1
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
2
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
3
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
4
|
Yang X, He Q, Liu T, Zheng F, Mei H, Chen M, Liu G, Vymazal J, Chen Y. Impact of microplastics on the treatment performance of constructed wetlands: Based on substrate characteristics and microbial activities. WATER RESEARCH 2022; 217:118430. [PMID: 35429885 DOI: 10.1016/j.watres.2022.118430] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Presence of microplastics (MPs) in wastewater has posed a huge ecosystem risk. Constructed wetlands (CWs) can effectively intercept MPs, while with MPs accumulation the response of CWs' performance is still unclear. In order to evaluate those effects, we conducted a 370-day experiment using CW microcosms fed with different levels (0, 10, 100, and 1000 μg/L) of polystyrene (PS) MPs (diameter: 50-100 μm). Results showed that nitrogen removal efficiency was increased (by 3.9%-24.7%) during the first 60 days and then decreased (by 7.1%-41.3%) with MPs accumulating, but no obvious change in COD and TP removal was observed. From further analysis, MPs accumulation changed the biofilm composition (TOC content increased from 41.4% to 52.7%), substrate porosity (electrical resistivity increased by 1.2-2.4 folds), and oxygen mass transfer (|KLa,O2| increased from 3.5% to 18.6%). Moreover, the microbial dynamics presented a higher abundance of nitrifiers (Nitrospira and Nitrosomonas) during the 60-day experiment and a lower abundance in the last days, while denitrifiers (Thauera, Thiobacillus, and Anaerolinea) had a high relative abundance throughout the experiment, being consistent with the variation of nitrification and denitrification rates. Finally, structural equation model analysis proved that due to the changes of substrate characteristics and microbial compositions and activities, the obvious decrease in nitrification efficiency was a direct reason for the decline of nitrogen removal during 370-day MPs accumulation. Overall, our study first prove that MPs accumulation can cause a series of changes in physicochemical and microbial characteristics of substrate, and ultimately affect the nitrogen-transforming process in CWs. Although our conclusions were based on the lab-scale CWs being different from the real wetlands, we hope that the conclusions can provide the effective regulatory strategies to guide the control of MPs in the actual wetlands.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Feifei Zheng
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Han Mei
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Gang Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague,16521, Prague 6, Czech Republic
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland–Pond Systems for Treating Low-C/N River Water. SUSTAINABILITY 2021. [DOI: 10.3390/su132212456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The quality of micropolluted water is unstable and its substrate concentration fluctuates greatly. The goal is to predict the concentration effect on the treatment of nitrogen in a river with an actual low C/N ratio for the proposed full-scale Xiaoyi River estuary wetland, so that the wetland project can operate stably and perform the water purification function effectively in the long term. Two pilot-scale multistage constructed wetland–pond (MCWP) systems (S1 and S2, respectively) based on actual engineering with the same “front ecological oxidation ponds, two-stage horizontal subsurface flow constructed wetlands and surface flow constructed wetlands (SFCWs) as the core and postsubmerged plant ponds” as the planned process were constructed to investigate the effect of different influent permanganate indexes (CODMn) and total nitrogen (TN) contents on nitrogen removal from micropolluted river water with a fixed C/N ratio from summer to winter in the field. The results indicate that the TN removal rate in the S1 and S2 systems was significant (19.56% and 34.84%, respectively). During the process of treating this micropolluted water with a fixed C/N ratio, the influent of S2 with a higher CODMn concentration was conducive to the removal of TN. The TN removal rate in S2 was significantly affected by the daily highest temperature. There was significant nitrogen removal efficiency in the SFCWs. The C/N ratio was a major determinant influencing the nitrogen removal rate in the SFCWs. The organic matter release phenomenon in SFCWs with high-density planting played an essential role in alleviating the lack of carbon sources in the influent. This research strongly supports the rule that there is seasonal nitrogen removal in the MCWPs under different influent substrate concentrations, which is of guiding significance for practical engineering.
Collapse
|
6
|
Domozych DS, Sun L, Palacio-Lopez K, Reed R, Jeon S, Li M, Jiao C, Sørensen I, Fei Z, Rose JKC. Endomembrane architecture and dynamics during secretion of the extracellular matrix of the unicellular charophyte, Penium margaritaceum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3323-3339. [PMID: 31974570 PMCID: PMC7289721 DOI: 10.1093/jxb/eraa039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
- Correspondence:
| | - Li Sun
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | | | - Reagan Reed
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Susan Jeon
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Mingjia Li
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Jiao C, Sørensen I, Sun X, Sun H, Behar H, Alseekh S, Philippe G, Palacio Lopez K, Sun L, Reed R, Jeon S, Kiyonami R, Zhang S, Fernie AR, Brumer H, Domozych DS, Fei Z, Rose JKC. The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell 2020; 181:1097-1111.e12. [PMID: 32442406 DOI: 10.1016/j.cell.2020.04.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.
Collapse
Affiliation(s)
- Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Hila Behar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Li Sun
- Skidmore College, Saratoga Springs, NY, USA
| | | | - Susan Jeon
- Skidmore College, Saratoga Springs, NY, USA
| | - Reiko Kiyonami
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada; Department of Botany, University of British Columbia, 3200-6270 University Blvd., Vancouver, BC V6H 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA; U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Abstract
Electricity-producing bacteria are potential power sources, fermentation platforms, and desalination systems, if current densities could be increased. These organisms form conductive biofilms on electrodes, allowing new cell layers to contribute to current production until a limit is reached, but the biological underpinning of this limit is not well-understood. We investigated the limitation behind this phenomenon using stable isotope probing and nanoscale secondary ion mass spectrometry, showing active cells are restricted to layers closest to the electrode. This metabolic observation fundamentally changes our understanding of electron flow and cell growth within current-producing biofilms and provides constraints on the physical structure of natural communities reliant on this process for growth. We predict improvements in biofilm conductivity will yield higher current-producing systems. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Collapse
|
9
|
Palacio-López K, Tinaz B, Holzinger A, Domozych DS. Arabinogalactan Proteins and the Extracellular Matrix of Charophytes: A Sticky Business. FRONTIERS IN PLANT SCIENCE 2019; 10:447. [PMID: 31031785 PMCID: PMC6474363 DOI: 10.3389/fpls.2019.00447] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Charophytes represent the group of green algae whose ancestors invaded land and ultimately gave rise to land plants 450 million years ago. While Zygnematophyceae are believed to be the direct sister lineage to embryophytes, different members of this group (Penium, Spirogyra, Zygnema) and the advanced thallus forming Coleochaete as well as the sarcinoid basal streptophyte Chlorokybus were investigated concerning their vegetative extracellular matrix (ECM) properties. Many taxa exhibit adhesion phenomena that are critical for affixing to a substrate or keeping cells together in a thallus, however, there is a great variety in possible reactions to e.g., wounding. In this study an analysis of adhesion mechanisms revealed that arabinogalactan proteins (AGPs) are most likely key adhesion molecules. Through use of monoclonal antibodies (JIM13) or the Yariv reagent, AGPs were located in cell surface sheaths and cell walls that were parts of the adhesion focal zones on substrates including wound induced rhizoid formation. JIM5, detecting highly methyl-esterfied homoglacturonan and JIM8, an antibody detecting AGP glycan and LM6 detecting arabinans were also tested and a colocalization was found in several examples (e.g., Zygnema) suggesting an interplay between these components. AGPs have been described in this study to perform both, cell to cell adhesion in algae forming thalli and cell to surface adhesion in the filamentous forms. These findings enable a broader evolutionary understanding of the function of AGPs in charophyte green algae.
Collapse
Affiliation(s)
| | - Berke Tinaz
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | | | - David S. Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| |
Collapse
|
10
|
Niedermeier M, Gierlinger N, Lütz-Meindl U. Biomineralization of strontium and barium contributes to detoxification in the freshwater alga Micrasterias. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:80-91. [PMID: 30195163 DOI: 10.1016/j.jplph.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
The unicellular model alga Micrasterias denticulata inhabits acid peat bogs that are highly endangered by pollutants due to their high humidity. As it was known from earlier studies that algae like Micrasterias are capable of storing barium naturally in form of BaSO4 crystals, it was interesting to experimentally investigate distribution and sequestration of barium and the chemically similar alkaline earth metal strontium. Additionally, we intended to analyze whether biomineralization by crystal formation contributes to diminution of the generally toxic effects of these minerals to physiology and structure of this alga which is closely related to higher plants. The results show that depending on the treatment differently shaped crystals are formed in BaCl2 and Cl2Sr exposed Micrasterias cells. Modern microscopic techniques such as analytical TEM by electron energy loss spectroscopy and Raman microscopy provide evidence for the chemical composition of these crystals. It is shown that barium treatment results in the formation of insoluble BaSO4 crystals that develop within distinct compartments. During strontium exposure long rod-like crystals are formed and are surrounded by membranes. Based on the Raman signature of these crystals their composition is attributed to strontium citrate. These crystals are instable and are dissolved during cell death. During strontium as well as barium treatment cell division rates and photosynthetic oxygen production decreased in dependence of the concentration, whereas cell vitality was reduced only slightly. Together with the fact that TEM analyses revealed only minor ultrastructural alterations as consequence of relatively high concentrated BaCl2 and Cl2Sr exposure, this indicates that biomineralization of Sr and Ba protects the cells from severe damage or cell death at least within a particular concentration range and time period. In the case of Sr treatment where ROS levels were found to be elevated, hallmarks for autophagy of single organelles were observed by TEM, indicating beginning degradation processes.
Collapse
Affiliation(s)
- Martin Niedermeier
- University of Salzburg, Department of Biosciences, Hellbrunner Straße 34, 5020 Salzburg, Austria.
| | - Notburga Gierlinger
- BOKU-University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Muthgasse 11/II, 1190 Vienna, Austria.
| | - Ursula Lütz-Meindl
- University of Salzburg, Department of Biosciences, Hellbrunner Straße 34, 5020 Salzburg, Austria.
| |
Collapse
|
11
|
Kurniawan A, Tsuchiya Y, Eda S, Morisaki H. Characterization of the internal ion environment of biofilms based on charge density and shape of ion. Colloids Surf B Biointerfaces 2015; 136:22-6. [PMID: 26350802 DOI: 10.1016/j.colsurfb.2015.08.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/10/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
Abstract
Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.
Collapse
Affiliation(s)
- Andi Kurniawan
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yuki Tsuchiya
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shima Eda
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hisao Morisaki
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
12
|
Anderson OR. Naked Amoebae in Biofilms Collected from a Temperate Freshwater Pond. J Eukaryot Microbiol 2013; 60:429-31. [DOI: 10.1111/jeu.12042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Affiliation(s)
- O. Roger Anderson
- Department of Biology; Lamont-Doherty Earth Observatory of Columbia University; Palisades New York 10964
| |
Collapse
|
13
|
Agudelo C RM, Jaramillo ML, Peñuela G. Comparison of the removal of chlorpyrifos and dissolved organic carbon in horizontal sub-surface and surface flow wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 431:271-277. [PMID: 22687437 DOI: 10.1016/j.scitotenv.2012.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/12/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Chlorpyrifos is an organophosphorus pesticide widely used in Colombia for agricultural and domestic pest control. It is also commonly found in water sources in rural areas. Constructed wetlands are being used as viable alternatives for the treatment of domestic wastewater with large organic loads. For this research, three pilot-scale subsurface horizontal flow constructed wetlands and three horizontal surface flow wetlands were used for the treatment of synthetic wastewater with different concentrations of chlorpyrifos (0.0 μg L(-1), 478 μg L(-1), 589 μg L(-1) and 788 μg L(-1)), 100 mg L(-1) of dissolved organic carbon and nutrients. The wetlands were constructed in equal dimensions and in the same size range as the gravel bed (3.18-6.35 mm) and planted with Phragmites australis. The efficiencies of the removal of the pesticide and dissolved organic carbon were then determined. Additionally, other physicochemical parameters, as well as 3,5,6-trichloro-2-pyridinol, the main breakdown product of chlorpyrifos, were measured. The average removals of this agrochemical and dissolved organic carbon in the subsurface horizontal flow constructed wetlands were 93% and 92%, respectively, and in the horizontal surface flow wetlands, the average removal was 95% for both compounds. The removal is the result of the joint action of microorganisms and the adsorption and absorption of roots and rhizomes of plants found in wetlands. Both types of wetlands are very efficient at treating the domestic wastewater contaminated with pesticides and dissolved organic carbon, although the results were slightly better in the surface flow wetlands.
Collapse
Affiliation(s)
- Ruth Marina Agudelo C
- Health and Environment Group, National Faculty of Public Health, University of Antioquia, Medellin, 51922, Colombia.
| | | | | |
Collapse
|
14
|
Eder M, Lütz-Meindl U. Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. PROTOPLASMA 2010; 243:25-38. [PMID: 19340523 PMCID: PMC2892062 DOI: 10.1007/s00709-009-0040-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/09/2009] [Indexed: 05/18/2023]
Abstract
The unicellular, simply shaped desmid Netrium digitus inhabiting acid bog ponds grows in two phases. Prior to division, the cell elongates at its central zone, whereas in a second phase, polar tip growth occurs. Electron microscopy demonstrates that Netrium is surrounded by a morphologically homogeneous cell wall, which lacks pores. Immunocytochemical and biochemical analyses give insight into physical wall properties and, thus, into adaptation to the extreme environment. The monoclonal antibodies JIM5 and JIM7 directed against pectic epitopes with different degrees of esterification label preferentially growing wall zones in Netrium. In contrast, 2F4 marks the cell wall only after experimental de-esterification. Electron energy loss spectroscopy reveals Ca-binding capacities of pectins and gives indirect evidence for the degree of their esterification. An antibody raised against Netrium mucilage is not only specific to mucilage but also recognizes wall components in transmission electron microscopy and dot blots. These results indicate a smooth transition between mucilage and the cell wall in Netrium.
Collapse
Affiliation(s)
- Magdalena Eder
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, Salzburg, A-5020 Austria
- Present Address: Leibniz Institute for New Materials, Campus D2-2, Saarbrücken, D-66123 Germany
| | - Ursula Lütz-Meindl
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, Salzburg, A-5020 Austria
| |
Collapse
|
15
|
Bischoff PJ, Wetmore S. Seasonal abundances of naked amoebae in biofilms on shells of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J Eukaryot Microbiol 2009; 56:397-9. [PMID: 19602088 DOI: 10.1111/j.1550-7408.2009.00415.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In North America, zebra mussels (Dreissena polymorpha) are notoriously known as invasive species. The abundance of naked amoebae sampled from the shells of zebra mussels was compared with abundances from rock scrapings at approximately monthly intervals for 1 year. The sites were 2 km apart along the same shoreline. No significant difference in abundance of naked amoebae (F = 1.44; P <or= 0.270) was detected for the two sampling sites. The combined data showed a minimum density of naked amoebae in winter, followed by peaks in early spring. The percent encysted increased from a low of 1% in the summer to 80% in early winter.
Collapse
Affiliation(s)
- Paul J Bischoff
- Science Education, The State University of New York College at Oneonta, Oneonta, New York 13820, USA.
| | | |
Collapse
|
16
|
DOMOZYCH DAVIDS, WILSON RICHARD, DOMOZYCH CATHERINEROGERS. Photosynthetic Eukaryotes of Freshwater Wetland Biofilms: Adaptations and Structural Characteristics of the Extracellular Matrix in the Green Alga,Cosmarium reniforme(Zygnematophyceae, Streptophyta). J Eukaryot Microbiol 2009; 56:314-22. [DOI: 10.1111/j.1550-7408.2009.00392.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Hiraki A, Tsuchiya Y, Fukuda Y, Yamamoto T, Kurniawan A, Morisaki H. Analysis of How a Biofilm Forms on the Surface of the Aquatic Macrophyte Phragmites australis. Microbes Environ 2009; 24:265-72. [PMID: 21566383 DOI: 10.1264/jsme2.me09122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The process by which a biofilm forms on the surface of the aquatic macrophyte Phragmites australis was investigated over a period of about two months (from mid-May to late-July, 2008) in Lake Biwa. The biofilm formed relatively quickly, its wet weight per unit area after seven day being that of a mature biofilm. This speed can be attributed to the many active bacteria in the early stage of its formation and the extracellular polymeric substances (EPS) they produce. The EPS carried electric charges that attracted nutrient ions from surrounding lake water, which, by electrostatic interaction, reached a high concentration as early as day 7 of the formation process. This significantly affected the biofilm community, which differed greatly from that of the lake water even at the beginning of biofilm formation. Brown amorphous compounds (a complex of organic and inorganic substances), covered the biofilm in the second half of its formation process producing a different community structure from that initially. This study revealed a fast and dynamic process of biofilm formation on the reed surface of reed.
Collapse
Affiliation(s)
- Ayami Hiraki
- Graduate School of Science and Engineering, Ritsumeikan University
| | | | | | | | | | | |
Collapse
|
18
|
Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME JOURNAL 2008; 3:266-70. [PMID: 18843299 DOI: 10.1038/ismej.2008.90] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pellicle biofilms colonize the air-solution interface of underground acid mine drainage (AMD) streams and pools within the Richmond Mine (Iron Mountain, Redding, CA, USA). They exhibit relatively low species richness and, consequently, represent good model systems to study natural microbial community structure. Fluorescence in situ hybridization combined with epifluorescent microscopy and transmission electron microscopy revealed spatially and temporally defined microbial assemblages. Leptospirillum group II dominates the earliest developmental stages of stream pellicles. With increasing biofilm maturity, the proportion of archaea increases in conjunction with the appearance of eukaryotes. In contrast, mature pool pellicles are stratified with a densely packed bottom layer of Leptospirillum group II, a less dense top layer composed mainly of archaea and no eukarya. Immunohistochemical detection of Leptospirillum group II cytochrome 579 indicates a high abundance of this protein at the interface of the biofilm with the AMD solution. Consequently, community architecture, which most likely develops in response to chemical gradients across the biofilm, is reflected at the functional gene expression level.
Collapse
|