1
|
Grynblat J, Bogaard HJ, Eyries M, Meyrignac O, Savale L, Jaïs X, Ghigna MR, Celant L, Meijboom L, Houweling AC, Levy M, Antigny F, Chaouat A, Cottin V, Guignabert C, Coulet F, Sitbon O, Bonnet D, Humbert M, Montani D. Pulmonary vascular phenotype identified in patients with GDF2 ( BMP9) or BMP10 variants: an international multicentre study. Eur Respir J 2024; 63:2301634. [PMID: 38514094 DOI: 10.1183/13993003.01634-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.
Collapse
Affiliation(s)
- Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Harm Jan Bogaard
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mélanie Eyries
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle Adulte, Biomaps - Laboratoire d'Imagerie Multimodale - CEA-INSERM-CNRS, Hôpital de Bicêtre, DMU 14 Smart Imaging, AP-HP, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Department of Pathology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France
| | - Lucas Celant
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lilian Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marilyne Levy
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | | | - Ari Chaouat
- Département de Pneumologie, Université de Lorraine, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases and Centre for Pulmonary Hypertension, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Christophe Guignabert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
| | - Florence Coulet
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Damien Bonnet
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Neves da Silva HV, Weinman JP, Englund EK, Deterding RR, Ivy DD, Browne LP. Computed tomographic findings in TBX4 mutation: a common cause of severe pulmonary artery hypertension in children. Pediatr Radiol 2024; 54:199-207. [PMID: 38191808 DOI: 10.1007/s00247-023-05848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Mutations in the T-Box 4 (TBX4) gene are a lesser-known cause of heritable pulmonary arterial hypertension (PAH). Patients with heritable PAH typically have worse outcomes when compared with patients with idiopathic PAH, yet little is known about the phenotypical presentation of this mutation. OBJECTIVE This article reviews the pattern of chest CT findings in pediatric patients with PAH and TBX4 mutations and compares their radiographic presentation with those of age-matched patients with PAH but without TBX4 mutations. MATERIALS AND METHODS A retrospective chart review of the pulmonary arterial hypertension database was performed. Pediatric patients with PAH-confirmed TBX4 mutations and an available high CT were included. Fifteen (9 females) patients met the inclusion criteria. Fourteen (8 females) age-matched controls with diagnosed PAH but without TBX4 mutations were also evaluated. The median age at diagnosis was 7.4 years (range: 0.1-16.4 years). Demographic information and clinical outcomes were collected. CTs of the chest were reviewed for multiple airway, parenchymal, and structural abnormalities (16 imaging findings in total). Chi-square tests were used to compare the prevalence of each imaging finding in the TBX4 cohort compared to the control group. RESULTS Patients with TBX-4 mutations had increased presence of peripheral or subpleural irregularity (73% vs 0%, P < 0.01), cystic lucencies (67% vs 7%, P < 0.01), and linear or reticular opacity (53% vs 0%, P < 0.01) compared to the control group. Ground glass opacities, bronchiectasis, and centrilobular nodules were not significantly different between the two patient groups (P > 0.05). CONCLUSION TBX4 mutations have distinct imaging phenotypes in pediatric patients with PAH. Compared to patients without this mutation, patients with TBX-4 genes typically present with peripheral or subpleural irregularity, cystic lucencies, and linear or reticular opacity.
Collapse
Affiliation(s)
- Helio V Neves da Silva
- Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA.
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Internal Medicine, Alameda Health System, Highland Hospital, Oakland, CA, USA.
| | - Jason P Weinman
- Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erin K Englund
- Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Robin R Deterding
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- The Breathing Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Dunbar D Ivy
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- The Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Lorna P Browne
- Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Zhao Q, Zhang R, Shi J, Xie H, Zhang L, Li F, Jiang R, Wu W, Luo C, Qiu H, Li H, He J, Yuan P, Liu J, Gong S, Wang L. Imaging Features in BMPR2 Mutation-associated Pulmonary Arterial Hypertension. Radiology 2023; 307:e222488. [PMID: 37191488 DOI: 10.1148/radiol.222488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Background Germline mutation in the BMPR2 gene is common in patients with pulmonary arterial hypertension (PAH). However, its association with imaging findings in these patients is, to the knowledge of the authors, unknown. Purpose To characterize distinctive pulmonary vascular abnormalities at CT and pulmonary artery angiography in patients with and without BMPR2 mutation. Materials and Methods In this retrospective study, chest CT scans, pulmonary artery angiograms, and genetic test data were acquired for patients diagnosed with idiopathic PAH (IPAH) or heritable PAH (HPAH) between January 2010 and December 2021. Perivascular halo, neovascularity, centrilobular ground-glass opacity (GGO), and panlobular GGO were evaluated at CT and graded on a four-point severity scale by four independent readers. Clinical characteristics and imaging features between patients with BMPR2 mutation and noncarriers were analyzed using the Kendall rank-order coefficient and the Kruskal-Wallis test. Results This study included 82 patients with BMPR2 mutation (mean age, 38 years ± 15 [SD]; 34 men; 72 patients with IPAH and 10 patients with HPAH) and 193 patients without the mutation, all with IPAH (mean age, 41 years ± 15; 53 men). A total of 115 patients (42%; 115 of 275) had neovascularity, and 56 patients (20%; 56 of 275) had perivascular halo at CT, and so-called frost crystals were observed on pulmonary artery angiograms in 14 of 53 (26%) patients. Compared with patients without BMPR2 mutation, patients with BMPR2 mutation more frequently showed two distinctive radiographic manifestations, perivascular halo and neovascularity (38% [31 of 82] vs 13% [25 of 193] in perivascular halo [P < .001] and 60% [49 of 82] vs 34% [66 of 193] in neovascularity [P < .001], respectively). "Frost crystals" were more frequent in patients with BMPR2 mutation compared with noncarriers (53% [10 of 19] vs 12% [four of 34]; P < .01). Severe perivascular halo frequently coexisted with severe neovascularity in patients with BMPR2 mutation. Conclusion Patients with PAH with BMPR2 mutation showed distinctive features at CT, specifically perivascular halo and neovascularity. This suggested a link between the genetic, pulmonary, and systemic manifestations that underly the pathogenesis of PAH. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Qinhua Zhao
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Rui Zhang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Jingyun Shi
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Huikang Xie
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Liping Zhang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Fei Li
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Rong Jiang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Wenhui Wu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Cijun Luo
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Hongling Qiu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Huiting Li
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Jing He
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Ping Yuan
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - JinMing Liu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Sugang Gong
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Lan Wang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| |
Collapse
|