1
|
Morales-Tisnés T, De Leon-Benedetti LS, Ramirez-Suarez KI, Noor AM, Chauhan A, Otero HJ, Biko DM. Dynamic contrast-enhanced magnetic resonance lymphangiography: a simple algorithm for image interpretation. Pediatr Radiol 2024:10.1007/s00247-024-06136-8. [PMID: 39708154 DOI: 10.1007/s00247-024-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/03/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024]
Abstract
Dynamic contrast-enhanced magnetic resonance lymphangiography is a high-resolution imaging technique that has emerged as the preferred method for evaluating lymphatic anatomy and flow dynamics due to its precise anatomical detail. The lymphatic system has a complex anatomical distribution, and variability is common among individuals with cardiac abnormalities, particularly congenital heart disease. Lymphatic imaging has recently been revolutionized by the introduction of MR lymphangiography. However, challenges in interpreting these images persist due to limited availability of this modality, and the expertise required for its performance and interpretation, especially in pediatric patients. We aim to outline a simple algorithm employed in our practice for interpreting MR lymphangiography images for pediatric radiologists.
Collapse
Affiliation(s)
- Tatiana Morales-Tisnés
- Department of Radiology, The Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 734 Schuylkill Ave, Philadelphia, PA, 19146, USA.
| | - Laura S De Leon-Benedetti
- Department of Radiology, The Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 734 Schuylkill Ave, Philadelphia, PA, 19146, USA
| | - Karen I Ramirez-Suarez
- Department of Radiology, The Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 734 Schuylkill Ave, Philadelphia, PA, 19146, USA
| | - Abass M Noor
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA
- Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Ankita Chauhan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA
- Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA
- Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA
- Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Collins JD, Thompson SM. Noncontrast MR Lymphangiography to Identify Progression of Lymphatic Abnormalities over the Course of Fontan Completion. Radiol Cardiothorac Imaging 2024; 6:e240201. [PMID: 39051879 PMCID: PMC11369648 DOI: 10.1148/ryct.240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Jeremy D. Collins
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Scott M. Thompson
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
3
|
Ramirez-Suarez KI, Schoeman S, Otero HJ, Smith CL, Biko DM. State-of-the-art imaging for children with central lymphatic disorders. Semin Pediatr Surg 2024; 33:151417. [PMID: 38824737 DOI: 10.1016/j.sempedsurg.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lymphatic imaging plays a crucial role in novel lymphatic interventions, offering valuable insights into central lymphatic drainage. Lymphatic system abnormalities may appear in various pediatric disorders, and accurate imaging is crucial for effective diagnosis and tailored therapeutic interventions. Traditional imaging modalities have offered valuable insights, but the demand for non-invasive, high-resolution techniques has fueled the development of innovative lymphatic imaging methods. In this review, we explore the state of the art in lymphatic imaging specifically within the context of pediatric surgery.
Collapse
Affiliation(s)
- Karen I Ramirez-Suarez
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA.
| | - Sean Schoeman
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA; Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Smith
- Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA; Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, USA; Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Smood B, Katsunari T, Smith C, Dori Y, Mavroudis CD, Morton S, Davis A, Chen JM, Gaynor JW, Kilbaugh T, Maeda K. Preliminary report of a thoracic duct-to-pulmonary vein lymphovenous anastomosis in swine: A novel technique and potential treatment for lymphatic failure. Semin Pediatr Surg 2024; 33:151427. [PMID: 38823193 PMCID: PMC11265529 DOI: 10.1016/j.sempedsurg.2024.151427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
OBJECTIVE The thoracic duct is the largest lymphatic vessel in the body, and carries fluid and nutrients absorbed in abdominal organs to the central venous circulation. Thoracic duct obstruction can cause significant failure of the lymphatic circulation (i.e., protein-losing enteropathy, plastic bronchitis, etc.). Surgical anastomosis between the thoracic duct and central venous circulation has been used to treat thoracic duct obstruction but cannot provide lymphatic decompression in patients with superior vena cava obstruction or chronically elevated central venous pressures (e.g., right heart failure, single ventricle physiology, etc.). Therefore, this preclinical feasibility study sought to develop a novel and optimal surgical technique for creating a thoracic duct-to-pulmonary vein lymphovenous anastomosis (LVA) in swine that could remain patent and preserve unidirectional lymphatic fluid flow into the systemic venous circulation to provide therapeutic decompression of the lymphatic circulation even at high central venous pressures. METHODS A thoracic duct-to-pulmonary vein LVA was attempted in 10 piglets (median age 80 [IQR 80-83] days; weight 22.5 [IQR 21.4-26.8] kg). After a right thoracotomy, the thoracic duct was mobilized, transected, and anastomosed to the right inferior pulmonary vein. Animals were systemically anticoagulated on post-operative day 1. Lymphangiography was used to evaluate LVA patency up to post-operative day 7. RESULTS A thoracic duct-to-pulmonary vein LVA was successfully completed in 8/10 (80.0%) piglets, of which 6/8 (75.0%) survived to the intended study endpoint without any complication (median 6 [IQR 4-7] days). Initially, 2/10 (20.0%) LVAs were aborted intraoperatively, and 2/10 (20.0%) animals were euthanized early due to post-operative complications. However, using an optimized surgical technique, the success rate for creating a thoracic duct-to-pulmonary vein LVA in six animals was 100%, all of which survived to their intended study endpoint without any complications (median 6 [IQR 4-7] days). LVAs remained patent for up to seven days. CONCLUSION A thoracic duct-to-pulmonary vein LVA can be completed safely and remain patent for at least one week with systemic anticoagulation, which provides an important proof-of-concept that this novel intervention could effectively offload the lymphatic circulation in patients with lymphatic failure and elevated central venous pressures.
Collapse
Affiliation(s)
- Benjamin Smood
- Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, PA, United States; Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Terakawa Katsunari
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher Smith
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yoav Dori
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Constantine D Mavroudis
- Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, PA, United States; Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah Morton
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Anthony Davis
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Jonathan M Chen
- Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, PA, United States; Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - J William Gaynor
- Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, PA, United States; Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Todd Kilbaugh
- Resuscitation Science Center, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States; Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Katsuhide Maeda
- Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, PA, United States; Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
5
|
Smood B, Smith C, Dori Y, Mavroudis CD, Fuller S, Gaynor JW, Maeda K. Lymphatic failure and lymphatic interventions: Knowledge gaps and future directions for a new frontier in congenital heart disease. Semin Pediatr Surg 2024; 33:151426. [PMID: 38820801 PMCID: PMC11229519 DOI: 10.1016/j.sempedsurg.2024.151426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Lymphatic failure is a broad term that describes the lymphatic circulation's inability to adequately transport fluid and solutes out of the interstitium and into the systemic venous circulation, which can result in dysfunction and dysregulation of immune responses, dietary fat absorption, and fluid balance maintenance. Several investigations have recently elucidated the nexus between lymphatic failure and congenital heart disease, and the associated morbidity and mortality is now well-recognized. However, the precise pathophysiology and pathogenesis of lymphatic failure remains poorly understood and relatively understudied, and there are no targeted therapeutics or interventions to reliably prevent its development and progression. Thus, there is growing enthusiasm towards the development and application of novel percutaneous and surgical lymphatic interventions. Moreover, there is consensus that further investigations are needed to delineate the underlying mechanisms of lymphatic failure, which could help identify novel therapeutic targets and develop innovative procedures to improve the overall quality of life and survival of these patients. With these considerations, this review aims to provide an overview of the lymphatic circulation and its vasculature as it relates to current understandings into the pathophysiology and pathogenesis of lymphatic failure in patients with congenital heart disease, while also summarizing strategies for evaluating and managing lymphatic complications, as well as specific areas of interest for future translational and clinical research efforts.
Collapse
Affiliation(s)
- Benjamin Smood
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America.
| | - Christopher Smith
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104 United States of America
| | - Yoav Dori
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104 United States of America
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Stephanie Fuller
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Katsuhide Maeda
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America; Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
6
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Kuonqui K, Campbell AC, Sarker A, Roberts A, Pollack BL, Park HJ, Shin J, Brown S, Mehrara BJ, Kataru RP. Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease. Cells 2023; 13:68. [PMID: 38201272 PMCID: PMC10778007 DOI: 10.3390/cells13010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|