1
|
Kozma Kim Z, Park YS, Yang TJ, Kim H, Lee YH. Root microbiome of Panax ginseng in comparison with three other medicinal plants in the families of Araliaceae and Apiaceae. Sci Rep 2024; 14:30381. [PMID: 39639122 PMCID: PMC11621546 DOI: 10.1038/s41598-024-81942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
The intricate interplay between endophytic microorganisms and plants in the upkeep of biodiversity, the stability of communities, and the operation of ecosystems needs to be more adequately extensive. Although root-associated microbial communities of plants have been revealed for the last decade, the understanding of bacterial and fungal communities associated with the roots of medicinal plants remains elusive. To highlight the importance of Panax ginseng Meyer (PG) in our research, we investigated the root endophytic bacterial and fungal communities of Panax ginseng Meyer (PG), alongside Aralia cordata (AC), Angelica gigas (AG), and Peucedanum japonicum (PJ), utilizing amplicon-based community profiling and advanced bioinformatic methodologies. The study aimed to investigate the root-endophytic microbiota of ginseng and three other medicinal plants and identify similarities in microbiome composition across different plant species and families. Results revealed that root-endophytic bacterial and fungal communities were influenced by plant species and phylogenetic differences at the family level. Differential abundance tests and random forest models showed microbial features within the same plant family. PG had a distinctive microbial profile with significant B1653_o_Enterobacterales and F8_o_Helotiales. PG had a core microbiome, B10_Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and a more evenly distributed microbial network compared to AG, PJ, and AC. Our research reveals the intricate endophytic microbial communities within the roots of medicinal plants, pinpointing specific taxa that may be pivotal to their medicinal qualities and overall plant health. These insights carry notable implications for future studies, particularly those focused on the endophytes of PG and their secondary metabolites, as they deepen our understanding of plant-microbe interactions and their role in enhancing the plants' therapeutic potential.
Collapse
Grants
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
Collapse
Affiliation(s)
- Zerrin Kozma Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
- Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
- Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, Korea.
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea.
| |
Collapse
|
2
|
Shchyogolev SY, Burygin GL, Dykman LA, Matora LY. Phylogenetic and pangenomic analyses of members of the family Micrococcaceae related to a plant-growth-promoting rhizobacterium isolated from the rhizosphere of potato (Solanum tuberosum L.). Vavilovskii Zhurnal Genet Selektsii 2024; 28:308-316. [PMID: 38952705 PMCID: PMC11214901 DOI: 10.18699/vjgb-24-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 07/03/2024] Open
Abstract
We report the results of taxonomic studies on members of the family Micrococcaceae that, according to the 16S rRNA, internal transcribed spacer 1 (ITS1), average nucleotide identity (ANI), and average amino acid identity (AAI) tests, are related to Kocuria rosea strain RCAM04488, a plant-growth-promoting rhizobacterium (PGPR) isolated from the rhizosphere of potato (Solanum tuberosum L.). In these studies, we used whole-genome phylogenetic tests and pangenomic analysis. According to the ANI > 95 % criterion, several known members of K. salina, K. polaris, and K. rosea (including K. rosea type strain ATCC 186T) that are related most closely to isolate RCAM04488 in the ITS1 test should be assigned to the same species with appropriate strain verification. However, these strains were isolated from strongly contrasting ecological and geographical habitats, which could not but affect their genotypes and phenotypes and which should be taken into account in evaluation of their systematic position. This contradiction was resolved by a pangenomic analysis, which showed that the strains differed strongly in the number of accessory and strain-specific genes determining their individuality and possibly their potential for adaptation to different ecological niches. Similar results were obtained in a full-scale AAI test against the UniProt database (about 250 million records), by using the AAI-profiler program and the proteome of K. rosea strain ATCC 186T as a query. According to the AAI > 65 % criterion, members of the genus Arthrobacter and several other genera belonging to the class Actinomycetes, with a very wide geographical and ecological range of sources of isolation, should be placed into the same genus as Kocuria. Within the paradigm with vertically inherited phylogenetic markers, this could be regarded as a signal for their following taxonomic reclassification. An important factor in this case may be the detailing of the gene composition of the strains and the taxonomic ratios resulting from analysis of the pangenomes of the corresponding clades.
Collapse
Affiliation(s)
- S Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Saratov Federal Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - G L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Saratov Federal Scientific Centre of the Russian Academy of Sciences, Saratov, Russia Saratov State Vavilov Agrarian University, Saratov, Russia
| | - L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Saratov Federal Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - L Yu Matora
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Saratov Federal Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
3
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Stefani E, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Maiorano A, Streissl F, Reignault PL. Pest categorisation of Pantoea ananatis. EFSA J 2023; 21:e07849. [PMID: 36895574 PMCID: PMC9989851 DOI: 10.2903/j.efsa.2023.7849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The EFSA Plant Health Panel performed a pest categorisation of Pantoea ananatis, a Gram-negative bacterium belonging to the Erwiniaceae family. P. ananatis is a well-defined taxonomic unit; nonetheless, its pathogenic nature is not well defined and non-pathogenic populations are known to occupy several, very different environmental niches as saprophytes, or as plant growth promoting bacteria or biocontrol agents. It is also described as a clinical pathogen causing bacteraemia and sepsis or as a member of the gut microbiota of several insects. P. ananatis is the causal agent of different diseases affecting numerous crops: in particular, centre rot of onion, bacterial leaf blight and grain discoloration of rice, leaf spot disease of maize and eucalyptus blight/dieback. A few insect species have been described as vectors of P. ananatis, among them, Frankliniella fusca and Diabrotica virgifera virgifera. This bacterium is present in several countries in Europe, Africa, Asia, North and South America, and Oceania from tropical and subtropical regions to temperate areas worldwide. P. ananatis has been reported from the EU territory, both as pathogen on rice and maize and as an environmental, non-pathogenic bacterium in rice marshes and poplar rhizosoil. It is not included in EU Commission Implementing Regulation 2019/2072. The pathogen can be detected on its host plants using direct isolation, or PCR-based methods. The main pathway for the entry of the pathogen into the EU territory is host plants for planting, including seeds. In the EU, there is a large availability of host plants, with onion, maize, rice and strawberry being the most important ones. Therefore, disease outbreaks are possible almost at any latitude, except in the most northern regions. P. ananatis is not expected to have frequent or consistent impact on crop production and is not expected to have any environmental impact. Phytosanitary measures are available to mitigate the further introduction and spread of the pathogen into the EU on some hosts. The pest does not satisfy the criteria, which are within the remit for EFSA to evaluate whether the pest meets the definition of a Union quarantine pest. P. ananatis is probably widely distributed in different ecosystems in the EU. It may impact some specific hosts such as onions while on other hosts such as rice it has been reported as a seed microbiota without causing any impact and can even be beneficial to plant growth. Hence, the pathogenic nature of P. ananatis is not fully established.
Collapse
|
4
|
Li Y, Jones FG, Zhang B, Cui J, Zhang W. The effect of short-term fallowing on the microbial communities in forest soil cultivated with ginseng: Preliminary research. PeerJ 2023; 11:e14758. [PMID: 36743964 PMCID: PMC9897065 DOI: 10.7717/peerj.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Background Continuous cultivation of ginseng crops in fixed plots can lead to disease outbreaks, yield losses and replanting failures. Fallow periods can help restore soil health and increase the sustainability of agricultural systems; however, taking land out of production for extended periods is often not feasible. Short-term fallow periods could restore soil health, but few studies have examined the effects of short-term fallow treatment on the health of soil in ginseng fields. Methods In this preliminary study, we used metagenomic analysis to assess changes in the abundance of major ginseng pathogens and soil health overall following a short-term fallow period in a region in the Changbai Mountains. A sample from a forest plot (Hx0ks), was compared to a sample from a field where ginseng was previously cultivated and then had been left fallow for two years (Hx2), and a sample from a field that had been fallow for two years and was subsequently replanted with ginseng (Clsd). Results Soil that was fallow for two years, and then replanted with ginseng, showed reduced nutrient content and lower diversity of soil bacterial and fungal communities than soil that remained fallow. Candidatus Solibacter (5%) and Rhizomicrobium (3%) were the most abudant bacterial genera in Hx2. Rhizomicrobium (4%) and Gemmatimonas (3%) were the most abundant bacterial genera in Clsd. Mortierella (22%) and Peziza (12%) dominated the fungal community in Hx2. Lecanicillium (38%) and Mortierella (13%) dominated the fungal community in Clsd. Fallow periods also increased the functional diversity of soil as predicted by PICRUSt and decreased the relative abundance of the pathogenic fungi. Conclusions Preliminary findings were consistent with the hypothesis that fallow management in ginseng cultivation can improve soil microbial community structure and function and reduces the number of plant pathogens; however, testing this hypothesis will require replicated plots.
Collapse
Affiliation(s)
- Yuqing Li
- Jilin Agricultural University, College of Resources and Environment, Changchun, Jilin, China
| | | | - Bing Zhang
- Jilin Agricultural University, College of Resources and Environment, Changchun, Jilin, China
| | - Juntao Cui
- Jilin Agricultural University, College of Resources and Environment, Changchun, Jilin, China
| | - Wei Zhang
- Changchun Polytechnic, Department of Modern Agricultural Technology, Changchun, Jilin, China
| |
Collapse
|
5
|
Medison RG, Tan L, Medison MB, Chiwina KE. Use of beneficial bacterial endophytes: A practical strategy to achieve sustainable agriculture. AIMS Microbiol 2022; 8:624-643. [PMID: 36694581 PMCID: PMC9834078 DOI: 10.3934/microbiol.2022040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Beneficial endophytic bacteria influence their host plant to grow and resist pathogens. Despite the advantages of endophytic bacteria to their host, their application in agriculture has been low. Furthermore, many plant growers improperly use synthetic chemicals due to having no or little knowledge of the role of endophytic bacteria in plant growth, the prevention and control of pathogens and poor access to endobacterial bioproducts. These synthetic chemicals have caused soil infertility, environmental contamination, disruption to ecological cycles and the emergence of resistant pests and pathogens. There is more that needs to be done to explore alternative ways of achieving sustainable plant production while maintaining environmental health. In recent years, the use of beneficial endophytic bacteria has been noted to be a promising tool in promoting plant growth and the biocontrol of pathogens. Therefore, this review discusses the roles of endophytic bacteria in plant growth and the biocontrol of plant pathogens. Several mechanisms that endophytic bacteria use to alleviate plant biotic and abiotic stresses by helping their host plants acquire nutrients, enhance plant growth and development and suppress pathogens are explained. The review also indicates that there is a gap between research and general field applications of endophytic bacteria and suggests a need for collaborative efforts between growers at all levels. Furthermore, the presence of scientific and regulatory frameworks that promote advanced biotechnological tools and bioinoculants represents major opportunities in the applications of endophytic bacteria. The review provides a basis for future research in areas related to understanding the interactions between plants and beneficial endophytic microorganisms, especially bacteria.
Collapse
Affiliation(s)
| | - Litao Tan
- College of Agriculture, Yangtze University, Jingzhou Hubei 434025, China
| | | | | |
Collapse
|
6
|
The potential of novel bacterial isolates from healthy ginseng for the control of ginseng root rot disease (Fusarium oxysporum). PLoS One 2022; 17:e0277191. [DOI: 10.1371/journal.pone.0277191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Ginseng root rot caused by Fusarium oxysporum is serious disease that impacts ginseng production. In the present study, 145 strains of bacteria were isolated from the rhizosphere soil of healthy ginseng plants. Three strains with inhibitory activity against Fusarium oxysporum (accession number AF077393) were identified using the dual culture tests and designated as YN-42(L), YN-43(L), and YN-59(L). Morphological, physiological, biochemical, 16S rRNA gene sequencing and phylogenetic analyses were used to identify the strains as Bacillus subtilis [YN-42(L)] (accession number ON545980), Delftia acidovorans [YN-43(L)] (accession number ON545981), and Bacillus polymyxae [YN-59(L)] (accession number ON545982). All three isolates effectively inhibited the growth of Fusarium oxysporum in vitro and the antagonistic mechanism used by the three strains involved the secretion of multiple bioactive metabolites responsible for the hydrolysis of the fungal cell wall. All three biocontrol bacteria produce indoleacetic acid, which has a beneficial effect on plant growth. From our findings, all three antagonistic strains can be excellent candidates for ginseng root rot caused by the pathogenic fungus Fusarium oxysporum. These bacteria have laid the foundation for the biological control of ginseng root rot and for further research on the field control of ginseng pathogens.
Collapse
|
7
|
Khan T, Alzahrani OM, Sohail M, Hasan KA, Gulzar S, Rehman AU, Mahmoud SF, Alswat AS, Abdel-Gawad SA. Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from Arthrocnemum macrostachyum. Microorganisms 2022; 10:microorganisms10112112. [PMID: 36363704 PMCID: PMC9698051 DOI: 10.3390/microorganisms10112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL−1. Although most of the isolates could grow at a wide range of temperatures (4–55 °C), pH (1–11), and salt concentrations (2–12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications.
Collapse
Affiliation(s)
- Tooba Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Salman Gulzar
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Ammad Ur Rehman
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shebl Abdallah Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment Institute Agriculture Research Center, Giza 12112, Egypt
| |
Collapse
|
8
|
Chen C, Yang B, Gao A, Yu Y, Zhao FJ. Transformation of arsenic species by diverse endophytic bacteria of rice roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119825. [PMID: 35870529 DOI: 10.1016/j.envpol.2022.119825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoyun Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Axiang Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Li X, Li M, Liu X, Jiang Y, Zhao D, Gao J, Wang Z, Jiang Y, Chen C. RNA-Seq Provides Insights into the Mechanisms Underlying Ilyonectria robusta Responding to Secondary Metabolites of Bacillus methylotrophicus NJ13. J Fungi (Basel) 2022; 8:779. [PMID: 35893148 PMCID: PMC9332032 DOI: 10.3390/jof8080779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
(1) Background: Ilyonectria robusta can cause ginseng to suffer from rusty root rot. Secondary metabolites (SMs) produced by Bacillus methylotrophicus NJ13 can inhibit the mycelial growth of I. robusta. However, the molecular mechanism of the inhibition and response remains unclear. (2) Methods: Through an in vitro trial, the effect of B. methylotrophicus NJ13’s SMs on the hyphae and conidia of I. robusta was determined. The change in the physiological function of I. robusta was evaluated in response to NJ13’s SMs by measuring the electrical conductivity, malondialdehyde (MDA) content, and glucose content. The molecular interaction mechanism of I. robusta’s response to NJ13’s SMs was analyzed by using transcriptome sequencing. (3) Results: NJ13’s SMs exhibited antifungal activity against I. robusta: namely, the hyphae swelled and branched abnormally, and their inclusions leaked out due to changes in the cell membrane permeability and the peroxidation level; the EC50 value was 1.21% (v/v). In transcripts at 4 dpi and 7 dpi, the number of differentially expressed genes (DEGs) (|log2(fold change)| > 1, p adj ≤ 0.05) was 1960 and 354, respectively. NJ13’s SMs affected the glucose metabolism pathway, and the sugar-transporter-related genes were downregulated, which are utilized by I. robusta for energy production. The cell wall structure of I. robusta was disrupted, and chitin-synthase-related genes were downregulated. (4) Conclusions: A new dataset of functional responses of the ginseng pathogenic fungus I. robusta was obtained. The results will benefit the development of targeted biological fungicides for I. robusta and the study of the molecular mechanisms of interaction between biocontrol bacteria and phytopathogenic fungi.
Collapse
Affiliation(s)
- Xiang Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Mengtao Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Xiangkai Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Yilin Jiang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Dongfang Zhao
- Jilin Provincial Agro-Tech Extension Center, Changchun 130031, China;
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Zhenhui Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Yun Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Changqing Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| |
Collapse
|
10
|
Sharma M, Mallubhotla S. Diversity, Antimicrobial Activity, and Antibiotic Susceptibility Pattern of Endophytic Bacteria Sourced From Cordia dichotoma L. Front Microbiol 2022; 13:879386. [PMID: 35633730 PMCID: PMC9136406 DOI: 10.3389/fmicb.2022.879386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Endophytic bacteria isolated from medicinal plants are crucial for the production of antimicrobial agents since they are capable of possessing bioactive compounds with diverse structures and activities. Cordia dichotoma, a plant of medicinal importance native to the Jammu region of India, was selected for the isolation and characterization of culturable endophytic bacteria and evaluation of their antimicrobial activities. Standardized surface sterilization methods were employed to isolate thirty-three phenotypically distinguishable endophytic bacteria from the root, stem, and leaf parts of the plant. Shannon Wiener diversity index clearly divulged diverse endophytes in roots (0.85), stem (0.61), and leaf (0.54) tissues. Physio-biochemical features of the isolates differentiated the distinct variations in their carbohydrate utilization profile and NaCl tolerance. The endophytes produced an array of enzymes, namely, catalase, oxidase, amylase, cellulase, nitrate reductase, and lipase. The bacterial isolates belong to the genera Bacillus, Pseudomonas, Paenibacillus, Acidomonas, Streptococcus, Ralstonia, Micrococcus, Staphylococcus, and Alcalignes predominantly. However, the antibiotic susceptibility pattern indicated that the isolates were mostly sensitive to erythromycin and streptomycin, while they were resistant to rifampicin, amoxicillin, and bacitracin. Interestingly, majority of the bacterial endophytes of C. dichotoma showed antimicrobial activity against Bacillus subtilis followed by Klebsiella pneumoniae. The 16S rRNA sequence of Bacillus thuringiensis has been deposited in the NCBI GenBank database under accession number OM320575. The major compounds of the crude extract derived from endophytic B. thuringiensis OM320575, according to the metabolic profile examination by GC-MS, are dibutyl phthalate, eicosane, tetrapentacontane, heneicosane, and hexadecane, which possessed antibacterial activities. In conclusion, results indicated the potential of C. dichotoma to host a plethora of bacterial endophytes that produce therapeutic bioactive metabolites.
Collapse
|
11
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
12
|
Yuan QS, Wang L, Wang H, Wang X, Jiang W, Ou X, Xiao C, Gao Y, Xu J, Yang Y, Cui X, Guo L, Huang L, Zhou T. Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Front Microbiol 2022; 13:842372. [PMID: 35432244 PMCID: PMC9005978 DOI: 10.3389/fmicb.2022.842372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoai Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaohong Ou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanping Gao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
13
|
The diversity of bacterial endophytes from Iris pseudacorus L. and their plant beneficial traits. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100133. [PMID: 35909614 PMCID: PMC9325737 DOI: 10.1016/j.crmicr.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study reports the diversity of cultivable endophytic bacteria associated with yellow iris (Iris pseudacorus L.) by using 16S rRNA gene analysis and their plant beneficial traits. The 16S rRNA sequence similarities of endophytic bacteria isolated from the leaves and roots of yellow iris showed that the isolates belonged to the genera Staphylococcus, Streptomyces, Variovorax, Pantoea, Paenibacillus, Bacillus, Janthinobacterium, Enterobacter, Brevibacterium, Agrobacterium, Rhizobium, Xanthomonas translucens, and Pseudomonas. The endophytic bacteria Pseudomonas gessardii HRT18, Brevibacterium frigoritolerans HRT8, Streptomyces atratus HRT13, and Bacillus toyonensis HST13 exhibited antimicrobial activity against five plant pathogenic fungi Fusarium, Rhizoctonia, Botrytis, Pythium, and Alternaria. They also demonstrated the capability to produce chitinase, protease, glucanase, lipase, HCN, and indole-3-acetic acid (IAA). Thirteen isolates (46%) produced IAA, and the most active IAA producers were Bacillus cereus, Agrobacterium tumefaciens, Agrobacterium vitis, Bacillus megaterium, and Bacillus aryabhattai. The IAA producing bacterial isolates stimulated root and shoot growth of garden cress. Our findings suggest that medicinal plants could be a promising source for isolating plant-beneficial bacteria that can be used to enhance the growth and protect plants against soil-borne pathogens.
Collapse
|
14
|
Goodwin PH. The Endosphere Microbiome of Ginseng. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030415. [PMID: 35161395 PMCID: PMC8838582 DOI: 10.3390/plants11030415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 05/14/2023]
Abstract
The endosphere of ginseng contains a variety of fungal, bacterial, archaeal and viral endophytes. Bacterial endophytes are primarily members of the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, and fungal endophytes are primarily members of the Ascomycota, Zygomycota and Basidiomycota. Although archaea and viruses have been detected in symptomless ginseng plants, little is known about them. Many but not all studies have shown roots having the highest abundance and diversity of bacterial and fungal endophytes, with some endophytes showing specificity to above or belowground tissues. Abundance often increases with root age, although diversity can decrease, possibly related to increases in potential latent fungal pathogen infections. The descriptions of many endophytes that can metabolize ginsenosides indicate an adaptation of the microbes to the unique combination of secondary metabolites found in ginseng tissues. Most research on the benefits provided by bacterial and fungal endophytes has concentrated on improved plant nutrition, growth promotion and increased disease resistance, but little on their ability to increase abiotic stress resistance. Some other areas where more research is needed is field trials with endophyte-treated plants grown in various environments, genomic/metagenomic analysis of endophytes, and the effects of endophytes on induced disease resistance and abiotic stress tolerance.
Collapse
Affiliation(s)
- Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Jana SK, Islam MM, Mandal S. Endophytic Microbiota of Rice and Their Collective Impact on Host Fitness. Curr Microbiol 2022; 79:37. [PMID: 34982254 DOI: 10.1007/s00284-021-02737-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023]
Abstract
Endophytic microbiota mainly includes positive modulator of plant growth, productivity, stress tolerance and ability to control the phytopathogens. Rice endophytes colonize in different parts like roots, shoots, leaves, seeds, flowers, ovules, etc. The diversity and colonization of endophytes depend on several factors like host specificity, environment specificity, chemotaxis, motility, etc. A mutualistic relationship between rice plant and their endophytes improves the host health. Several crucial activities of rice plants are influenced by the presence of endophytes as they endorse plant growth by producing different phytohormones, solubilized minerals, or mitigating various environmental adverse conditions. Endophytes also protect rice plants from various phytopathogen by the production of secondary metabolites, lytic enzymes, antibiotics and induced systemic acquired resistance. Furthermore, the endophytes from rice and major crops are recently been shown useful in environmental waste management and also for the synthesis of green nanoparticles. This study highlights the beneficial interaction between rice plants and their endophytic microbiota with special emphasis on highlighting their application for sustainable agricultural and environmental practices in order to enhance the agro-economy in an eco-friendly manner.
Collapse
Affiliation(s)
- Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Md Majharul Islam
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
16
|
Chu LL, Bae H. Bacterial endophytes from ginseng and their biotechnological application. J Ginseng Res 2022; 46:1-10. [PMID: 35035239 PMCID: PMC8753428 DOI: 10.1016/j.jgr.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam
- Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
17
|
Anti-leishmanial compounds from microbial metabolites: a promising source. Appl Microbiol Biotechnol 2021; 105:8227-8240. [PMID: 34625819 DOI: 10.1007/s00253-021-11610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Leishmania is a complex disease caused by the protozoan parasites and transmitted by female phlebotomine sandfly. The disease affects some of the poorest people on earth with an estimated 700,000 to 1 million new cases annually. The current treatment for leishmaniasis is toxic, long, and limited, in view of the high resistance rate presented by the parasite, necessitating new perspectives for treatment. The discovery of new compounds with different targets can be a hope to make the treatment more efficient. Microbial metabolites and their structural analogues with enormous scaffold diversity and structural complexity have historically played a key role in drug discovery. We found thirty-nine research articles published between 1999 and 2021 in the scientific database (PubMed, Science Direct) describing microbes and their metabolites with activity against leishmanial parasites which is the focus of this review. KEY POINTS: • Leishmania affects the poorest regions of the globe • Current treatments for leishmaniasis are toxic and of limited efficacy • Microbial metabolites are potential sources of antileishmania drugs.
Collapse
|
18
|
Serrano NFG, Ferreira D, Rodrigues-Filho E, Teixeira JA, Dubreuil JD, Sousa CPDE. Purification and characterization of two new antimicrobial molecules produced by an endophytic strain of Paenibacillus polymyxa. AN ACAD BRAS CIENC 2021; 93:e20200486. [PMID: 34231758 DOI: 10.1590/0001-3765202120200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/20/2020] [Indexed: 11/22/2022] Open
Abstract
An endophytic bacterium inhibiting pathogenic bacteria was isolated and the strain was genetically identified as Paenibacillus polymyxa. Biochemical characterization of fermentation broth indicated the presence of peptidic antimicrobial molecules. Liquid-liquid partition resulted in an organic fraction (OF) and an aqueous fraction (AF). OF presented a broad spectrum of activity against a panel of pathogenic bacteria and a fungus whereas the AF was active only against Gram-negative bacteria. AF was sequentially submitted to ion-exchange, desalting and reverse phase (RP) chromatography. A molecule with an RT of 2.45 min exhibited activity against all Gram-negative pathogenic strains tested beside P. mirabilis. The primary structure of the molecule, named AMP-Pp, was determined as Gly-Glu-Hyp-Gly-Ala by N-terminal sequencing. The molecular mass and amino acid sequence were confirmed by MS/MS. With a molecular mass of 463 Da, AMP-Pp is one of the smallest active natural peptides reported, yet. RP chromatography of OF resulted in four peaks. The first three peaks corresponded to known antimicrobials. MS analysis of peak 4 revealed the presence of an ion with m/z 3,376.4 Da, whose proposed molecular formula is C182H321N29O29. The compound, named polycerradin, showed a spectrum of activity against Gram-positive bacteria, Gram-negative bacteria (beside P. mirabilis) and a fungus.
Collapse
Affiliation(s)
- Nadja F G Serrano
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Carlos/UFSCar, Departamento de Morfologia e Patologia, Laboratório de Microbiologia e Biomoléculas, Rod. Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Douglas Ferreira
- Universidade Federal do Oeste da Bahia, Departamento de Química, Campus Luís Eduardo Magalhães, Rua Professor José Seabra de Lemos, 316, Recanto dos Pássaros, 47808-021 Barreiras, BA, Brazil
| | - Edson Rodrigues-Filho
- UFSCar, Departamento de Química, Laboratório de Bioquímica Micromolecular de Microrganismos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil
| | - José António Teixeira
- Universidade do Minho, Centro de Engenharia Biológica, Laboratório de Fermentações, Rua da Universidade, 4710-057 Braga, Portugal
| | - Jean Daniel Dubreuil
- Université De Montréal, Faculté de Médecine Vétérinaire, Département de Pathologie et Microbiologie, 3200 Rue Sicotte, J2S 2M2, Saint-Hyacinthe, Québec, Canada
| | - Cristina P DE Sousa
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Carlos/UFSCar, Departamento de Morfologia e Patologia, Laboratório de Microbiologia e Biomoléculas, Rod. Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
19
|
Shin JH, Park BS, Kim HY, Lee KH, Kim KS. Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field. THE PLANT PATHOLOGY JOURNAL 2021; 37:307-314. [PMID: 34111920 PMCID: PMC8200578 DOI: 10.5423/ppj.nt.03.2021.0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 05/17/2023]
Abstract
Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Byung-Seoung Park
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Yeong Kim
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kwang-Ho Lee
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
- Corresponding author. Phone) +82-33-250-6435, FAX) +82-33-259-5558 E-mail)
| |
Collapse
|
20
|
Liu M, Zhao X, Li X, Wu X, Zhou H, Gao Y, Zhang X, Zhou F. Antagonistic Effects of Delia antiqua (Diptera: Anthomyiidae)-Associated Bacteria Against Four Phytopathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:597-610. [PMID: 33547790 DOI: 10.1093/jee/toab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Recent studies have revealed multiple roles of insect-associated microbes such as lignin degradation, entomopathogen inhibition, and antibiotic production. These functions improve insect host fitness, and provide a novel source of discovering beneficial microbes for industrial and agricultural production. Previously published research found that in the symbiosis formed by the dipteran pest Delia antiqua (Meigen) (Diptera: Anthomyiidae) and its associated bacteria, the bacteria showed effective inhibition of one fungal entomopathogen, Beauveria bassiana. The antifungal activity of those associated bacteria indicates their potential to be used as biocontrol agents for fungal phytopathogens. In this study, we first isolated and identified bacteria associated with D. antiqua using a culture-dependent method. Second, we tested the antifungal activity of these bacteria against four phytopathogens including Fusarium moniliforme, Botryosphaeria dothidea, and two Fusarium oxysporum strains using the dual-culture method. In total, 74 species belonging to 30 genera, 23 families, eight classes, and four phyla were isolated and identified. Among those bacteria, Ochrobactrum anthropi, Morganella morganii, Arthrobacter sp. 3, and Acinetobacter guillouiae showed significant volatile inhibition activity against F. moniliforme, B. dothidea, and both F. oxysporum, respectively. Moreover, bacteria including Rhodococcus equi, Leucobacter aridicollis, Paenibacillus sp. 3, and Lampropedia sp. showed significant contact inhibition activity against F. moniliforme, B. dothidea, and both F. oxysporum. Our work provides a new source for discovering biocontrol agents against phytopathogens.
Collapse
Affiliation(s)
- Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | | | - Xiaoqing Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Hongzi Zhou
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
21
|
Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P. The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. BIOLOGY 2021; 10:101. [PMID: 33535706 PMCID: PMC7912845 DOI: 10.3390/biology10020101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in 'omic' technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
Collapse
Affiliation(s)
- Udaya Kumar Vandana
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Jina Rajkumari
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - L. Paikhomba Singha
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea;
| | - Pamidimarri D.V.N. Sudheer
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Sushma Chauhan
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Rambabu Ratnala
- TATA Institute for Genetics and Society, Bangalore 560065, India;
| | - Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Pranab Behari Mazumder
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Piyush Pandey
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| |
Collapse
|
22
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
In Vitro Modulator Effect of Total Extract from the Endophytic Paenibacillus polymyxa RNC-D in Leishmania (Leishmania) amazonensis and Macrophages. Int J Microbiol 2020; 2020:8895308. [PMID: 32908533 PMCID: PMC7474380 DOI: 10.1155/2020/8895308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023] Open
Abstract
Leishmaniases are diseases with high epidemiological relevance and wide geographical distribution. In Brazil, Leishmania (Leishmania) amazonensis is related to the tegumentary form of leishmaniasis. The treatment for those diseases is problematic as the available drugs promote adverse effects in patients. Therefore, it is important to find new therapeutic targets. In this regard, one alternative is the study of biomolecules produced by endophytic microorganisms. In this study, the total extract produced by the endophytic Paenibacillus polymyxa RNC-D was used to evaluate the leishmanicidal, nitric oxide, and cytokines production using RAW 264.7 macrophages. The results showed that, in the leishmanicidal assay with L. amazonensis, EC50 values at the periods of 24 and 48 hours were 0.624 mg/mL and 0.547 mg/mL, respectively. Furthermore, the cells treated with the extract presented approximately 25% of infected cells with an average of 3 amastigotes/cell in the periods of 24 and 48 hours. Regarding the production of cytokines in RAW 264.7 macrophages infected/treated with the extract, a significant increase in TNF-α was observed at the periods of 24 and 48 hours in the treated cells. The concentrations of IFN-γ and IL-12 showed significant increase in 48 hours. A significant decrease in IL-4 was observed in all cells treated with the extract in 24 hours. It was observed in the treated cells that the NO production by RAW 264.7 macrophages increased between 48 and 72 hours. The endophytic Paenibacillus polymyxa RNC-D extract modulates the mediators of inflammation produced by RAW 264.7 macrophages promoting L. amazonensis death. The immunomodulatory effects might be a promising target to develop new immunotherapeutic and antileishmanial drugs.
Collapse
|
24
|
Woodring TS, Farrell JJ. Pseudomonas poae-Associated Fatal Septic Transfusion Reaction, Peoria, Illinois, USA, 2017. Emerg Infect Dis 2019; 25:1445-1451. [PMID: 31310217 PMCID: PMC6649322 DOI: 10.3201/eid2508.181936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the United States, fatal transfusion-transmitted infections from red blood cell units are rare. Although this pattern mostly reflects how inhospitable refrigerated red blood cell units are to contaminant growth, fatalities caused by microorganisms that can grow at storage temperature (4°C), but not in standard clinical blood cultures at 37°C, are probably underestimated. We analyzed a fatal red blood cell transfusion in Peoria, Illinois, USA, that occurred in 2017. Samples from the patient's whole blood and the red blood cell unit remained culture-negative during the investigation, despite direct visualization of gram-negative bacilli within the unit immediately after transfusion. We identified the bacteria as Pseudomonas poae, a nonpathogenic pseudomonad carrying multiple cold-shock domain protein genes, and confirmed its cold tolerance and inability to grow at 37°C. Our work indicates transfusion reaction workups need to include testing for psychrophilic organisms, which could explain the cause of other apparently culture-negative transfusion reactions.
Collapse
|
25
|
Liu X, Li Q, Li Y, Guan G, Chen S. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ 2019; 7:e7445. [PMID: 31579563 PMCID: PMC6761918 DOI: 10.7717/peerj.7445] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus is a large genus of Gram-positive, facultative anaerobic, endospore-forming bacteria. The genus Paenibacillus currently comprises more than 150 named species, approximately 20 of which have nitrogen-fixation ability. The N2-fixing Paenibacillus strains have potential uses as a bacterial fertilizer in agriculture. In this study, 179 bacterial strains were isolated by using nitrogen-free medium after heating at 85 °C for 10 min from 69 soil samples collected from different plant rhizospheres in different areas. Of the 179 bacterial strains, 25 Paenibacillus strains had nifH gene encoding Fe protein of nitrogenase and showed nitrogenase activities. Of the 25 N2-fixing Paenibacillus strains, 22 strains produced indole-3-acetic acid (IAA). 21 strains out of the 25 N2-fixing Paenibacillus strains inhibited at least one of the 6 plant pathogens Rhizoctonia cerealis, Fusarium graminearum, Gibberella zeae, Fusarium solani, Colletotrichum gossypii and Alternaria longipes. 18 strains inhibited 5 plant pathogens and Paenibacillus sp. SZ-13b could inhibit the growth of all of the 6 plant pathogens. According to the nitrogenase activities, antibacterial capacities and IAA production, we chose eight strains to inoculate wheat, cucumber and tomato. Our results showed that the 5 strains Paenibacillus sp. JS-4, Paenibacillus sp. SZ-10, Paenibacillus sp. SZ-14, Paenibacillus sp. BJ-4 and Paenibacillus sp. SZ-15 significantly promoted plant growth and enhanced the dry weight of plants. Hence, the five strains have the greater potential to be used as good candidates for biofertilizer to facilitate sustainable development of agriculture.
Collapse
Affiliation(s)
- Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qin Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guohua Guan
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Identification of endophytic bacteria in medicinal plants and their antifungal activities against food spoilage fungi. Journal of Food Science and Technology 2019; 56:5262-5270. [PMID: 31749473 DOI: 10.1007/s13197-019-03995-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Endophytes are fungi or bacteria living in the intracellular parts of the plants. In this study, 12 medicinal plants were examined for the presence of endophytic bacteria. Antifungal activities of the isolates were determined against Aspergillus flavus PTCC 5006, Penicillium citrinum PTCC 5304, Aspergillus fumigatus PTCC 5006, Fusarium oxysporum MTCC 284, and Rhizopus stolonifer. In order to determine the metabolites characteristics of these isolates, catalase and proteolytic enzyme treatments were assessed. Moreover, approximate molecular weights of the antifungal substance were measured by fractionation method and the volatile compounds were determined by using GC-mass spectroscopy. Finally, 16s rRNA gene sequencing confirmed the strain of the bacteria. Twenty-one endophytic bacteria, out of a total of 82 isolates, showed antifungal activities against all five spoilage fungi. The results of the PCR assay revealed two species: Bacillus pumilus and B. safensis. Proteolytic enzyme activities and the fractionation of the supernatants proved that more than one compound was responsible for the antifungal activities. This compound could be proteins, peptides, and other low-molecular compounds, such as Butanal, 3-methyl-, Propene, 2-butene, 2-heptanone, 6-methyl-5-methylene-, and 6-oxabicyclo[3.1.0] hexane, which all were identified in the headspace of the GC-mass spectroscopy.
Collapse
|
27
|
Hong CE, Kim JU, Lee JW, Bang KH, Jo IH. Metagenomic analysis of bacterial endophyte community structure and functions in Panax ginseng at different ages. 3 Biotech 2019; 9:300. [PMID: 31355109 DOI: 10.1007/s13205-019-1838-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 01/12/2023] Open
Abstract
This study investigated the root-associated bacterial endophytes of Panax ginseng at different ages by shotgun metagenomic analysis. After mapping metagenome data to the complete ginseng genome to identify unmapped sequences, we predicted the structure and functions of ginseng bacterial endophytes by metagenomic rapid annotation using subsystems technology analysis. While Proteobacteria and Actinobacteria were the predominant phyla in all samples (2-6-year-old roots), class Alphaproteobacteria was most abundant in 3-, 4-, and 5-year-old plants. We found that 3-year-old P. ginseng had a 0.66% unmapped rate against the whole ginseng genome and showed the greatest diversity of endophytic bacteria (α diversity = 299). Prediction of endophytic bacterial functions at different ages by SEED subsystem analysis revealed that siderophore and auxin-related traits-which are known to promote plant growth-were most highly represented in 3-year-old plants. This was supported by a gene frequency analysis of plant growth-promoting genes, including those responsible for solubilization of phosphate and nitrogen metabolism, using BLASTn. These results suggest that endophytic bacteria of the P. ginseng root affect plant growth. Furthermore, the isolation and purification of plant growth-promoting endophytes identified in this study could promote sustainable cultivation of ginseng in the future.
Collapse
|
28
|
Bacterial communities associated with anthracnose symptomatic and asymptomatic leaves of guarana, an endogenous tropical crop, and their pathogen antagonistic effects. Arch Microbiol 2019; 201:1061-1073. [PMID: 31123792 DOI: 10.1007/s00203-019-01677-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Plants are colonized by diverse microorganisms that can substantially impact their health and growth. Understanding bacterial diversity and the relationships between bacteria and phytopathogens may be key to finding effective biocontrol agents. We evaluated the bacterial community associated with anthracnose symptomatic and asymptomatic leaves of guarana, a typical tropical crop. Bacterial communities were assessed through culture-independent techniques based on extensive 16S rRNA sequencing, and cultured bacterial strains were evaluated for their ability to inhibit the growth of Colletotrichum sp. as well as for enzyme and siderophore production. The culture-independent method revealed that Proteobacteria was the most abundant phylum, but many sequences were unclassified. The emergence of anthracnose disease did not significantly affect the bacterial community, but the abundance of the genera Acinetobacter, Pseudomonas and Klebsiella were significantly higher in the symptomatic leaves. In vitro growth of Colletotrichum sp. was inhibited by 11.38% of the cultured bacterial strains, and bacteria with the highest inhibition rates were isolated from symptomatic leaves, while asymptomatic leaves hosted significantly more bacteria that produced amylase and polygalacturonase. The bacterial isolate Bacillus sp. EpD2-5 demonstrated the highest inhibition rate against Colletotrichum sp., whereas the isolates EpD2-12 and FD5-12 from the same genus also had high inhibition rates. These isolates were also able to produce several hydrolytic enzymes and siderophores, indicating that they may be good candidates for the biocontrol of anthracnose. Our work demonstrated the importance of using a polyphasic approach to study microbial communities from plant diseases, and future work should focus on elucidating the roles of culture-independent bacterial communities in guarana anthracnose disease.
Collapse
|
29
|
The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome. The other three potentially advantageous isolates (Micrococcus sp. AzoEndo14, Agrobacterium sp. AzoEpi25 and Bacillus sp. AzoEndo3) displayed 5 parameters: IAA (excluding Bacillus sp. AzoEndo3), cellulase, protease, siderophores (excluding Micrococcus sp. AzoEndo14), as well as mineralization and solubilization of P (excluding Agrobacterium sp. AzoEpi25).
Collapse
|
30
|
Chiellini C, Pasqualetti C, Lanzoni O, Fagorzi C, Bazzocchi C, Fani R, Petroni G, Modeo L. Harmful Effect of Rheinheimera sp. EpRS3 ( Gammaproteobacteria) Against the Protist Euplotes aediculatus (Ciliophora, Spirotrichea): Insights Into the Ecological Role of Antimicrobial Compounds From Environmental Bacterial Strains. Front Microbiol 2019; 10:510. [PMID: 31001206 PMCID: PMC6457097 DOI: 10.3389/fmicb.2019.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Rheinheimera sp. strain EpRS3, isolated from the rhizosphere of Echinacea purpurea, is already known for its ability to produce antibacterial compounds. By use of culture experiments, we verified and demonstrated its harmful effect against the ciliated protist Euplotes aediculatus (strain EASCc1), which by FISH experiments resulted to harbor in its cytoplasm the obligate bacterial endosymbiont Polynucleobacter necessarius (Betaproteobacteria) and the secondary endosymbiont "Candidatus Nebulobacter yamunensis" (Gammaproteobacteria). In culture experiments, the number of ciliates treated both with liquid broth bacteria-free (Supernatant treatment) and bacteria plus medium (Tq treatment), decreases with respect to control cells, with complete disappearance of ciliates within 6 h after Tq treatment. Results suggest that Rheinheimera sp. EpRS3 produces and releases in liquid culture one or more bioactive molecules affecting E. aediculatus survival. TEM analysis of control (not treated) ciliates allowed to morphologically characterize both kind of E. aediculatus endosymbionts. In treated ciliates, collected soon after the arising of cell suffering leading to death, TEM observations revealed some ultrastructural damages, indicating that P. necessarius endosymbionts went into degradation and vacuolization after both Supernatant and Tq treatments. Additionally, TEM investigation showed that when the ciliate culture was inoculated with Tq treatment, both a notable decrease of P. necessarius number and an increase of damaged and degraded mitochondria occur. FISH experiments performed on treated ciliates confirmed TEM results and, by means of the specific probe herein designed, disclosed the presence of Rheinheimera sp. EpRS3 both inside phagosomes and free in cytoplasm in ciliates after Tq treatment. This finding suggests a putative ability of Rheinheimera sp. EpRS3 to reintroduce itself in the environment avoiding ciliate digestion.
Collapse
Affiliation(s)
| | | | | | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | | | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Chowdhury MDEK, Bae H. Bacterial endophytes isolated from mountain-cultivated ginseng (Panax ginseng Mayer) have biocontrol potential against ginseng pathogens. BIOLOGICAL CONTROL 2018; 126:97-108. [DOI: 10.1016/j.biocontrol.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
32
|
Diversity of bacterial endophytes in Panax ginseng and their protective effects against pathogens. 3 Biotech 2018; 8:397. [PMID: 30221110 DOI: 10.1007/s13205-018-1417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022] Open
Abstract
Although endophytic bacteria are known to colonize Panax ginseng, little is known about their diversity and roles. We addressed in the present study by comparing endophytic bacterial populations in P. ginseng plants of different ages (2-6 years) and in various tissue types (root, stem, leaf, and flower stalk). A total of 116 strains assigned to 42 species were identified by 16S rDNA sequencing. The predominant phylum was Firmicutes. Two-year-old ginseng plants and root tissues showed the greatest diversity of endophytic bacteria, with Bacillales being the predominant order. The antifungal activity of isolates against two pathogens, Cylindrocarpon destructans and/or Botrytis cinerea, was evaluated in dual-culture assays. In total, 28 strains showed antifungal activity with PgBE14 (Bacillus amyloliquefaciens), PgBE40 (B. megaterium), PgBE39, PgBE45 (Pseudomonas frederiksbergensis), and PgBE42 (Staphylococcus saprophyticus) inhibiting both pathogens. These results improve our understanding of the structure and diversity of endophytic bacterial communities of P. ginseng and identify strains with antifungal activity that have potential applications as biocontrol agents.
Collapse
|
33
|
Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae. Front Microbiol 2018; 9:924. [PMID: 29867835 PMCID: PMC5954123 DOI: 10.3389/fmicb.2018.00924] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Endophytic bacteria associated with medicinal plants possess unique strategies that enhance growth and suvival of host plants, many of which are mediated by distinctive secondary metabolites. These bacteria and their secondary metabolites are important subjects for both basic and applied research aimed at sustainable agriculture. In the present study, 114 endophytic strains isolated from the wild ethnomedicinal plant Glycyrrhiza uralensis (licorice) were screened for their in vitro antimicrobial activities against common fungal pathogens of tomato (Fusarium oxysporum f. sp., Fulvia fulva, Alternaria solani), cotton (Fusarium oxysporum f. sp. Vesinfectum, Verticillium dahliae), pomegranite (Ceratocystis fimbriata), Cymbidinium (Colletotrichum gloeosporioides), and Tsao-ko (Pestalotiopsis microspora and Fusarium graminearum) and the common bacteria Staphylococcus aureus, Bacillus cereus, Salmonella enteritidis, and Escherichia coli. Several Bacillus strains, particularly Bacillus atrophaeus and Bacillus mojavensis, had a broad spectrum of antifungal and antibacterial activity. A total of 16 strains, selected based on broad antimicrobial activity, were shown to contain at least one putative secondary metabolite-encoding gene (i.e., polyketide synthase or non-ribosomal peptide synthetase) and/or one lytic enzyme (i.e., protease, cellulase, lipase, chitinase), which may be important mediators of antagonistic activity against pathogens. Five strains, representing Bacillus atrophaeus and Bacillus mojavensis, were selected for plant growth chamber experiments based on strong in vitro antifungal activities. All five strains significantly reduced disease severity in Arabidopsis thaliana plants challenged with V. dahlia infection. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of Bacillus atrophaeus strain XEGI50 showed that at least 13 compounds were produced only during co-cultivation with V. dahlia, including putative compounds known to have antimicrobial activity, such as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl) ester; 9,12-octadecadienoic acid (Z,Z)-, methyl ester; 9-octadecenoic acid, methyl ester, (E)-; and decanedioic acid, bis(2-ethylhexyl) ester. To our knowledge, this study is the first to report that bacteria isolated from G. uralensis have biocontrol abilities. Our findings provide new insights into the antimicrobial activities of natural endophytes, particularly B. atrophaeus, and suggest this species may a promising candidate as a biocontrol agent to confer resistance to Verticillium wilt disease and other phytopathogens in cotton and other crops.
Collapse
Affiliation(s)
- Osama A. A. Mohamad
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Environmental Science Department, Institute of Environmental Studies, Arish University, El-Arish, Egypt
| | - Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shaimaa Hatab
- Department of Food Science and Technology, College of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Lin Xu
- Key Laboratory of Hexi Corridor Resources Utilization, Hexi University, Zhangye, China
| | - Jian-Wei Guo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Crops with High Quality and Efficient Cultivation and Security Control, Yunnan Higher Education Institutions, Honghe University, Mengzi, China
| | - Bakhtiyor A. Rasulov
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Yong-Hong Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Park YH, Chandra Mishra R, Yoon S, Kim H, Park C, Seo ST, Bae H. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng ( Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res 2018; 43:408-420. [PMID: 31308813 PMCID: PMC6606899 DOI: 10.1016/j.jgr.2018.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Ginseng (Panax ginseng Meyer) is an invaluable medicinal plant containing various bioactive metabolites (e.g., ginsenosides). Owing to its long cultivation period, ginseng is vulnerable to various biotic constraints. Biological control using endophytes is an important alternative to chemical control. Methods In this study, endophytic Trichoderma citrinoviride PG87, isolated from mountain-cultivated ginseng, was evaluated for biocontrol activity against six major ginseng pathogens. T. citrinoviride exhibited antagonistic activity with mycoparasitism against all ginseng pathogens, with high endo-1,4-β-D-glucanase activity. Results T. citrinoviride inoculation significantly reduced the disease symptoms caused by Botrytis cinerea and Cylindrocarpon destructans and induced ginsenoside biosynthesis in ginseng plants. T. citrinoviride was formulated as dustable powder and granules. The formulated agents also exhibited significant biocontrol activity and induced ginsenosides production in the controlled environment and mountain area. Conclusion Our results revealed that T. citrinoviride has great potential as a biological control agent and elicitor of ginsenoside production.
Collapse
Affiliation(s)
- Young-Hwan Park
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Sunkyung Yoon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hoki Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Sang-Tae Seo
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
35
|
Bibi F, Strobel GA, Naseer MI, Yasir M, Khalaf Al-Ghamdi AA, Azhar EI. Microbial Flora Associated with the Halophyte- Salsola imbricate and Its Biotechnical Potential. Front Microbiol 2018; 9:65. [PMID: 29445362 PMCID: PMC5797760 DOI: 10.3389/fmicb.2018.00065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Halophytes are associated with the intertidal forest ecosystem of Saudi Arabia and seemingly have an immense potential for yielding useful and important natural products. In this study we have aimed to isolate and characterize the endophytic and rhizospheric bacterial communities from the halophyte, Salsola imbricata, In addition these bacterial strains were identified and selected strains were further studied for bioactive secondary metabolites. At least 168 rhizspheric and endophytic bacteria were isolated and of these 22 were active antagonists against the oomycetous fungal plant pathogens, Phytophthora capsici and Pythium ultimum. Active cultures were mainly identified with molecular techniques (16S r DNA) and this revealed 95.7–100% sequence similarities with relevant type strains. These microorgansims were grouped into four major classes: Actinobacteria, Firmicutes, β-Proteobacteria, and γ-Proteobacteria. Production of fungal cell wall lytic enzymes was detected mostly in members of Actinobacteria and Firmicutes. PCR screening for type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and nonribosomal peptide synthetases (NRPS) revealed 13 of the 22 strains (59%) were positive for at least one of these important biosynthetic genes that are known to be involved in the synthesis of important antibiotics. Four bacterial strains of Actinobacteria with potential antagonistic activity including two rhizobacteria, EA52 (Nocardiopsis sp.), EA58 (Pseudonocardia sp.) and two endophytic bacteria Streptomyces sp. (EA65) and Streptomyces sp. (EA67) were selected for secondary metabolite analyses using LC-MS. As a result, the presence of different bioactive compounds in the culture extracts was detected some of which are already reported for their diverse biological activities including antibiotics such as Sulfamethoxypyridazine, Sulfamerazine, and Dimetridazole. In conclusion, this study provides an insight into antagonistic bacterial population especially the Actinobacteria from S. imbricata, producing antifungal metabolites of medical significance and characterized taxonomically in future.
Collapse
Affiliation(s)
- Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gary A Strobel
- Department of plant sciences, Montana State University, Bozeman, MT, United States
| | - Muhammad I Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Khalaf Al-Ghamdi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Chen Q, Ai N, Liao J, Shao X, Liu Y, Fan X. Revealing topics and their evolution in biomedical literature using Bio-DTM: a case study of ginseng. Chin Med 2017; 12:27. [PMID: 28919923 PMCID: PMC5596940 DOI: 10.1186/s13020-017-0148-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Valuable scientific results on biomedicine are very rich, but they are widely scattered in the literature. Topic modeling enables researchers to discover themes from an unstructured collection of documents without any prior annotations or labels. In this paper, taking ginseng as an example, biological dynamic topic model (Bio-DTM) was proposed to conduct a retrospective study and interpret the temporal evolution of the research of ginseng. METHODS The system of Bio-DTM mainly includes four components, documents pre-processing, bio-dictionary construction, dynamic topic models, topics analysis and visualization. Scientific articles pertaining to ginseng were retrieved through text mining from PubMed. The bio-dictionary integrates MedTerms medical dictionary, the second edition of side effect resource, a dictionary of biology and HGNC database of human gene names (HGNC). A dynamic topic model, a text mining technique, was used to emphasize on capturing the development trends of topics in a sequentially collected documents. Besides the contents of topics taken on, the evolution of topics was visualized over time using ThemeRiver. RESULTS From the topic 9, ginseng was used in dietary supplements and complementary and integrative health practices, and became very popular since the early twentieth century. Topic 6 reminded that the planting of ginseng is a major area of research and symbiosis and allelopathy of ginseng became a research hotspot in 2007. In addition, the Bio-DTM model gave an insight into the main pharmacologic effects of ginseng, such as anti-metabolic disorder effect, cardioprotective effect, anti-cancer effect, hepatoprotective effect, anti-thrombotic effect and neuroprotective effect. CONCLUSION The Bio-DTM model not only discovers what ginseng's research involving in but also displays how these topics evolving over time. This approach can be applied to the biomedical field to conduct a retrospective study and guide future studies.
Collapse
Affiliation(s)
- Qian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yufeng Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
37
|
Singh P, Kim YJ, Singh H, Farh MEA, Yang DC. Achromobacter panacis sp. nov., isolated from rhizosphere of Panax ginseng. J Microbiol 2017; 55:428-434. [PMID: 28551873 DOI: 10.1007/s12275-017-6612-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
A novel strain DCY105T was isolated from soil collected from the rhizosphere of ginseng (Panax ginseng), in Gochang, Republic of Korea. Strain DCY105T is Gram-reaction-negative, white, non-motile, non-flagellate, rod-shaped and aerobic. The bacteria grow optimally at 30°C, pH 6.5-7.0 and in the absence of NaCl. Phylogenetically, strain DCY105T is most closely related to Achromobacter marplatensis LMG 26219T (96.81%). The DNA G+C content of strain DCY105T was 64.4 mol%. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were amongst the major polar lipids. C16:00, C8:03OH and iso-C17:03OH were identified as the major fatty acids present in DCY105T. The results of physiological and biochemical tests allowed strain DCY105T to be differentiated phenotypically from other recognized species belonging to the genus Achromobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Achromobacter panacis sp. nov. is proposed with the type strain designated as DCY105T (=CCTCCAB 2015193T =KCTC 42751T).
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea. .,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Yeon Ju Kim
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Hina Singh
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Mohamed El-Agamy Farh
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea. .,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
38
|
Fu Y, Yin ZH, Yin CY. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. J Appl Microbiol 2017; 122:1579-1585. [PMID: 28256039 DOI: 10.1111/jam.13435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 11/29/2022]
Abstract
AIMS To isolate a novel endophytic bacterium from Panax ginseng that could have excellent properties in converting ginsenoside Rb1 to ginsenoside Rg3. METHODS AND RESULTS Based on a 16S rDNA gene sequence, the strain named GE 17-7 was identified as Burkholderia sp. This strain has shown the highest activity in converting ginsenoside Rb1 to 20(S)-ginsenoside Rg3. During the biotransformation of ginsenoside Rb1, the final metabolite was identified by nuclear magnetic resonance analysis and the transformation pathway of ginsenoside Rb1 was also identified by thin-layer chromatography and high performance liquid chromatography analysis in this study. CONCLUSIONS We have successfully isolated a β-glucosidase-producing endophytic bacterium GE 17-7 from P. ginseng. Ginsenoside Rg3 was produced by strain GE 17-7 from ginsenoside Rb1 via ginsenoside Rd. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the conversion of major ginsenoside Rb1 into minor ginsenoside Rg3 by fermentation with Burkholderia sp. endophytic bacteria in P. ginseng. These results suggest a new preparation method for ginsenoside Rg3 using strain GE 17-7 in the pharmaceutical industry.
Collapse
Affiliation(s)
- Y Fu
- College of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Z-H Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - C-Y Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
39
|
Yang H, Puri A, Padda KP, Chanway CP. Substrate utilization by endophytic bacteria Paenibacillus polymyxa P2b-2R that may facilitate bacterial entrance and survival inside diverse plant hosts. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial endophytes are thought to enter plants either through pre-existing openings in plant tissues or by creating openings by hydrolyzing major plant cell wall components. A lodgepole endophyte, Paenibacillus polymyxa P2b-2R, consistently formed endophytic colonies when inoculated in diverse plant hosts, viz., lodgepole pine, western red cedar, corn, canola, and tomato. We were interested to know, whether or not this bacterial strain possesses enzymes that can hydrolyze three major plant cell wall components namely cellulose, xylan, and pectin to facilitate entrance into the host plants. Using a BIOLOG assay, we also tested this bacterial strain’s ability to utilize carbon sources that might facilitate its entrance and hence its survival inside host plants. Paenibacillus polymyxa P2b-2R hydrolyzed sodium carboxymethylcellulose, beechwood xylan, and sodium polypectate and utilized 39 of the 95 carbon sources (41%) tested. Of the 39 carbon substrates oxidized by P2b-2R, the “carbohydrates” group represents the largest source of utilizable carbon (23 out of 39). Thus, it can be concluded that P. polymyxa P2b-2R is able to degrade major cell wall components (cellulose, xylan, and pectin) and utilize some of the available carbon substrates, possibly to gain entry and survive inside the plant and form endophytic colonies thereafter.
Collapse
Affiliation(s)
- Henry Yang
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre 3041, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Akshit Puri
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre 3041, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kiran Preet Padda
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre 3041, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Chris P. Chanway
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre 3041, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
40
|
Das G, Park S, Baek KH. Diversity of Endophytic Bacteria in a Fern Species Dryopteris uniformis (Makino) Makino and Evaluation of Their Antibacterial Potential Against Five Foodborne Pathogenic Bacteria. Foodborne Pathog Dis 2017; 14:260-268. [PMID: 28418717 DOI: 10.1089/fpd.2016.2243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fern plant Dryopteris uniformis has traditionally been used in herbal medicine and possesses many biological activities. This study was conducted to explore the endophytic bacterial diversity associated with D. uniformis and evaluate their antibacterial potential against foodborne pathogenic bacteria (FPB). Among 51 isolated endophytic bacteria (EB), 26 EB were selected based on their morphological characteristics and identified by 16S rRNA gene analysis. The distribution of EB was diverse in the leaf and the stem/root tissues. When the EB were screened for antibacterial activity against five FPB, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli O157:H7, four EB Bacillus sp. cryopeg, Paenibacillus sp. rif200865, Staphylococcus warneri, and Bacillus psychrodurans had a broad spectrum of antibacterial activity (9.58 ± 0.66 to 21.47 ± 0.27 mm inhibition zone). The butanol solvent extract of B. sp. cryopeg and P. sp. rif200865 displayed effective antibacterial activity against the five FPB, which was evident from the scanning electron microscopy with irregular or burst cell morphology in the EB-treated bacteria compared to smooth and regular cells in case of the control bacteria. The minimum inhibitory concentration and minimum bactericidal concentration values ranged between 250-500 μg/mL and 500-100 μg/mL, respectively. The above outcomes signify the huge prospective of the selected EB in the food industry. Overall, the above results suggested that D. uniformis contains several culturable EB that possess effective antibacterial compounds, and that EB can be utilized as a source of natural antibacterial agents for their practical application in food industry to control the spread of FPB as a natural antibacterial agent.
Collapse
Affiliation(s)
- Gitishree Das
- 1 Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si , Republic of Korea
| | - Seonjoo Park
- 2 Department of Life Sciences, Yeungnam University , Gyeongsan, Republic of Korea
| | - Kwang-Hyun Baek
- 3 Department of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea
| |
Collapse
|
41
|
Singh P, Singh H, Kim YJ, Yang DC. Pedobacter panacis sp. nov., isolated from Panax ginseng soil. Antonie van Leeuwenhoek 2016; 110:235-244. [PMID: 27798744 DOI: 10.1007/s10482-016-0794-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
A novel strain, DCY108T was isolated from soil of a Panax ginseng field, Yeoncheon province (38°04'N 126°57'E), Republic of Korea. Strain DCY108T is Gram-negative, non-motile, non-flagellate, rod-shaped, and aerobic. The bacterium grows optimally at 25-30 °C, pH 6.5-7.0 and 1 % NaCl. Phylogenetically, strain DCY108T is closely related to Pedobacter jejuensis JCM 18824T, Pedobacter aquatilis JCM 13454T, Pedobacter kyungheensis LMG 26577T and the type strain of the genus Pedobacter heparinus DSM 2366T. The DNA-DNA relatedness values between strain DCY108T and its close phylogenetic neighbors were below 30.0 %. The DNA G+C content of strain DCY108T was determined to be 45.1 mol%. The predominant quinone was menaquinone 7 (MK-7). The major polar lipids were identified as phosphatidylethanolamine and three unidentified aminolipids AL1, AL13 and AL17. Iso-C15:00, iso-C17:03OH and summed feature 3 (C16:1 ω7c/C16:1 ω6c) were identified as the major fatty acids present in strain DCY108T. The results of physiological and biochemical tests allowed strain DCY108T to be differentiated phenotypically from other recognized species belonging to the genus Pedobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Pedobacter panacis sp. nov is proposed with the type strain designated as DCY108T (=CCTCCAB 2015196T = KCTC 42748T).
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-Si, Gyeonggi-do, 446-701, Republic of Korea. .,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, Gyeonggi-do, 446-701, Republic of Korea.
| | - Hina Singh
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-Si, Gyeonggi-do, 446-701, Republic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-Si, Gyeonggi-do, 446-701, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-Si, Gyeonggi-do, 446-701, Republic of Korea. .,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
42
|
Wicaksono WA, Jones EE, Monk J, Ridgway HJ. The Bacterial Signature of Leptospermum scoparium (Mānuka) Reveals Core and Accessory Communities with Bioactive Properties. PLoS One 2016; 11:e0163717. [PMID: 27676607 PMCID: PMC5038978 DOI: 10.1371/journal.pone.0163717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Leptospermum scoparium or mānuka is a New Zealand native medicinal plant that produces an essential oil with antimicrobial properties. This is the first study to investigate the structure and bioactivity of endophytic bacteria in mānuka by using a combination of cultivation-independent (DGGE) and dependent approaches. A total of 23 plants were sampled across three sites. Plants were considered either immature (3-8 years) or mature (>20 years). The endophyte community structure and richness was affected by plant tissue and bacterial communities became more stable and uniform as plant maturity increased. A total of 192 culturable bacteria were recovered from leaves, stems and roots. Some bacterial isolates showed in vitro biocontrol activity against two fungal pathogens, Ilyonectria liriodendri and Neofusicoccum luteum and a bacterial pathogen, Pseudomonas syringae pv. actinidiae. A high proportion of bacterial endophytes could produce siderophores and solubilise phosphate in vitro. Gammaproteobacteria was the most variable class, representing the majority of cultivated bacteria with bioactivity.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Faculty of Agriculture and Life Sciences Lincoln University, Christchurch, New Zealand
| | - E. Eirian Jones
- Faculty of Agriculture and Life Sciences Lincoln University, Christchurch, New Zealand
| | - Jana Monk
- Lincoln Research Centre, AgResearch, Christchurch, New Zealand
| | - Hayley J. Ridgway
- Faculty of Agriculture and Life Sciences Lincoln University, Christchurch, New Zealand
| |
Collapse
|
43
|
Bertani I, Abbruscato P, Piffanelli P, Subramoni S, Venturi V. Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:388-98. [PMID: 27038229 DOI: 10.1111/1758-2229.12403] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/04/2016] [Indexed: 05/12/2023]
Abstract
Endophytes are harmless or beneficial microorganisms that live inside plants between cells. The relationship they develop with the plant as well as their potential role in plant health is at large unexplored and it is believed that the opportunity to find new and interesting endophytes among the large variety of plants is great. Here, we present the isolation and analysis of a large collection of endophytes from one cultivar of rice grown in Italy. A total 1318 putative endophytes were isolated from roots, leaves and stems from rice grown in submerged and dry conditions and a working collection of 229 isolates was created. Among these, several isolates were confirmed to be endophytes and a few displayed the trait of plant growth promotion. A cultivation independent analysis via 16S rDNA amplicons of the bacterial community of the endosphere was also performed providing information on bacterial diversity in the rice endopshere.
Collapse
Affiliation(s)
- Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Pamela Abbruscato
- Parco Tecnologico Padano (PTP) via A. Einstein Loc. Codazza, 26900, Lodi, Italy
| | - Pietro Piffanelli
- Parco Tecnologico Padano (PTP) via A. Einstein Loc. Codazza, 26900, Lodi, Italy
| | - Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
44
|
Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens. J Microbiol 2016; 54:353-63. [DOI: 10.1007/s12275-016-5641-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
|
45
|
Ding T, Melcher U. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants. PLoS One 2016; 11:e0150895. [PMID: 26974817 PMCID: PMC4790846 DOI: 10.1371/journal.pone.0150895] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/19/2016] [Indexed: 01/15/2023] Open
Abstract
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.
Collapse
Affiliation(s)
- Tao Ding
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
46
|
Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol Res 2015; 182:68-79. [PMID: 26686615 DOI: 10.1016/j.micres.2015.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/21/2015] [Accepted: 09/27/2015] [Indexed: 11/22/2022]
Abstract
The submitted work assumes that the abundance and diversity of endophytic and rhizosphere microorganisms co-existing with the halophytic plant Aster tripolium L. growing in a salty meadow in the vicinity of a soda factory (central Poland) represent unique populations of cultivable bacterial strains. Endophytic and rhizosphere bacteria were (i) isolated and identified based on 16S rDNA sequences; (ii) screened for nifH and acdS genes; and (iii) analyzed based on selected metabolic properties. Moreover, total microbial biomass and community structures of the roots (endophytes), rhizosphere and soil were evaluated using a cultivation-independent technique (PLFA) to characterize plant-microbial interactions under natural salt conditions. The identification of the isolated strains showed domination by Gram-positive bacteria (mostly Bacillus spp.) both in the rhizosphere (90.9%) and roots (72.7%) of A. tripolium. Rhizosphere bacterial strains exhibited broader metabolic capacities, while endophytes exhibited higher specificities for metabolic activity. The PLFA analysis showed that the total bacterial biomass decreased in the following order (rhizosphere<soil<endophytes) and confirmed the dominance of Gram-positive endophytic bacteria in the roots of the halophyte. The described strain collection provides a valuable basis for a subsequent applications of bacteria in improvement of site adaptation of plants in saline soils.
Collapse
|
47
|
Endophytic bacterial diversity in Korean kimchi made of Chinese cabbage leaves and their antimicrobial activity against pathogens. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, Park K. Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 2015; 39:213-20. [PMID: 26199552 PMCID: PMC4506372 DOI: 10.1016/j.jgr.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. METHODS Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. RESULTS A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. CONCLUSION The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.
Collapse
Affiliation(s)
- Byung Dae Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Swarnalee Dutta
- Division of Agricultural Microbiology, National Academy of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Sung-Je Yoo
- Division of Agricultural Microbiology, National Academy of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Dong-Sang Suh
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Kyungseok Park
- Division of Agricultural Microbiology, National Academy of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| |
Collapse
|
49
|
Ji Q, Gao Y, Zhao Y, He Z, Zang P, Zhu H, Yang H, Li X, Zhang L. Determination of ginsenosides by Bacillus polymyxa conversion and evaluation on pharmacological activities of the conversion products. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 2015; 112:104-17. [DOI: 10.1016/j.mimet.2015.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|