1
|
Karachaliou CE, Livaniou E. Biotin Homeostasis and Human Disorders: Recent Findings and Perspectives. Int J Mol Sci 2024; 25:6578. [PMID: 38928282 PMCID: PMC11203980 DOI: 10.3390/ijms25126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
2
|
Zhan T, Feng XZ, Cheng YY, Han GC, Chen Z, Kraatz HB. Electrochemical sensor for ultrasensitive sensing of biotin based on heme conjugated with gold nanoparticles and its electrooxidation mechanism. Food Chem 2023; 429:136997. [PMID: 37516051 DOI: 10.1016/j.foodchem.2023.136997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
We report the fabrication of a facile sensor using heme conjugated with gold nanoparticles (AuNPs) in situ on a glass carbon electrode (GCE) for the ultrasensitive determination of biotin without antibody or streptavidin. The use of heme and AuNPs as dual amplifiers allows a very broad detection range from 0.0050 to 50.0000 μmol·L-1 and a very low detection limit of 0.0016 μmol·L-1. The mechanistic aspects were elucidated using electrochemical analyses and frontier orbital calculations showing that the electrooxidation of biotin involves a one-electron and a one-proton transfer, generating biotin sulfoxide. The heme/AuNPs/GCE sensor exhibited excellent selectivity, reproducibility and stability, indicating high robustness. The recovery was between 97.20 and 105.70% with RSD less than 8.71%, suggesting good practicability. Our studies demonstrate that this approach can be used to detect and quantify biotin in a range of foods, including milk, infant formula, flour, orange juice, mango juice, egg white and egg yolk. Furthermore, all measurements do not require any intricate preparation or pre-treatment of the foods, thus representing a great potential for point-of-care testing.
Collapse
Affiliation(s)
- Tao Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Yun-Yun Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
3
|
Ramirez EL, Gibson JB, Jülich K. Vitamin-Dependent Genetic Disorders of Childhood. Pediatr Rev 2023; 44:618-631. [PMID: 37907415 DOI: 10.1542/pir.2022-005637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
| | - James B Gibson
- Department of Pediatrics, The University of Texas at Austin, Dell Medical School, Austin, TX
| | | |
Collapse
|
4
|
Ling S, Qiu W, Zhang H, Liang L, Lu D, Chen T, Zhan X, Wang Y, Gu X, Han L. Clinical, biochemical, and genetic analysis of 28 Chinese patients with holocarboxylase synthetase deficiency. Orphanet J Rare Dis 2023; 18:48. [PMID: 36890565 PMCID: PMC9997024 DOI: 10.1186/s13023-023-02656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND This study aimed to describe the clinical, biochemical, and molecular characteristics of Chinese patients with holocarboxylase synthetase (HLCS) deficiency, and to investigate the mutation spectrum of HCLS deficiency as well as their potential correlation with phenotype. METHODS A total of 28 patients with HLCS deficiency were enrolled between 2006 and 2021. Clinical and laboratory data were reviewed retrospectively from medical records. RESULTS Among the 28 patients, six patients underwent newborn screening, of which only one was missed. Therefore, 23 patients were diagnosed because of disease onset. Among all the patients, 24 showed varying degrees of symptoms such as rash, vomiting, seizures, and drowsiness, while only four cases remained asymptomatic nowadays. The concentration of 3-hydroxyisovalerylcarnitine (C5-OH) in blood and pyruvate, 3-hydroxypropionate, methylcitric acid, 3-hydroxyvaleric acid, 3-methylcrotonylglycine in urine were increased greatly among affected individuals. After prompt supplement of biotin, both the clinical and biochemical symptoms were dramatically resolved and nearly all patients developed normal intelligence and physique on follow-up. DNA sequencing revealed 12 known and 6 novel variants in the HLCS gene of patients. Among them, the variant of c.1522C > T was the most common. CONCLUSIONS Our findings expanded the spectrum of phenotypes and genotypes for HLCS deficiency in Chinese populations and suggested that with timely biotin therapy, patients with HLCS deficiency showed low mortality and optimistic prognosis. Newborn screening is crucial for early diagnosis, treatment, and long-term outcomes.
Collapse
Affiliation(s)
- Shiying Ling
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zheng Z, Yuan G, Zheng M, Lin Y, Zheng F, Jiang M, Zhu L, Fu Q. Clinical, biochemical, and genetic analysis of a Chinese Han pedigree with holocarboxylase synthetase deficiency: a case report. BMC MEDICAL GENETICS 2020; 21:155. [PMID: 32727382 PMCID: PMC7388215 DOI: 10.1186/s12881-020-01080-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/28/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Holocarboxylase synthetase (HLCS) deficiency is a rare inborn disorder of biotin metabolism, which results in defects in several biotin-dependent carboxylases and presents with metabolic ketoacidosis and skin lesions. CASE PRESENTATION In this paper, we report a Chinese Han pedigree with HLCS deficiency diagnosed by using next-generation sequencing and validated with Sanger sequencing of the HLCS and BTD genes. The Chinese proband carries the common missense mutation c.1522C > T (p.Arg508Trp) in exon 9 of the HLCS gene, which generates an increased Km value for biotin. A novel frameshift mutation c.1006_1007delGA (p.Glu336Thrfs*15) in exon 6 of the HLCS gene is predicted to be deleterious through PROVEAN and MutationTaster. A novel heterozygous mutation, c.638_642delAACAC (p.His213Profs*4), in the BTD gene is also identified. CONCLUSIONS The Chinese proband carries the reported Arg508Trp variant, the novel 2-bp frameshift mutation c.1006_1007delGA (p.Glu336Thrfs*15), which expands the mutational spectrum of the HLCS gene, and the novel heterozygous mutation c.638_642delAACAC (p.His213Profs*4), which expands the mutational spectrum of the BTD gene. Furthermore, reversible hearing damage is rarely reported in patients with HLCS deficiency, which deserves further discussion.
Collapse
Affiliation(s)
- Zhenzhu Zheng
- Neonatal disease screening center, Quanzhou Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Gaopin Yuan
- Neonatal disease screening center, Quanzhou Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Minyan Zheng
- Neonatal disease screening center, Quanzhou Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Yiming Lin
- Neonatal disease screening center, Quanzhou Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Faming Zheng
- Neonatal disease screening center, Quanzhou Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Mengyi Jiang
- Genuine Diagnostics Company Limited, 859 Shixiang West Road, Hangzhou, 310007, Zhejiang Province, China
| | - Lin Zhu
- Genuine Diagnostics Company Limited, 859 Shixiang West Road, Hangzhou, 310007, Zhejiang Province, China.
| | - Qingliu Fu
- Neonatal disease screening center, Quanzhou Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
6
|
Abstract
Inborn errors of metabolism, also known as inherited metabolic diseases, constitute an important group of conditions presenting with neurologic signs in newborns. They are individually rare but collectively common. Many are treatable through restoration of homeostasis of a disrupted metabolic pathway. Given their frequency and potential for treatment, the clinician should be aware of this group of conditions and learn to identify the typical manifestations of the different inborn errors of metabolism. In this review, we summarize the clinical, laboratory, electrophysiologic, and neuroimaging findings of the different inborn errors of metabolism that can present with florid neurologic signs and symptoms in the neonatal period.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/diagnostic imaging
- Metabolism, Inborn Errors/physiopathology
- Metabolism, Inborn Errors/therapy
- Neuroimaging
- Pregnancy
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Rare Disease Institute, Children's National Health System, Washington, DC, United States
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Reddy N, Calloni SF, Vernon HJ, Boltshauser E, Huisman TAGM, Soares BP. Neuroimaging Findings of Organic Acidemias and Aminoacidopathies. Radiographics 2018; 38:912-931. [PMID: 29757724 DOI: 10.1148/rg.2018170042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although individual cases of inherited metabolic disorders are rare, overall they account for a substantial number of disorders affecting the central nervous system. Organic acidemias and aminoacidopathies include a variety of inborn errors of metabolism that are caused by defects in the intermediary metabolic pathways of carbohydrates, amino acids, and fatty acid oxidation. These defects can lead to the abnormal accumulation of organic acids and amino acids in multiple organs, including the brain. Early diagnosis is mandatory to initiate therapy and prevent permanent long-term neurologic impairments or death. Neuroimaging findings can be nonspecific, and metabolism- and genetics-based laboratory investigations are needed to confirm the diagnosis. However, neuroimaging has a key role in guiding the diagnostic workup. The findings at conventional and advanced magnetic resonance imaging may suggest the correct diagnosis, help narrow the differential diagnosis, and consequently facilitate early initiation of targeted metabolism- and genetics-based laboratory investigations and treatment. Neuroimaging may be especially helpful for distinguishing organic acidemias and aminoacidopathies from other more common diseases with similar manifestations, such as hypoxic-ischemic injury and neonatal sepsis. Therefore, it is important that radiologists, neuroradiologists, pediatric neuroradiologists, and clinicians are familiar with the neuroimaging findings of organic acidemias and aminoacidopathies. ©RSNA, 2018.
Collapse
Affiliation(s)
- Nihaal Reddy
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Sonia F Calloni
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Hilary J Vernon
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Eugen Boltshauser
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Thierry A G M Huisman
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Bruno P Soares
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| |
Collapse
|
8
|
Mechanisms Governing Precise Protein Biotinylation. Trends Biochem Sci 2017; 42:383-394. [DOI: 10.1016/j.tibs.2017.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
|
9
|
Guibaud L, Collardeau-Frachon S, Lacalm A, Massoud M, Rossi M, Cordier MP, Vianey-Saban C. Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings. J Inherit Metab Dis 2017; 40:103-112. [PMID: 27853988 DOI: 10.1007/s10545-016-9992-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
Prenatal manifestations of inborn errors of metabolism (IEM) are related to severe disorders involving metabolic pathways active in the fetal period and not compensated by maternal or placental metabolism. Some prenatal imaging findings can be suggestive of such conditions-especially in cases of consanguinity and/or recurrence of symptoms-after exclusion of the most frequent nonmetabolic etiologies. Most of these prenatal imaging findings are nonspecific. They include mainly ascites and hydrops fetalis, intrauterine growth restriction (IUGR), central nervous system (CNS) anomalies, echogenic kidneys, epiphyseal stippling, craniosynostosis, and a wide spectrum of dysostoses. These anomalies can be isolated, but in most cases, an IEM is suggested by an association of features. It must be stressed that the diagnosis of an IEM in the prenatal period is based on a close collaboration between specialists in fetal imaging, medicine, genetics, biology, and pathology.
Collapse
Affiliation(s)
- Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Université Claude Bernard Lyon I, Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, 59, Boulevard Pinel, 69677, Lyon-Bron, France.
| | | | - Audrey Lacalm
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Mona Massoud
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Marie Pierre Cordier
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie, Groupement Hospitalier Est, Lyon Bron, France
| |
Collapse
|
10
|
Vianey-Saban C, Acquaviva C, Cheillan D, Collardeau-Frachon S, Guibaud L, Pagan C, Pettazzoni M, Piraud M, Lamazière A, Froissart R. Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 2016; 39:611-624. [PMID: 27393412 DOI: 10.1007/s10545-016-9947-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency. Cultured AF or fetal cells allow the measurement of enzyme activities for most IEMs, whole-cell assays, or metabolite measurements. The cultured cells or tissue samples taken after fetal death can be used for metabolic profiling, enzyme activities, and DNA extraction. Fetal blood can also be helpful. The identification of vacuolated cells orients toward an LSD, and plasma is useful for diagnosing peroxisomal disorders, FAODs, CSDs, some LSDs, and possibly CDGs and aminoacidopathies. We investigated AF of 1700 pregnancies after exclusion of frequent etiologies of nonimmune hydrops fetalis and identified 108 fetuses affected with LSDs (6.3 %), 29 of them with mucopolysaccharidosis type VII (MPS VII), and six with GSD IV (0.3 %). In the AF of 873 pregnancies, investigated because of intrauterine growth restriction and/or abnormal genitalia, we diagnosed 32 fetuses affected with Smith-Lemli-Opitz syndrome (3.7 %).
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France.
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France.
| | - Cécile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| | - David Cheillan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
| | - Sophie Collardeau-Frachon
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
- Département de Pathologie, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant CHU de Lyon, Lyon, France
| | - Cécile Pagan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Lyon Neuroscience Research Center, CNRS UMR5292; INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Magali Pettazzoni
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Monique Piraud
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Antonin Lamazière
- Département PM2, Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, APHP, Hôpital Saint Antoine, Paris, France, Laboratoire de spectrométrie de masse, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités-UPMC, Paris, France
| | - Roseline Froissart
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| |
Collapse
|