1
|
Daci R, Gray-Edwards H, Shazeeb MS, Vardar Z, Vachha B, Cataltepe OI, Flotte TR. Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases. Hum Gene Ther 2024. [PMID: 39323316 DOI: 10.1089/hum.2024.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Neurological disease due to single gene defects represents a targetable entity for adeno-associated virus (AAV) mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid (CSF) spaces of the brain has led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography (CT), and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy (MRS), diffusion tensor imaging (DTI), and functional MRI (fMRI) can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.
Collapse
Affiliation(s)
- Rrita Daci
- UMass Chan Medical School, Neurosurgery, 55 Lake Ave N, Worcester, Massachusetts, United States, 01655-0112;
| | - Heather Gray-Edwards
- University of Massachusetts Medical School , Department of Radiology, Horae Gene Therapy Center, Horae Gene Therapy Center, 368 Plantation Street, ASC6-2041, Worcester, Massachusetts, United States, 01605;
| | - Mohammed Salman Shazeeb
- University of Massachusetts Medical School, Radiology, 55 Lake Ave North, Worcester, Massachusetts, United States, 01655;
| | - Zeynep Vardar
- UMass Chan Medical School, Radiology, Worcester, Massachusetts, United States;
| | - Behroze Vachha
- UMass Chan Medical School, Radiology, Worcester, Massachusetts, United States;
| | - Oguz I Cataltepe
- University of Massachusetts Medical School, Department of Neurological Surgery, Worcester, Massachusetts, United States;
| | - Terence R Flotte
- University of Massachusetts Medical School, Pediatrics, 55 Lake Avenue North, S1-340, Worcester, Massachusetts, United States, 01655;
| |
Collapse
|
2
|
Serial changes of T1-, T2-weighted MR imaging and MR spectroscopy in Tay-Sachs disease with late onset spasms. Brain Dev 2021; 43:975-976. [PMID: 34275686 DOI: 10.1016/j.braindev.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022]
|
3
|
Story B, Taghian T, Gallagher J, Koehler J, Taylor A, Randle A, Nielsen K, Gross A, Maguire A, Carl S, Johnson S, Fernau D, Diffie E, Cuddon P, Corado C, Chandra S, Sena-Esteves M, Kolodny E, Jiang X, Martin D, Gray-Edwards H. Natural history of Tay-Sachs disease in sheep. Mol Genet Metab 2021; 134:164-174. [PMID: 34456134 PMCID: PMC8811770 DOI: 10.1016/j.ymgme.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 01/17/2023]
Abstract
Tay-Sachs disease (TSD) is a fatal neurodegenerative disease caused by a deficiency of the enzyme β-N-acetylhexosaminidase A (HexA). TSD naturally occurs in Jacob sheep is the only experimental model of TSD. TSD in sheep recapitulates neurologic features similar to juvenile onset and late onset TSD patients. Due to the paucity of human literature on pathology of TSD, a better natural history in the sheep TSD brain, which is on the same order of magnitude as a child's, is necessary for evaluating therapy and characterizing the pathological events that occur. To provide clinicians and researchers with a clearer understanding of longitudinal pathology in patients, we compare spectrum of clinical signs and brain pathology in mildly symptomatic (3-months), moderately symptomatic (6-months), or severely affected TSD sheep (humane endpoint at ~9-months of age). Increased GM2 ganglioside in the CSF of TSD sheep and a TSD specific biomarker on MRS (taurine) correlate with disease severity. Microglial activation and reactive astrocytes were observed globally on histopathology in TSD sheep with a widespread reduction in oligodendrocyte density. Myelination is reduced primarily in the forebrain illustrated by loss of white matter on MRI. GM2 and GM3 ganglioside were increased and distributed differently in various tissues. The study of TSD in the sheep model provides a natural history to shed light on the pathophysiology of TSD, which is of utmost importance due to novel therapeutics being assessed in human patients.
Collapse
Affiliation(s)
- Brett Story
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Jey Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Amanda Taylor
- Auburn University, Department of Clinical Sciences Auburn University, Auburn, AL, United States of America
| | - Ashley Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Amanda Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Annie Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Sara Carl
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Siauna Johnson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Elise Diffie
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Paul Cuddon
- Neurology Locum, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL
| | - Carly Corado
- BioMarin Pharmaceutical Inc, Novato, CA, United States of America
| | - Sundeep Chandra
- BioMarin Pharmaceutical Inc, Novato, CA, United States of America
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Edwin Kolodny
- Bernard A. Marden Professor of Neurology and Chairman of the Department of Neurology, New York University, School of Medicine, NY, NY, United States of America; Head of the Division of Neurogenetics, New York University, School of Medicine, NY, NY, United States of America
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MI, United States of America
| | - Douglas Martin
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Neurology Locum, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL
| | - Heather Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America.
| |
Collapse
|
4
|
Rowe OE, Rangaprakash D, Weerasekera A, Godbole N, Haxton E, James PF, Stephen CD, Barry RL, Eichler FS, Ratai EM. Magnetic resonance imaging and spectroscopy in late-onset GM2-gangliosidosis. Mol Genet Metab 2021; 133:386-396. [PMID: 34226107 PMCID: PMC8289742 DOI: 10.1016/j.ymgme.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Our study aimed to quantify structural changes in relation to metabolic abnormalities in the cerebellum, thalamus, and parietal cortex of patients with late-onset GM2-gangliosidosis (LOGG), which encompasses late-onset Tay-Sachs disease (LOTS) and Sandhoff disease (LOSD). METHODS We enrolled 10 patients with LOGG (7 LOTS, 3 LOSD) who underwent a neurological assessment battery and 7 age-matched controls. Structural MRI and MRS were performed on a 3 T scanner. Structural volumes were obtained from FreeSurfer and normalized by total intracranial volume. Quantified metabolites included N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), and combined glutamate-glutamine (Glx). Metabolic concentrations were corrected for partial volume effects. RESULTS Structural analyses revealed significant cerebellar atrophy in the LOGG cohort, which was primarily driven by LOTS patients. NAA was lower and mI higher in LOGG, but this was also significantly driven by the LOTS patients. Clinical ataxia deficits (via the Scale for the Assessment and Rating of Ataxia) were associated with neuronal injury (via NAA), neuroinflammation (via mI), and volumetric atrophy in the cerebellum. INTERPRETATION The decrease of NAA in the cerebellum suggests that, in addition to cerebellar atrophy, there is ongoing impaired neuronal function and/or loss, while an increase in mI indicates possible neuroinflammation in LOGG (more so within the LOTS subvariant). Quantifying cerebellar atrophy in relation to neurometabolic differences in LOGG may lead to improvements in assessing disease severity, progression, and pharmacological efficacy. Lastly, additional neuroimaging studies in LOGG are required to contrast LOTS and LOSD more accurately.
Collapse
Affiliation(s)
- Olivia E Rowe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Akila Weerasekera
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Neha Godbole
- Leukodystrophy Clinic, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Rare Neurological Diseases, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Haxton
- Leukodystrophy Clinic, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Rare Neurological Diseases, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter F James
- Leukodystrophy Clinic, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Rare Neurological Diseases, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher D Stephen
- Center for Rare Neurological Diseases, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Movement Disorders Division and Ataxia Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Florian S Eichler
- Leukodystrophy Clinic, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Rare Neurological Diseases, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Yamamoto N, Kuki I, Nagase S, Inoue T, Nukui M, Okazaki S, Furuichi Y, Adachi K, Nanba E, Sakai N, Kawawaki H. A case of infantile Tay-Sachs disease with late onset spasms. Brain Dev 2021; 43:661-665. [PMID: 33483101 DOI: 10.1016/j.braindev.2020.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Epilepsy is known to be associated with Tay-Sachs disease (TSD); however, no detailed reports are available. This case report aimed to present the clinical features of late onset spasms (LOS) in a patient with infantile TSD, and to elucidate the pathophysiology leading to LOS, using proton magnetic resonance spectroscopy (MRS). CASE PRESENTATION At 11 months old, our patient had an afebrile seizure. At 14 months, he showed developmental stagnation and an increase in the frequency of epileptic seizures. Magnetic resonance imaging (T2-weighted images) showed high signal intensities in the thalamus bilaterally, and in the head of the caudate nucleus. Serum β-hexosaminidase enzyme activity was reduced, and he was diagnosed with TSD with a homozygous pathogenic variant of the HEXA gene (c. 571-1 G > T [IVS5, -1 G > T]), confirmed using direct sequence analysis. At 20 months, epileptic spasms in series around times of drowsiness and waking were observed on long-term video-electroencephalogram monitoring, in which ictal findings were different from those of startle seizures and non-epileptic myoclonus. Therefore, the epilepsy was classified as LOS. Epileptic spasms stopped following adrenocorticotropic hormone therapy, after which his vitality and consciousness improved. Serial MRS results showed a progressive decline in N-acetyl aspartate, and an increase in myoinositol in the grey matter over time. DISCUSSION AND CONCLUSION Our patient's MRS results suggested that cortical and subcortical axonal and neuronal degeneration with widespread gliosis in the cerebrum might lead to the development of LOS, and that LOS might be underestimated in patients with TSD.
Collapse
Affiliation(s)
- Naohiro Yamamoto
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.
| | - Ichiro Kuki
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Shizuka Nagase
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Takeshi Inoue
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Megumi Nukui
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Shin Okazaki
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Yasuko Furuichi
- Department of Pediatrics, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Eiji Nanba
- Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
| | - Norio Sakai
- Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Kawawaki
- Division of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
6
|
Gray-Edwards HL, Maguire AS, Salibi N, Ellis LE, Voss TL, Diffie EB, Koehler J, Randle AN, Taylor AR, Brunson BL, Denney TS, Beyers RJ, Gentry AS, Gross AL, Batista AR, Sena-Esteves M, Martin DR. 7T MRI Predicts Amelioration of Neurodegeneration in the Brain after AAV Gene Therapy. Mol Ther Methods Clin Dev 2020; 17:258-270. [PMID: 31970203 PMCID: PMC6962699 DOI: 10.1016/j.omtm.2019.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
Abstract
GM1 gangliosidosis (GM1) is a fatal neurodegenerative lysosomal storage disease that occurs most commonly in young children, with no effective treatment available. Long-term follow-up of GM1 cats treated by bilateral thalamic and deep cerebellar nuclei (DCN) injection of adeno-associated virus (AAV)-mediated gene therapy has increased lifespan to 8 years of age, compared with an untreated lifespan of ~8 months. Due to risks associated with cerebellar injection in humans, the lateral ventricle was tested as a replacement route to deliver an AAVrh8 vector expressing feline β-galactosidase (β-gal), the defective enzyme in GM1. Treatment via the thalamus and lateral ventricle corrected storage, myelination, astrogliosis, and neuronal morphology in areas where β-gal was effectively delivered. Oligodendrocyte number increased, but only in areas where myelination was corrected. Reduced AAV and β-gal distribution were noted in the cerebellum with subsequent increases in storage, demyelination, astrogliosis, and neuronal degeneration. These postmortem findings were correlated with endpoint MRI and magnetic resonance spectroscopy (MRS). Compared with the moderate dose with which most cats were treated, a higher AAV dose produced superior survival, currently 6.5 years. Thus, MRI and MRS can predict therapeutic efficacy of AAV gene therapy and non-invasively monitor cellular events within the GM1 brain.
Collapse
Affiliation(s)
- Heather L. Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Anne S. Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nouha Salibi
- MR R&D Department, Siemens Healthcare, Malvern, PA, USA
| | - Lauren E. Ellis
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Taylor L. Voss
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Elise B. Diffie
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jey Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ashley N. Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amanda R. Taylor
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Brandon L. Brunson
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Thomas S. Denney
- MRI Research Center, Auburn University, Auburn, AL, USA
- Department of Electrical Engineering, Auburn University, Auburn, AL, USA
| | | | - Atoska S. Gentry
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amanda L. Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ana R. Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R. Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Zouiri G, Rhouda H, Kriouile Y. A misleading presentation of juvenile Tay Sachs disease. Rev Neurol (Paris) 2020; 176:213-214. [DOI: 10.1016/j.neurol.2019.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022]
|
8
|
Cachón-González MB, Zaccariotto E, Cox TM. Genetics and Therapies for GM2 Gangliosidosis. Curr Gene Ther 2018; 18:68-89. [PMID: 29618308 PMCID: PMC6040173 DOI: 10.2174/1566523218666180404162622] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
Tay-Sachs disease, caused by impaired β-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from diseasecausing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.
Collapse
Affiliation(s)
| | - Eva Zaccariotto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF, Vogel MB, Brunson BL, Hwang M, Ellis LE, Bradbury AM, Gentry AS, Taylor AR, Wooldridge AA, Wilhite DR, Winter RL, Whitlock BK, Johnson JA, Holland M, Salibi N, Beyers RJ, Sartin JL, Denney TS, Cox NR, Sena-Esteves M, Martin DR. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease. Hum Gene Ther 2017; 29:312-326. [PMID: 28922945 DOI: 10.1089/hum.2017.163] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ashley N Randle
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Stacy A Maitland
- 2 Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hector R Benatti
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Spencer M Hubbard
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Peter F Canning
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Matthew B Vogel
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Brandon L Brunson
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Misako Hwang
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Lauren E Ellis
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Allison M Bradbury
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Atoska S Gentry
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amanda R Taylor
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Anne A Wooldridge
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Dewey R Wilhite
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Randolph L Winter
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Brian K Whitlock
- 5 Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, Tennessee
| | - Jacob A Johnson
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Merilee Holland
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Nouha Salibi
- 6 MR R&D Siemens Healthcare, Malvern, Pennsylvania
| | - Ronald J Beyers
- 7 Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - James L Sartin
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Thomas S Denney
- 7 Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - Nancy R Cox
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,8 Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Miguel Sena-Esteves
- 2 Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas R Martin
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
10
|
Dahmoush HM, Melhem ER, Vossough A. Metabolic, endocrine, and other genetic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1221-1259. [PMID: 27430466 DOI: 10.1016/b978-0-444-53486-6.00063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metabolic, endocrine, and genetic diseases of the brain include a very large array of disorders caused by a wide range of underlying abnormalities and involving a variety of brain structures. Often these disorders manifest as recognizable, though sometimes overlapping, patterns on neuroimaging studies that may enable a diagnosis based on imaging or may alternatively provide enough clues to direct further diagnostic evaluation. The diagnostic workup can include various biochemical laboratory or genetic studies. In this chapter, after a brief review of normal white-matter development, we will describe a variety of leukodystrophies resulting from metabolic disorders involving the brain, including mitochondrial and respiratory chain diseases. We will then describe various acidurias, urea cycle disorders, disorders related to copper and iron metabolism, and disorders of ganglioside and mucopolysaccharide metabolism. Lastly, various other hypomyelinating and dysmyelinating leukodystrophies, including vanishing white-matter disease, megalencephalic leukoencephalopathy with subcortical cysts, and oculocerebrorenal syndrome will be presented. In the following section on endocrine disorders, we will examine various disorders of the hypothalamic-pituitary axis, including developmental, inflammatory, and neoplastic diseases. Neonatal hypoglycemia will also be briefly reviewed. In the final section, we will review a few of the common genetic phakomatoses. Throughout the text, both imaging and brief clinical features of the various disorders will be discussed.
Collapse
Affiliation(s)
- Hisham M Dahmoush
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
12
|
Rieger D, Auerbach S, Robinson P, Gropman A. Neuroimaging of lipid storage disorders. ACTA ACUST UNITED AC 2014; 17:269-82. [PMID: 23798015 DOI: 10.1002/ddrr.1120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 01/09/2023]
Abstract
Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly sensitive to lipid storage as the contents of the central nervous system must occupy uniform volume, and any increases in fluids or deposits will lead to pressure changes and interference with normal neurological function. In addition to primary lipid storage diseases, lysosomal storage diseases include the mucolipidoses (in which excessive amounts of lipids and carbohydrates are stored in the cells and tissues) and the mucopolysaccharidoses (in which abnormal glycosylated proteins cannot be broken down because of enzyme deficiency). Neurological dysfunction can be a manifestation of these conditions due to substrate deposition as well. This review will explore the modalities of neuroimaging that may have particular relevance to the study of the lipid storage disorder and their impact on elucidating aspects of brain function. First, the techniques will be reviewed. Next, the neuropathology of a few selected lipid storage disorders will be reviewed and the use of neuroimaging to define disease characteristics discussed in further detail. Examples of studies using these techniques will be discussed in the text.
Collapse
Affiliation(s)
- Deborah Rieger
- Department of Pediatrics, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, District of Columbia, USA
| | | | | | | |
Collapse
|
13
|
Cakir B, Teksam M, Kosehan D, Akin K, Koktener A. Inborn Errors of Metabolism Presenting in Childhood. J Neuroimaging 2011; 21:e117-33. [DOI: 10.1111/j.1552-6569.2011.00575.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Gruber S, Bogner W, Stadlbauer A, Krssak M, Bodamer O. Magnetic resonance spectroscopy in patients with Fabry and Gaucher disease. Eur J Radiol 2010; 79:295-8. [PMID: 20227208 DOI: 10.1016/j.ejrad.2010.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 12/31/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Fabry and Gaucher diseases are rare progressive inherited disorders of glycosphingolipid metabolism that affect multiple organ systems. The aim of this study was to investigate evidence for metabolic changes in the central nervous system involvement using proton magnetic resonance spectroscopic imaging. METHODS Seven Fabry and eight Gaucher patients were included into this study. A two-dimensional, spectroscopic imaging method with an ultra-short echo-time of 11 ms was used at a 3T whole body magnet. Absolute metabolic values were retrieved using internal water scaling. Results were compared, with sex- and age-matched controls. RESULTS In contrast to previous findings, absolute and relative metabolite values of N-acetyl-aspartate (NAA) or NAA/Creatine (Cr), Cr, Choline (Cho) or Cho/Cr and myo-Inositol (mI) or mI/Cr revealed no, differences between Fabry and Gaucher Type 1 (GD1) patients and controls. Average values were, 10.22, 6.32, 2.15 and 5.39 mMol/kg wet weight for NAA, Cr, Cho and mI, respectively. In this study, we found significantly decreasing NAA/Cho with increasing age in all three groups (Fabry, GD1, patients and healthy controls) (between 5 and 8% per decade). CONCLUSIONS There were no changes of the quantified metabolites detected by MRS in normal appearing white matter. This study shows the importance of sex- and age-matched controls.
Collapse
Affiliation(s)
- S Gruber
- Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
15
|
Cakmakci H, Pekcevik Y, Yis U, Unalp A, Kurul S. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature. Eur J Radiol 2009; 74:e161-71. [PMID: 19540689 DOI: 10.1016/j.ejrad.2009.05.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/13/2009] [Accepted: 05/25/2009] [Indexed: 01/21/2023]
Abstract
The purpose of this study is to evaluate parenchymal diffusion properties and metabolite ratios in affected brain tissues of inherited neurometabolic brain diseases with an overview of the current literature about the diagnostic data of both techniques in childhood inherited metabolic brain diseases. The study group was consisting, 19 patients (15 males, 4 females; mean age, 54 months (4.5 years); age range, 1-171 months (14.25 years)) diagnosed with inherited neurometabolic brain disease. Single- and multivoxel proton MRS was carried out and NAA/Cr, Cho/Cr, mI/Cr, Glx/Cr ratios were calculated. Presence of lactate peak and abnormal different peaks were noted. ADC values were calculated from brain lesions. Results are compared with age and sex matched normal subjects. Elevated NAA/Cr ratio (Canavan disease), galactitol peak (galactosemia) at 3.7 ppm, branched chain amino acids (Maple syrup urine disease-MSUD) at 0.9 ppm were seen on different diseases. In Leigh disease and MSUD restricted diffusion was detected. Different diffusion properties were seen only in one Glutaric aciduria lesions. NAA/Cr ratios and calculated ADC values were significantly different from normal subjects (p<0.05). DWI combined with MRS are complementary methods to routine cranial MRI for evaluating neurometabolic diseases which can give detailed information about neurochemistry of affected brain areas.
Collapse
Affiliation(s)
- Handan Cakmakci
- Dokuz Eylul University, Faculty of Medicine, Department of Radiology, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Steffen-Smith EA, Wolters PL, Albert PS, Baker EH, Shimoda KC, Barnett AS, Warren KE. Detection and characterization of neurotoxicity in cancer patients using proton MR spectroscopy. Childs Nerv Syst 2008; 24:807-13. [PMID: 18293002 PMCID: PMC2398763 DOI: 10.1007/s00381-007-0576-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The study objective was to detect abnormalities and identify relationships between brain metabolic ratios determined by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and neuropsychological (NP) function in cancer patients at risk for neurotoxicity. METHODS Thirty-two patients received (1)H-MRSI using a multi-slice, multi-voxel technique on a 1.5T magnet. Cho/NAA, NAA/Cr, and Cho/Cr ratios were identified in seven pre-determined sites without tumor involvement. A battery of age-appropriate NP tests was administered within 7 days of imaging. Relationships were examined between test scores and metabolite ratios. CONCLUSIONS This study identifies relationships between brain metabolite ratios and cognitive functioning in cancer patients. (1)H-MRSI may be useful in early detection of neurotoxic effects, but prospective longitudinal studies in a homogeneous population are recommended to determine the prognostic value.
Collapse
Affiliation(s)
- Emilie A. Steffen-Smith
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, MD
| | - Pamela L. Wolters
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, MD
- Medical Illness Counseling Center, Chevy Chase, MD
| | - Paul S. Albert
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eva H. Baker
- Clinical Center, National Institutes of Health, Bethesda, MD
| | | | - Alan S. Barnett
- National Institute of Mental Health, CBDB, National Institutes of Health, Bethesda, MD
| | - Katherine E. Warren
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
17
|
Assadi M, Baseman S, Janson C, Wang DJ, Bilaniuk L, Leone P. Serial 1H-MRS in GM2 gangliosidoses. Eur J Pediatr 2008; 167:347-52. [PMID: 17387512 DOI: 10.1007/s00431-007-0469-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/24/2007] [Accepted: 03/05/2007] [Indexed: 11/27/2022]
Abstract
GM2 gangliosidoses are a group of neuronal storage disorders caused by deficiency in the lysosomal enzyme hexosaminidase A. Clinically, the disease is marked by a relentless encephalopathy. Proton magnetic resonance spectroscopy (1H-MRS) provides in-vivo measurement of various brain metabolites including N-acetyl aspartate+N-acetyl aspartate glutamate (NAA), myo-inositol (mI), choline (Cho) and creatine (Cr). The NAA represents neuronal integrity while elevation in the mI reflects abnormal inflammation and gliosis in the brain tissue. An elevation in the Cho levels suggest cell membrane breakdown and demyelination. We report the clinical and laboratory data in two patients with GM2 gangliosidoses. Serial 1H-MRS evaluations were performed to drive metabolite ratios of NAA/Cr, mI/Cr and Cho/Cr. We acquired the data from four regions of interest (ROI) according to a standard protocol. The results documented a progressive elevation in mI/Cr in all four ROI in patient one and only one ROI (occipital gray matter) in patient 2. We also documented a decline in the NAA/Cr ratios in both cases in most ROI. These results were compared to six age-matched controls and confirmed statistically significant elevation in the mI in our cases. In conclusion, 1H-MRS alterations were suggestive of neuronal loss and inflammation in these patients. 1H-MRS may be a valuable tool in monitoring the disease progress and response to therapy in GM2 gangliosidoses. Elevation in the mI may prove to be more sensitive than the other metabolite alterations.
Collapse
Affiliation(s)
- Mitra Assadi
- Division of Neurology, University of Medicine and Dentistry of New Jersey, 3 Cooper Plaza, Suite 320, Camden, NJ 08103, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Autti T, Joensuu R, Aberg L. Decreased T2 signal in the thalami may be a sign of lysosomal storage disease. Neuroradiology 2007; 49:571-8. [PMID: 17334752 DOI: 10.1007/s00234-007-0220-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Lysosomal disorders are rare and are caused by genetically transmitted lysosomal enzyme deficiencies. A decreased T2 signal in the thalamus has occasionally been reported. AIMS Because the finding of bilateral abnormal signal intensity of the thalamus on T2-weighted images has not been systematically reviewed, and its value as a diagnostic tool critically evaluated, we carried out a systematic review of the literature. METHODS Articles in English with 30 trios of keywords were collected from PubMed. Exclusion criteria were lack of conventional T2-weighted images in the protocol and not being a human study. Finally, 111 articles were included. The thalamus was considered affected only if mentioned in the text or in the figure legends. RESULTS Some 117 patients with various lysosomal diseases and five patients with ceruloplasmin deficiency were reported to have a bilateral decrease in T2 signal intensity. At least one article reported a bilateral decrease in signal intensity of the thalami on T2-weighted images in association with GM1 and GM2 gangliosidosis and with Krabbe's disease, aspartylglucosaminuria, mannosidosis, fucosidosis, and mucolipidosis IV. Furthermore, thalamic alteration was a consistent finding in several types of neuronal ceroid lipofuscinosis (NCL) including CLN1 (infantile NCL), CLN2 (classic late infantile NCL), CLN3 (juvenile NCL), CLN5 (Finnish variant late infantile NCL), and CLN7 (Turkish variant late infantile NCL). CONCLUSION A decrease in T2 signal intensity in the thalami seems to be a sign of lysosomal disease.
Collapse
Affiliation(s)
- Taina Autti
- Helsinki Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 340, 00029-HUS, Helsinki, Finland.
| | | | | |
Collapse
|
19
|
Maegawa GHB, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, Giugliani R, Mahuran D, Clarke JTR. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 2006; 118:e1550-62. [PMID: 17015493 PMCID: PMC2910078 DOI: 10.1542/peds.2006-0588] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Juvenile GM2 gangliosidosis is a group of inherited neurodegenerative diseases caused by deficiency of lysosomal beta-hexosaminidase resulting in GM2 ganglioside accumulation in brain. The purpose of this study was to delineate the natural history of the condition and identify genotype-phenotype correlations that might be helpful in predicting the course of the disease in individual patients. METHODS A cohort of 21 patients with juvenile GM2 gangliosidosis, 15 with the Tay-Sachs variant and 6 with the Sandhoff variant, was studied prospectively in 2 centers. Our experience was compared with previously published reports on 134 patients. Information about clinical features, beta-hexosaminidase enzyme activity, and mutation analysis was collected. RESULTS In our cohort of patients, the mean (+/-SD) age of onset of symptoms was 5.3 +/- 4.1 years, with a mean follow-up time of 8.4 years. The most common symptoms at onset were gait disturbances (66.7%), incoordination (52.4%), speech problems (28.6%), and developmental delay (28.6%). The age of onset of gait disturbances was 7.1 +/- 5.6 years. The mean time for progression to becoming wheelchair-bound was 6.2 +/- 5.5 years. The mean age of onset of speech problems was 7.0 +/- 5.6 years, with a mean time of progression to anarthria of 5.6 +/- 5.3 years. Muscle wasting (10.6 +/- 7.4 years), proximal weakness (11.1 +/- 7.7 years), and incontinence of sphincters (14.6 +/- 9.7 years) appeared later in the course of the disease. Psychiatric disturbances and neuropathy were more prevalent in patients with the Sandhoff variant than in those with the Tay-Sachs variant. However, dysphagia, sphincter incontinence, and sleep problems occurred earlier in those with the Tay-Sachs variant. Cerebellar atrophy was the most common finding on brain MRI (52.9%). The median survival time among the studied and reviewed patients was 14.5 years. The genotype-phenotype correlation revealed that in patients with the Tay-Sachs variant, the presence of R178H and R499H mutations was predictive of an early onset and rapidly progressive course. The presence of either G269S or W474C mutations was associated with a later onset of symptoms along with a more slowly progressive disease course. CONCLUSIONS Juvenile GM2 gangliosidosis is clinically heterogeneous, not only in terms of age of onset and clinical features but also with regard to the course of the disease. In general, the earlier the onset of symptoms, the more rapidly the disease progresses. The Tay-Sachs and Sandhoff variants differed somewhat in the frequency of specific clinical characteristics. Speech deterioration progressed more rapidly than gait abnormalities in both the Tay-Sachs variant and Sandhoff variant groups. Among patients with the Tay-Sachs variant, the HEXA genotype showed a significant correlation with the clinical course.
Collapse
Affiliation(s)
- Gustavo H. B. Maegawa
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Stockley
- Department of Paediatrics, Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Tropak
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brenda Banwell
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Department of Paediatrics, Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Kok
- Centro do Genoma Humano, University of Sao Paulo, Sao Paulo, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Don Mahuran
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joe T. R. Clarke
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Erol I, Alehan F, Pourbagher MA, Canan O, Vefa Yildirim S. Neuroimaging findings in infantile GM1 gangliosidosis. Eur J Paediatr Neurol 2006; 10:245-8. [PMID: 17052929 DOI: 10.1016/j.ejpn.2006.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 07/12/2006] [Accepted: 08/22/2006] [Indexed: 11/21/2022]
Abstract
GM1 gangliosidosis is an autosomal recessive glycosphingolipid storage disease caused by defects in the enzyme beta-galactosidase. Three clinical forms (infantile-, juvenile-, and adult-onset) of the disease are recognized. Patients with infantile GM1 gangliosidosis present at birth or shortly thereafter with somatic and bony changes, followed by severe neurological deterioration ultimately leading to death within the first 2 years of life. We present the brain CT, MRI and MR spectroscopy (MRS) findings in a 17-month-old Turkish girl with infantile GM1 gangliosidosis. Neuroimaging findings in patients with infantile GM1 gangliosidosis have been reported only in a few cases. In this study, MRS of the thalamus was performed to study the metabolic changes in GM1 gangliosidosis. We showed a a decreased NAA/Cr ration and an increased Cho/Cr ratio. To our knowledge, this is the first report of magnetic resonance spectroscopy findings in type-1 GM1 gangliosidosis.
Collapse
Affiliation(s)
- Ilknur Erol
- Baskent University Faculty of Medicine, Department of Pediatrics, Neurology Division, Ankara, Turkey.
| | | | | | | | | |
Collapse
|