and 13 (30%) had LGE with LVEF < 55%. The magnitude of the peak basal circumferential strain, basal radial strain, and basal surface area strain were all significantly decreased in DMD patients relative to healthy controls (p < 0.001) with AUC values of 0.80, 0.89, and 0.84 respectively for peak strain and 0.96, 0.91, and 0.98 respectively for systolic strain rate. Peak basal radial strain, basal radial systolic strain rate, and basal circumferential systolic strain rate magnitude values were also significantly decreased in mild CMP (No LGE, LVEF > 55%) compared to a healthy control group (p < 0.001 for all). Surface area strain significantly correlated with LVEF and extracellular volume (ECV) respectively in the basal (rho = - 0.45, 0.40), mid (rho = - 0.46, 0.46), and apical (rho = - 0.42, 0.47) regions. CONCLUSION Strain analysis of 3D cine CMR images in DMD CMP patients generates localized kinematic parameters that strongly differentiate disease from control and correlate with LVEF and ECV.
Collapse
Affiliation(s)
- Conner C Earl
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria I Pyle
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Sydney Q Clark
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karthik Annamalai
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Paula A Torres
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Alejandro Quintero
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Larry W Markham
- Division of Pediatric Cardiology, Riley Children's Hospital at Indiana University Health, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan H Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA.
- Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|