1
|
Agostini VO, Ozorio CP. Biofouling initial succession on offshore artificial substrate under subtropical conditions. AN ACAD BRAS CIENC 2022; 94:e20201357. [PMID: 36477990 DOI: 10.1590/0001-3765202220201357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
This study presents the initial stages of the macrofouling community on artificial substrate exposed to the offshore subtropical marine environment, and the contribution of depth (3 and 22m), exposure time (1-2-4-7-10-13-weeks), UV-radiation, rainfall, temperature, pH, salinity, water chlorophyll-a, and zooplankton supply to organism establishment. Steel substrates were placed horizontally on the structure of a pipeline monobuoy off the southern shore of Brazil (Tramandaí beach), and the ecological succession was monitored by six random removals per depth during the summer-autumn of 2011. Approximately 88.5% of the quantified settled individuals comprised fouling fauna and 11.5% vagile and sedentary fauna, although the taxa richness was higher for non-sessile invertebrates. Species richness and organism density up to four weeks were significantly higher at 3m-depth. After this period, a higher density of organisms was found at 22m, while during the whole study the species richness and diversity remained higher at 3m-depth. Zooplankton composition did not show a simultaneous temporal relationship with invertebrate recruitment at any depth; however, increasing the exposure time, the similarity between the planktonic and benthic communities also increased. Meroplankton, tychoplankton, and holoplankton were recorded on the substrates. This study showed that the depth of available substrates affects the macrofouling establishment, which is mainly associated with UV-radiation, exposure time, and ecological interspecific interactions.
Collapse
Affiliation(s)
- Vanessa O Agostini
- Universidade Federal do Rio Grande do Sul (UFRGS), Regenera Moléculas do Mar, Centro de Biotecnologia, Avenida Bento Gonçalves 9500, 96203-900 Porto Alegre, RS, Brazil
| | - Carla P Ozorio
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento Interdisciplinar, Campus Litoral Norte/ Km 92, RS-030, 11700, 95590-000 Tramandaí, RS, Brazil
| |
Collapse
|
2
|
Guo XP, Niu ZS, Lu DP, Feng JN, Chen YR, Tou FY, Liu M, Yang Y. Bacterial community structure in the intertidal biofilm along the Yangtze Estuary, China. MARINE POLLUTION BULLETIN 2017; 124:314-320. [PMID: 28755810 DOI: 10.1016/j.marpolbul.2017.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
In this study, the 16S rRNA-based Illumina MiSeq sequencing was used to investigate the bacterial community structure and composition of intertidal biofilm taken along the Yangtze Estuary. The results showed that 680,721 valid sequences of seven samples were assigned to 147,239 operational taxonomic units, which belonged to 49 phyla, 246 family and 314 genera. Compared to other studies on water and sediments in the study area, biofilms showed highest index of bacterial diversity and abundances. At different taxonomic levels, both dominant taxa and their abundances varied among the seven samples, with Proteobacteria as the dominant phylum in general. Principal component analysis and cluster analysis revealed that bacterial communities at WSK differed from those at other sampling sites. Salinity, dissolved oxygen, pH and nutrients were the vital environmental factors to influence the bacterial community structure of biofilms. These results may provide a new insight into the microbial ecology in estuarine environments.
Collapse
Affiliation(s)
- Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jing-Nan Feng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
3
|
Nielsen SJ, Harder T, Steinberg PD. Sea urchin larvae decipher the epiphytic bacterial community composition when selecting sites for attachment and metamorphosis. FEMS Microbiol Ecol 2014; 91:1-9. [PMID: 25764535 DOI: 10.1093/femsec/fiu011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most marine invertebrates have dispersive larvae and relatively immobile adults. These developmental stages are linked by a settlement event, which is often mediated by specific cues in bacterial biofilms. While larvae distinguish between biofilms from different environments, it remains unknown if they receive information from all, only a few or even just a single bacterial species in natural biofilms. Here we asked how specific is larval settlement to the bacterial community structure and/or taxonomically distinguishable groups of bacteria in epiphytic marine biofilms? We used novel multivariate statistical approaches to investigate if larval settlement of two sea urchins correlated with the microbial community composition. Larval settlement of Heliocidaris erythrogramma revealed a strong correlation with the community composition, highlighted by canonical analysis of principle components, a constrained ordination technique. Using this technique, the importance of operational taxonomic units (OTUs) within communities relative to larval settlement was investigated. Larval settlement not only correlated, both positively and negatively, with the epiphytic bacterial community composition but also with the relative abundance of few OTUs within these communities. In contrast, no such correlation was observed for the other urchin, Holopneustes purpurascens, whose larvae likely respond to bacterial biofilms in a more general way and specifically respond to a defined settlement cue of algal origin.
Collapse
Affiliation(s)
- Shaun J Nielsen
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, 2052 NSW, Australia
| | - Tilmann Harder
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, 2052 NSW, Australia
| | - Peter D Steinberg
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, 2052 NSW, Australia
| |
Collapse
|
4
|
Lee OO, Chung HC, Yang J, Wang Y, Dash S, Wang H, Qian PY. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement. MICROBIAL ECOLOGY 2014; 68:81-93. [PMID: 24402362 DOI: 10.1007/s00248-013-0348-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups.
Collapse
Affiliation(s)
- On On Lee
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
5
|
Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 2013; 15:2879-93. [PMID: 23869714 DOI: 10.1111/1462-2920.12186] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023]
Abstract
The search for new antifouling (AF) coatings that are environmentally benign has led to renewed interest in the ways that micro-organisms colonize substrates in the marine environment. This review covers recently published research on the global species composition and dynamics of marine biofilms, consisting mainly of bacteria and diatoms found on man-made surfaces including AF coatings. Marine biofilms directly interact with larger organisms (macrofoulers) during colonization processes; hence, recent literature on understanding the basis of the biofilm/macrofouling interactions is essential and will also be reviewed here. Overall, differences have been identified in species composition between biofilm and planktonic forms for both diatoms and bacteria at various exposure sites. In most studies, the underlying biofilm was found to induce larval and spore settlement of macrofoulers; however, issues such as reproducibility, differences in exposure sites and biofilm composition (natural multispecies vs. monospecific species) may influence the outcomes.
Collapse
Affiliation(s)
- Maria Salta
- National Centre for Advanced Tribology at Southampton, Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Julian A Wharton
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Yves Blache
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France
| | - Keith R Stokes
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.,Physical Sciences Department, DSTL, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | - Jean-Francois Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France
| |
Collapse
|
6
|
Tait K, Havenhand J. Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvisus cyprid settlement. Mol Ecol 2013; 22:2588-602. [PMID: 23506419 DOI: 10.1111/mec.12273] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 01/29/2023]
Abstract
Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N-acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL-producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL-degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3-oxo-C6-HSL), rhlI from Pseudomonas aeruginosa (C4-HSL/C6-HSL), vanI from V. anguillarum (3-oxo-C10-HSL) and sulI from Sulfitobacter sp. BR1 (C4-HSL, 3-hydroxy-C6-HSL, C8-HSL and 3-hydroxy-C10-HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8-HSL, 3-oxo-C10-HSL and C12-HSL) at concentrations similar to those found within natural biofilms (5 μm) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL-signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown.
Collapse
Affiliation(s)
- Karen Tait
- Plymouth Marine Laboratory, Plymouth, UK.
| | | |
Collapse
|
7
|
Yang JL, Shen PJ, Liang X, Li YF, Bao WY, Li JL. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. BIOFOULING 2013; 29:247-259. [PMID: 23452123 DOI: 10.1080/08927014.2013.764412] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.
Collapse
Affiliation(s)
- Jin-Long Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
8
|
Nasrolahi A, Stratil SB, Jacob KJ, Wahl M. A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment. FEMS Microbiol Ecol 2012; 81:583-95. [PMID: 22486721 DOI: 10.1111/j.1574-6941.2012.01384.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 11/26/2022] Open
Abstract
Effects of epibiotic bacteria associated with macroalgae on barnacle larval attachment were investigated. Eight bacterial isolates obtained from samples of three macroalga species were cultured as monospecies bacterial films and tested for their activity against barnacle (Amphibalanus improvisus) attachment in field experiments (Western Baltic Sea). Furthermore, natural biofilm communities associated with the surface of the local brown alga, Fucus vesiculosus, which were exposed to different temperatures (5, 15 and 20 °C), were harvested and subsequently tested. Generally, monospecies bacterial biofilms, as well as natural microbial assemblages, inhibited barnacle attachment by 20-67%. denaturing gradient gel electrophoresis fingerprints showed that temperature treatment shifted the bacterial community composition and weakened the repellent effects at 20 °C. Repellent effects were absent when settlement pressure of cyprids was high. Nonviable bacteria tended to repel cyprids when compared to the unfilmed surfaces. We conclude that biofilms can have a repellent effect benefiting the host by preventing heavy fouling on its surface. However, severe settlement pressure, as well as stressful temperature, may reduce the protective effects of the alga's biofilm. Our results add to the notion that the performance of F. vesiculosus may be reduced by multiple stressors in the course of global warming.
Collapse
Affiliation(s)
- Ali Nasrolahi
- Department of Marine Ecology, Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany
| | | | | | | |
Collapse
|
9
|
Wang C, Bao WY, Gu ZQ, Li YF, Liang X, Ling Y, Cai SL, Shen HD, Yang JL. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. BIOFOULING 2012; 28:249-256. [PMID: 22435742 DOI: 10.1080/08927014.2012.671303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Settlement and metamorphosis of pediveliger larvae of Mytilus coruscus in response to natural biofilms was investigated in the laboratory. Pediveliger larvae settled and metamorphosed in response to biofilms and post-larval settlement and metamorphosis increased with biofilm age. The activity of the biofilm was positively correlated with biofilm age, dry weight, bacterial density and diatom density, but had no apparent relationship with chlorophyll a concentration. The change in bacterial community composition corresponding to biofilm age may explain differences in the age-dependent inducing activities of biofilms, which in turn may play an important role in larval settlement in this species.
Collapse
Affiliation(s)
- Chong Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP, Blackall LL, Steinberg PD, Harder T. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS One 2011; 6:e19082. [PMID: 21559509 PMCID: PMC3084748 DOI: 10.1371/journal.pone.0019082] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/27/2011] [Indexed: 11/20/2022] Open
Abstract
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.
Collapse
Affiliation(s)
- Jan Tebben
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
| | | | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Australia
| | - David Abrego
- Australian Institute of Marine Science, Townsville, Australia
| | - Andrew P. Negri
- Australian Institute of Marine Science, Townsville, Australia
| | | | - Peter D. Steinberg
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- Sydney Institute of Marine Science, Mosman, Australia
| | - Tilmann Harder
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- Australian Institute of Marine Science, Townsville, Australia
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Abstract
The Balanus amphitrite attachment inhibition assay, developed by Rittschof et al. (1992), has been widely used for screening antifouling compounds. One shortcoming of this assay, however, is the low (often < 40%) attachment rate of cyprids, including in the controls that contain seawater only. In this study, trapping of cyprids at the air-water interface was found to be a main contributor to the low attachment rate. Procedures to eliminate the air-water interface were thus introduced. With the improved bioassay, a much higher cyprid attachment rate (>70%) was attained. To further illustrate the usefulness of the improved assay (ie eliminating the air-water interface), the effects of the length of cyprid storage and the effect of a reference biocide, tributyltin chloride, on the survival and attachment rate of the cyprids were examined. The length of cyprid storage was important, with newly molted cyprids, 3- to 9-day old cyprids and 12-day old cyprids having an attachment rate of 43%,>75% and 36%, respectively. The low attachment rate in the newly molted cyprids was due to a high percentage of cyprids that still swam at the end of exposure period, whereas the low attachment rate in the 12-day old cyprids was due to a high mortality rate. The cyprids showed an EC50 of 22 microg l(-1) for attachment inhibition and LC50 of 25 microg l(-1) for mortality. It is concluded that the air-water interface has an important confounding effect on cyprid attachment rate in the conventional B. amphitrite attachment assay. By eliminating the air-water interface more robust quantitative assay results were obtained.
Collapse
Affiliation(s)
- Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China.
| | | | | |
Collapse
|