1
|
Ooi QE, Nguyen CTT, Laloo AE, Koh YZ, Swarup S. Soil-sediment connectivity through Bayesian source tracking in an urban naturalised waterway via microbial and isotopic markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175152. [PMID: 39097031 DOI: 10.1016/j.scitotenv.2024.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Riverine sediments are important habitats for microbial activity in naturalised waterways to provide potential ecosystem services that improve stormwater quality. Yet, little is known about the sources of these sediment microbes, and the factors shaping them. This study investigated the dominant source of sediments in a tropical naturalised urban waterway, using two Bayesian methods for microbial and isotopic 13C/15N markers concurrently. Additionally, key factors shaping microbial communities from the surrounding landscape were evaluated. A comprehensive two-year field survey identified source land covers of interest based on topology and soil context. Among these land covers, riverbanks were the dominant source of sediments contribution for both edaphic and microbial components. The physico-chemical environment explains most of the variation in sediment communities compared to inter-location distances and microbial source contribution. As microbes provide ecosystem services important for rewilding waterways, management strategies that establish diverse sediment microbial communities are encouraged. Since riverbanks play a disproportionately important role in material contribution to sediment beds, management practices aimed at controlling soil erosion from riverbanks can improve overall functioning of waterway systems.
Collapse
Affiliation(s)
- Qi En Ooi
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| | - Canh Tien Trinh Nguyen
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Centre for Radiation Research Education and Innovation, The University of Adelaide, 5005, Australia
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Yi Zi Koh
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
2
|
Sun J, Lin Z, Ning D, Wang H, Zhang Z, He Z, Zhou J. Functional microbial community structures and chemical properties indicated mechanisms and potential risks of urban river eco-remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149868. [PMID: 34481163 DOI: 10.1016/j.scitotenv.2021.149868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
To investigate the mechanisms and potential risks of river eco-remediation, river water, sediment, and biofilms in remediation facilities were sampled from a 2-year full scale eco-remediation site in an urban river in southeastern China. The samples from both remediated and adjacent control areas were analyzed for chemical properties and functional microbial community structures. The eco-remediation significantly changed the community structures in the river and introduced much more diverse functional microorganisms in facility biofilms. Corresponding to effective reduction of organics and ammonium in river water, some labile-organics-degrading and ammonia-oxidizing gene families showed higher abundances in river water of remediated area than control area, and were obviously more abundant in facility biofilms than in river water and sediment. The eco-remediation facilities showed obvious absorption of N, P, and heavy metals (Mn, CrVI, Fe, Al, As, Co), contributing to nutrients and metals removal from river water. The eco-remediation also increased transparency and sedimentation of some heavy metals (Cu, Pb, Zn), which probably associated with colloids breakdown. Various metal-resistance microorganisms showed different abundances between facility biofilms and sediment, in accordance with relative metals. Most detected pathogens were not significantly affected by eco-remediation. However, our measurements in sediment and facilities showed heavy metals accumulation and development of some pathogens and several antibiotic-resistance pathogens, alerting us to investigate and control these potential risks to ecosystem and human health.
Collapse
Affiliation(s)
- Jiao Sun
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ziyu Lin
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Daliang Ning
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA.
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
3
|
Hall NC, Sikaroodi M, Hogan D, Jones RC, Gillevet PM. The Presence of Denitrifiers In Bacterial Communities of Urban Stormwater Best Management Practices (BMPs). ENVIRONMENTAL MANAGEMENT 2022; 69:89-110. [PMID: 34860281 PMCID: PMC8758610 DOI: 10.1007/s00267-021-01529-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Stormwater best management practices (BMPs) are engineered structures that attempt to mitigate the impacts of stormwater, which can include nitrogen inputs from the surrounding drainage area. The goal of this study was to assess bacterial community composition in different types of stormwater BMP soils to establish whether a particular BMP type harbors more denitrification potential. Soil sampling took place over the summer of 2015 following precipitation events. Soils were sampled from four bioretention facilities, four dry ponds, four surface sand filters, and one dry swale. 16S rRNA gene analysis of extracted DNA and RNA amplicons indicated high bacterial diversity in the soils of all BMP types sampled. An abundance of denitrifiers was also indicated in the extracted DNA using presence/absence of nirS, nirK, and nosZ denitrification genes. BMP soil bacterial communities were impacted by the surrounding soil physiochemistry. Based on the identification of a metabolically-active community of denitrifiers, this study has indicated that denitrification could potentially occur under appropriate conditions in all types of BMP sampled, including surface sand filters that are often viewed as providing low potential for denitrification. The carbon content of incoming stormwater could be providing bacterial communities with denitrification conditions. The findings of this study are especially relevant for land managers in watersheds with legacy nitrogen from former agricultural land use.
Collapse
Affiliation(s)
- Natalie C Hall
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA, USA.
| | - Masoumeh Sikaroodi
- Department of Biology, George Mason University, Manassas, VA, USA
- Microbiome Analysis Center (MBAC), Manassas, VA, USA
| | - Dianna Hogan
- U.S. Geological Survey, Deputy Regional Director for Science, Southeast Region, Reston, VA, USA
| | - R Christian Jones
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
- Potomac Environmental Research and Education Center (PEREC), George Mason University, Woodbridge, VA, USA
| | - Patrick M Gillevet
- Department of Biology, George Mason University, Manassas, VA, USA
- Microbiome Analysis Center (MBAC), Manassas, VA, USA
| |
Collapse
|
4
|
Biswal BK, Vijayaraghavan K, Adam MG, Lee Tsen-Tieng D, Davis AP, Balasubramanian R. Biological nitrogen removal from stormwater in bioretention cells: a critical review. Crit Rev Biotechnol 2021; 42:713-735. [PMID: 34486441 DOI: 10.1080/07388551.2021.1969888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Excess nitrogen in stormwater degrades surface water quality via eutrophication and related processes. Bioretention has been recognized as a highly effective low-impact development (LID) technology for the management of high runoff volumes and reduction of nitrogen (N) pollutants through various mechanisms. This paper provides a comprehensive and critical review of recent developments on the biological N removal processes occurring in bioretention systems. The key plant- and microbe-mediated N transformation processes include assimilation (N uptake by plants and microbes), nitrification, denitrification, and anammox (anaerobic ammonia oxidation), but denitrification is the major pathway of permanent N removal. Overall, both laboratory- and field-scale bioretention systems have demonstrated promising N removal performance (TN: >70%). The phyla Bacteroidetes and Proteobacteria are the most abundant microbial communities found to be enriched in biofilter media. Furthermore, the denitrifying communities contain several functional genes (e.g., nirK/nirS, and nosZ), and their concentrations increase near the surface of media depth. The N removal effectiveness of bioretention systems is largely impacted by the hydraulics and environmental factors. When a bioretention system operates at: low hydraulic/N loading rate, containing a saturation zone, vegetated with native plants, having deeper and multilayer biofilter media with warm climate temperature and wet storm events periods, the N removal efficiency can be high. This review highlights shortcomings and current knowledge gaps in the area of total nitrogen removal using bioretention systems, as well as identifies future research directions on this topic.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Kuppusamy Vijayaraghavan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Daryl Lee Tsen-Tieng
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Headwater Stream Microbial Diversity and Function across Agricultural and Urban Land Use Gradients. Appl Environ Microbiol 2020; 86:AEM.00018-20. [PMID: 32245755 DOI: 10.1128/aem.00018-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022] Open
Abstract
Anthropogenic activity impacts stream ecosystems, resulting in a loss of diversity and ecosystem function; however, little is known about the response of aquatic microbial communities to changes in land use. Here, microbial communities were characterized in 82 headwater streams across a gradient of urban and agricultural land uses using 16S rRNA gene amplicon sequencing and compared to a rich data set of physicochemical variables and traditional benthic invertebrate indicators. Microbial diversity and community structures differed among watersheds with high agricultural, urban, and forested land uses, and community structure differed in streams classified as being in good, fair, poor, and very poor condition using benthic invertebrate indicators. Microbial community similarity decayed with geodesic distance across the study region but not with environmental distance. Stream community respiration rates ranged from 21.7 to 1,570 mg O2 m-2 day-1 and 31.9 to 3,670 mg O2 m-2 day-1 for water column and sediments, respectively, and correlated with nutrients associated with anthropogenic influence and microbial community structure. Nitrous oxide (N2O) concentrations ranged from 0.22 to 4.41 μg N2O liter-1; N2O concentration was negatively correlated with forested land use and was positively correlated with dissolved inorganic nitrogen concentrations. Our findings suggest that stream microbial communities are impacted by watershed land use and can potentially be used to assess ecosystem health.IMPORTANCE Stream ecosystems are frequently impacted by changes in watershed land use, resulting in altered hydrology, increased pollutant and nutrient loads, and habitat degradation. Macroinvertebrates and fish are strongly affected by changes in stream conditions and are commonly used in biotic indices to assess ecosystem health. Similarly, microbes respond to environmental stressors, and changes in community composition alter key ecosystem processes. The response of microbes to habitat degradation and their role in global biogeochemical cycles provide an opportunity to use microbes as a monitoring tool. Here, we identify stream microbes that respond to watershed urbanization and agricultural development and demonstrate that microbial diversity and community structure can be used to assess stream conditions and ecosystem functioning.
Collapse
|
6
|
Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep 2019; 9:8406. [PMID: 31182804 PMCID: PMC6557889 DOI: 10.1038/s41598-019-44788-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Microbial community diversity and composition are important for the maintenance of mangrove ecosystem. Bacterial and archaeal community composition of the Bamenwan Mangrove Wetland soil in Hainan, China, was determined using pyrosequencing technique. Bacterial community composition presented differences among the five soil samples. Rhizobiales with higher abundance were observed in inner mangrove forest samples, while Desulfobacterales were in the seaward edge samples, and Frankiales, Gaiellales and Rhodospirillales in the landedge sample. For archaea, Crenarchaeota and Euryarchaeota dominated in five samples, but the proportion in each samples were different. Dominant archaeal community composition at the order level was similar in the seaward edge samples. The dominant archaeal clusters in the two inner mangrove forest samples were different, with Soil Crenarchaeotic Group (SCG) and Halobacteriales in sample inside of Bruguiera sexangula forest and SCG, Methanosarcinales and Marine Benthic Group B (MBGB) in sample inside of Xylocarpus mekongensis forest. The dominant archaeal clusters in land sample were unique, with Terrestrial Group and South African Gold Mine Group 1. The metabolic pathways including metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems and human diseases were all detected for bacterial and archaeal functional profiles, but metabolic potentials among five samples were different.
Collapse
|
7
|
Effects of Urban Stormwater Control Measures on Denitrification in Receiving Streams. WATER 2018. [DOI: 10.3390/w10111582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban areas are increasingly adopting the use of ecologically-based technologies for stormwater management to mitigate the effects of impervious surface runoff on receiving water bodies. While stormwater control measures (SCMs) reduce runoff, their ability to influence ecosystem function in receiving streams is not well known. To understand the effect of SCMs on net ecosystem function in stream networks, we measured sediment denitrification in four streams across a gradient of urban and suburban residential development in Charlotte, NC. We evaluated the influence of SCM inputs on actual (DNF) and potential (DEA) denitrification activity in stream sediments at the SCM-stream confluence to quantify microbial processes and the environmental factors that control them. DNF was variable across sites, ranging from 0–6.60 mg-N·m−2·h−1 and highly correlated with in-stream nitrate (NO3-N) concentrations. Sites with a greater impervious area showed a pattern of significantly higher DEA rates upstream of the SCM compared to downstream, while sites with less imperviousness showed the opposite trend. We hypothesize that this is because of elevated concentrations of carbon and nitrogen provided by pond and wetland outflows, and stabilization of the benthic habitat by lower peak discharge. These results suggest that SCMs integrated into the watershed have the potential to create cascading positive effects on in-stream nutrient processing and thereby improve water quality; however, at higher levels of imperviousness, the capacity for SCMs to match the scale of the impacts of urbanization likely diminishes.
Collapse
|
8
|
Kellner E, Hubbart J, Stephan K, Morrissey E, Freedman Z, Kutta E, Kelly C. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:586. [PMID: 30215141 DOI: 10.1007/s10661-018-6968-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
An exploratory study was conducted in an urbanizing, mixed-land-use Appalachian watershed. Six study sites, characterized by contrasting land use/land cover, were instrumented to continuously monitor stream stage. Weekly grab samples were collected from each site and analyzed for elemental composition via spectrometric and spectrophotometric methods. Additional physico-chemical parameters were measured in situ. Data were analyzed using a suite of statistical methods, including hypothesis testing, correlation analysis, and principal components analysis (PCA). Significant differences (p < 0.05) between study sites were identified for every measured parameter except Co, Cu, Pb, and Ti concentrations. However, different parameters showed significant differences (p < 0.05) between site pairings. PCA results highlight consistent spatial differences between elemental composition and physico-chemical characteristics of streamwater samples. Results from correlation analyses indicated varying significant (p < 0.05) relationships between chemical parameters and hydroclimate metrics, with certain elements (e.g., Ca and Sr) and physico-chemical parameters (e.g., specific conductance) displaying greater sensitivity to hydroclimate at mixed-land-use sites, as compared to predominately urban, agricultural, or forest sites. Given the geological, topographical, and climatological similarities between the sites, and their close proximity, it was concluded that land use characteristics and associated hydrologic regime contrasts were the primary factors contributing to the observed results. Results comprise valuable information for land and water managers seeking to mitigate the impacts of land use practices on water resources and aquatic ecosystem health. The applied methodology can be used to more effectively target sub-watershed-scale remediation/restoration efforts within mixed-use watersheds, thereby improving the ultimate efficacy of management practices.
Collapse
Affiliation(s)
- Elliott Kellner
- Institute of Water Security and Science, West Virginia University, Morgantown, WV, USA.
| | - Jason Hubbart
- Institute of Water Security and Science, West Virginia University, Morgantown, WV, USA
- West Virginia University, Davis College of Agriculture, Natural Resources and Design, Morgantown, WV, USA
| | - Kirsten Stephan
- West Virginia University, Davis College of Agriculture, Natural Resources and Design, Morgantown, WV, USA
| | - Ember Morrissey
- West Virginia University, Davis College of Agriculture, Natural Resources and Design, Morgantown, WV, USA
| | - Zachary Freedman
- West Virginia University, Davis College of Agriculture, Natural Resources and Design, Morgantown, WV, USA
| | - Evan Kutta
- Institute of Water Security and Science, West Virginia University, Morgantown, WV, USA
| | - Charlene Kelly
- West Virginia University, Davis College of Agriculture, Natural Resources and Design, Morgantown, WV, USA
| |
Collapse
|
9
|
Blaszczak JR, Steele MK, Badgley BD, Heffernan JB, Hobbie SE, Morse JL, Rivers EN, Hall SJ, Neill C, Pataki DE, Groffman PM, Bernhardt ES. Sediment chemistry of urban stormwater ponds and controls on denitrification. Ecosphere 2018. [DOI: 10.1002/ecs2.2318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Joanna R. Blaszczak
- Biology Department Duke University Durham North Carolina 27708 USA
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| | - Meredith K. Steele
- School of Plant and Environmental Sciences Virginia Polytechnic and State University Blacksburg Virginia 24061 USA
| | - Brian D. Badgley
- School of Plant and Environmental Sciences Virginia Polytechnic and State University Blacksburg Virginia 24061 USA
- Global Change Center Virginia Polytechnic and State University Blacksburg Virginia 24061 USA
| | - Jim B. Heffernan
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Jennifer L. Morse
- Department of Environmental Science and Management Portland State University Portland Oregon 97201 USA
| | - Erin N. Rivers
- Department of Environmental Science and Management Portland State University Portland Oregon 97201 USA
| | - Sharon J. Hall
- School of Life Sciences Arizona State University Tempe Arizona 85287 USA
| | | | - Diane E. Pataki
- Department of Biology University of Utah Salt Lake City Utah 84112 USA
| | | | | |
Collapse
|
10
|
Roberto AA, Van Gray JB, Leff LG. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition. WATER RESEARCH 2018; 134:353-369. [PMID: 29454907 DOI: 10.1016/j.watres.2018.01.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 05/25/2023]
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial communities are understudied. In this study, we examined the effect of urban discharge on the spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha (α) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA profiles revealed significant spatial and temporal effects on beta (β) diversity and community composition and identified a number of significant correlative abiotic parameters. Clustering of upstream and reference sites from downstream sites of Tinkers Creek combined with the dominant families observed in specific locales suggests that environmentally-induced species sorting had a strong impact on the composition of sediment bacterial communities. Distinct groupings of bacterial families that are often associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experiencing higher degrees of discharge associated with urbanization. Additionally, there were marked seasonal changes in community composition, with individual taxa exhibiting different seasonal abundance patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community functional profiles. Together, these results suggest that local environmental drivers and niche filtering from discharge events associated with urbanization shape the bacterial community structure. However, dispersal limitations and interactions among other species likely play a role as well.
Collapse
Affiliation(s)
- Alescia A Roberto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Jonathon B Van Gray
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
11
|
Tomasek A, Staley C, Wang P, Kaiser T, Lurndahl N, Kozarek JL, Hondzo M, Sadowsky MJ. Increased Denitrification Rates Associated with Shifts in Prokaryotic Community Composition Caused by Varying Hydrologic Connectivity. Front Microbiol 2017; 8:2304. [PMID: 29213260 PMCID: PMC5702768 DOI: 10.3389/fmicb.2017.02304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022] Open
Abstract
While modern developments in agriculture have allowed for increases in crop yields and rapid human population growth, they have also drastically altered biogeochemical cycles, including the biotransformation of nitrogen. Denitrification is a critical process performed by bacteria and fungi that removes nitrate in surface waters, thereby serving as a potential natural remediation strategy. We previously reported that constant inundation resulted in a coupling of denitrification gene abundances with denitrification rates in sediments, but these relationships were not maintained in periodically-inundated or non-inundated environments. In this study, we utilized Illumina next-generation sequencing to further evaluate how the microbial community responds to these hydrologic regimes and how this community is related to denitrification rates at three sites along a creek in an agricultural watershed over 2 years. The hydrologic connectivity of the sampling location had a significantly greater influence on the denitrification rate (P = 0.010), denitrification gene abundances (P < 0.001), and the prokaryotic community (P < 0.001), than did other spatiotemporal factors (e.g., creek sample site or sample month) within the same year. However, annual variability among denitrification rates was also observed (P < 0.001). Furthermore, the denitrification rate was significantly positively correlated with water nitrate concentration (Spearman's ρ = 0.56, P < 0.0001), denitrification gene abundances (ρ = 0.23-0.47, P ≤ 0.006), and the abundances of members of the families Burkholderiaceae, Anaerolinaceae, Microbacteriaceae, Acidimicrobineae incertae sedis, Cytophagaceae, and Hyphomicrobiaceae (ρ = 0.17-0.25, P ≤ 0.041). Prokaryotic community composition accounted for the least amount of variation in denitrification rates (22%), while the collective influence of spatiotemporal factors and gene abundances accounted for 37%, with 40% of the variation related to interactions among all parameters. Results of this study suggest that the hydrologic connectivity at each location had a greater effect on the prokaryotic community than did spatiotemporal differences, where inundation is associated with shifts favoring increased denitrification potential. We further establish that while complex interactions among the prokaryotic community influence denitrification, the link between hydrologic connectivity, microbial community composition, and genetic potential for biogeochemical cycling is a promising avenue to explore hydrologic remediation strategies such as periodic flooding.
Collapse
Affiliation(s)
- Abigail Tomasek
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, United States.,Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Ping Wang
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Thomas Kaiser
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Nicole Lurndahl
- Water Resources Science, University of Minnesota, St. Paul, MN, United States
| | - Jessica L Kozarek
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Miki Hondzo
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, United States.,Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
12
|
Hosen JD, Febria CM, Crump BC, Palmer MA. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition. Front Microbiol 2017; 8:1452. [PMID: 28824582 PMCID: PMC5539594 DOI: 10.3389/fmicb.2017.01452] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition of headwater streams, and suggest that processes driving these changes in urbanized water column vs. sediment environments are distinct.
Collapse
Affiliation(s)
- Jacob D Hosen
- Chesapeake Biological LaboratorySolomons, MD, United States.,Department of Entomology, University of MarylandCollege Park, MD, United States.,College of Earth, Ocean, and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Catherine M Febria
- Chesapeake Biological LaboratorySolomons, MD, United States.,School of Biological Sciences, University of CanterburyChristchurch, New Zealand
| | - Byron C Crump
- School of Forestry and Environmental Studies, Yale UniversityNew Haven, CT, United States
| | - Margaret A Palmer
- Chesapeake Biological LaboratorySolomons, MD, United States.,Department of Entomology, University of MarylandCollege Park, MD, United States.,National Socio-Environmental Synthesis CenterAnnapolis, MD, United States
| |
Collapse
|
13
|
Highton MP, Roosa S, Crawshaw J, Schallenberg M, Morales SE. Physical Factors Correlate to Microbial Community Structure and Nitrogen Cycling Gene Abundance in a Nitrate Fed Eutrophic Lagoon. Front Microbiol 2016; 7:1691. [PMID: 27826296 PMCID: PMC5078687 DOI: 10.3389/fmicb.2016.01691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH, nirS, nosZI, and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.
Collapse
Affiliation(s)
- Matthew P Highton
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Stéphanie Roosa
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Josie Crawshaw
- Department of Marine Science, University of Otago Dunedin, New Zealand
| | | | - Sergio E Morales
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
14
|
Gosset A, Ferro Y, Durrieu C. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: A review. WATER RESEARCH 2016; 89:330-354. [PMID: 26720196 DOI: 10.1016/j.watres.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Rainwater becomes loaded with a large number of pollutants when in contact with the atmosphere and urban surfaces. These pollutants (such as metals, pesticides, PAHs, PCBs) reduce the quality of water bodies. As it is now acknowledged that physico-chemical analyses alone are insufficient for identifying an ecological impact, these analyses are frequently completed or replaced by impact studies communities living in freshwater ecosystems (requiring biological indices), ecotoxicological studies, etc. Thus, different monitoring strategies have been developed over recent decades aimed at evaluating the impact of the pollution brought by urban wet weather discharges on the biocenosis of receiving aquatic ecosystems. The purpose of this review is to establish a synthetic and critical view of these different methods used, to define their advantages and disadvantages, and to provide recommendations for futures researches. Although studies on aquatic communities are used efficiently, notably on benthic macroinvertebrates, they are difficult to interpret. In addition, despite the fact that certain bioassays lack representativeness, the literature at present appears meagre regarding ecotoxicological studies conducted in situ. However, new tools for studying urban wet weather discharges have emerged, namely biosensors. The advantages of biosensors are that they allow monitoring the impact of discharges in situ and continuously. However, only one study on this subject has been identified so far, making it necessary to perform further research in this direction.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
| | - Yannis Ferro
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| | - Claude Durrieu
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| |
Collapse
|
15
|
Jeffries TC, Schmitz Fontes ML, Harrison DP, Van-Dongen-Vogels V, Eyre BD, Ralph PJ, Seymour JR. Bacterioplankton Dynamics within a Large Anthropogenically Impacted Urban Estuary. Front Microbiol 2016; 6:1438. [PMID: 26858690 PMCID: PMC4726783 DOI: 10.3389/fmicb.2015.01438] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/02/2015] [Indexed: 02/01/2023] Open
Abstract
The abundant and diverse microorganisms that inhabit aquatic systems are both determinants and indicators of aquatic health, providing essential ecosystem services such as nutrient cycling but also causing harmful blooms and disease in impacted habitats. Estuaries are among the most urbanized coastal ecosystems and as a consequence experience substantial environmental pressures, providing ideal systems to study the influence of anthropogenic inputs on microbial ecology. Here we use the highly urbanized Sydney Harbor, Australia, as a model system to investigate shifts in microbial community composition and function along natural and anthopogenic physicochemical gradients, driven by stormwater inflows, tidal flushing and the input of contaminants and both naturally and anthropogenically derived nutrients. Using a combination of amplicon sequencing of the 16S rRNA gene and shotgun metagenomics, we observed strong patterns in microbial biogeography across the estuary during two periods: one of high and another of low rainfall. These patterns were driven by shifts in nutrient concentration and dissolved oxygen leading to a partitioning of microbial community composition in different areas of the harbor with different nutrient regimes. Patterns in bacterial composition were related to shifts in the abundance of Rhodobacteraceae, Flavobacteriaceae, Microbacteriaceae, Halomonadaceae, Acidomicrobiales, and Synechococcus, coupled to an enrichment of total microbial metabolic pathways including phosphorus and nitrogen metabolism, sulfate reduction, virulence, and the degradation of hydrocarbons. Additionally, community beta-diversity was partitioned between the two sampling periods. This potentially reflected the influence of shifting allochtonous nutrient inputs on microbial communities and highlighted the temporally dynamic nature of the system. Combined, our results provide insights into the simultaneous influence of natural and anthropogenic drivers on the structure and function of microbial communities within a highly urbanized aquatic ecosystem.
Collapse
Affiliation(s)
- Thomas C. Jeffries
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney UniversityPenrith, NSW, Australia
| | - Maria L. Schmitz Fontes
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
| | - Daniel P. Harrison
- School of Geosciences, University of Sydney Institute of Marine Science, The University of SydneySydney, NSW, Australia
- Sydney Institute of Marine ScienceMosman, NSW, Australia
| | - Virginie Van-Dongen-Vogels
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
| | - Bradley D. Eyre
- Centre for Coastal Management, Southern Cross UniversityLismore, NSW, Australia
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
| | - Justin R. Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
16
|
Multidisciplinary approach to assess the water self-depuration characteristics of Suquía River (Córdoba, Argentina). REVISTA CHILENA DE HISTORIA NATURAL 2014. [DOI: 10.1186/s40693-014-0012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Wang HT, Su JQ, Zheng TL, Yang XR. Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Appl Microbiol Biotechnol 2014; 98:9375-87. [DOI: 10.1007/s00253-014-6017-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 12/18/2022]
|
18
|
Chen X, Peltier E, Sturm BSM, Young CB. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. WATER RESEARCH 2013; 47:1691-1700. [PMID: 23340015 DOI: 10.1016/j.watres.2012.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/30/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
In this study, we examine the biological processes involved in ammonia and nitrate removal in a bioretention system characterized by low infiltration rates and long drainage times. The system removed 33% of influent nitrate and 56% of influent total nitrogen. While influent ammonia concentrations were low (<0.3 mg/L), the bioretention cell also removed ammonia produced within the treatment system. Soil cores collected from the bioretention cell were analyzed for total 16S rDNA and both nitrification and denitrification genes (amoA, nirS, nirK, norB, and nosZ) using quantitative PCR. Total bacterial 16S rDNA levels in the surface layer were similar to those in very sandy soils. Gene counts for both nitrification and denitrification genes decreased as a function of depth in the media, and corresponded to similar changes in total 16S rDNA. The abundance of denitrification genes was also positively correlated with the average inundation time at each sampling location, as determined by modeling of stormwater data from a three-year period. These results suggest that both nitrification and denitrification can occur in bioretention media. Time of saturation, filter medium, and organic carbon content can all affect the extent of denitrification in bioretention systems.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Civil, Environmental & Architectural Engineering, University of Kansas, 1530 West 15th Street, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
19
|
Rotaru C, Woodard TL, Choi S, Nevin KP. Spatial heterogeneity of bacterial communities in sediments from an infiltration basin receiving highway runoff. MICROBIAL ECOLOGY 2012; 64:461-473. [PMID: 22391798 DOI: 10.1007/s00248-012-0026-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
The bacterial community diversity of highway runoff-contaminated sediment that had undergone 19 years of acetate-based de-icing agents addition followed by three years of acetate-free de-icing agents was investigated. Analysis of 26 sediment samples from two drilled soil cores by means of 16S rDNA PCR generated 3,402 clones, indicating an overall high bacterial diversity, with no prominent members within the communities. Sequence analyses provided evidences that each sediment sample displayed a specific structure bacterial community. Proteobacteria-affiliated clones (58% and 43% for the two boreholes) predominated in all samples, followed by Actinobacteria (12% and 16%), Firmicutes (7% and 12%) and Chloroflexi (7% and 11%). The subsurface geochemistry complemented the molecular methods to further distinguish ambient and contaminant plume zones. Principal component analysis revealed that the levels of Fe(II) and dissolved oxygen were strongly correlated with bacterial communities. At elevated Fe(II) levels, sequences associated with anaerobic bacteria were detected in high levels. As iron levels declined and oxygen levels increased below the plume bottom, there was a gradual shift in the community structure toward the increase of aerobic bacteria.
Collapse
Affiliation(s)
- Camelia Rotaru
- Civil and Environmental Engineering Department, University of Massachusetts, 18 Marston Hall, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
20
|
Gilbert N, Fulthorpe R, Kirkwood AE. Microbial diversity, tolerance, and biodegradation potential of urban wetlands with different input regimes. Can J Microbiol 2012; 58:887-97. [PMID: 22716132 DOI: 10.1139/w2012-066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Though microbial transformations are the primary mechanism of contaminant attenuation in wetlands, much remains to be known about microbial communities in urban wetlands. In this study, the microbial communities from urban wetlands with different runoff regimes (i.e., a contaminated remnant wetland, a constructed wetland, and a remnant wetland) were assessed for their capacity to attenuate and tolerate typical urban runoff pollutants. Results from denaturing gradient gel electrophoresis of 16S rRNA genes showed relatively high similarity in community composition among the wetlands. Community-level physiological profiles had similar results but exhibited within-site variation in both the contaminated remnant and remnant wetlands. All wetland communities were less tolerant to copper than 2,4-dichlorophenoxyacetic acid; however, the contaminated remnant wetland had the highest tolerance. All study wetlands had a limited capacity to biodegrade model chlorinated aromatic compounds (e.g., 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate). Though having different input regimes and contaminant exposure histories, the study wetlands were generally similar with respect to microbial community diversity and function. Additionally, the generally low capacity for these wetlands to biodegrade mobile chlorinated organic contaminants offers preliminary insight into the limited ecosystem services these wetlands may provide in urban environments.
Collapse
Affiliation(s)
- Nicolas Gilbert
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | | | |
Collapse
|
21
|
Perryman SE, Rees GN, Grace MR. Sediment bacterial community structure and function in response to C and Zn amendments: urban and nonurban streams. ACTA ACUST UNITED AC 2011. [DOI: 10.1899/11-009.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shane E. Perryman
- Water Studies Centre and School of Chemistry, Monash University, Clayton Victoria 3800, Australia and CSIRO Land and Water and Murray-Darling Freshwater Research Centre, La Trobe University, Wodonga, Victoria 3689, Australia
| | - Gavin N. Rees
- CSIRO Land and Water and Murray-Darling Freshwater Research Centre, La Trobe University, Wodonga, Victoria 3689, Australia
| | - Michael R. Grace
- Water Studies Centre and School of Chemistry, Monash University, Clayton Victoria 3800, Australia
| |
Collapse
|