1
|
Liang X, Katsev S, Liu Q, Pokrovski GS, Jin Z. Carbon, iron and sulfur records of lacustrine paleo-environments during the middle Eocene in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177270. [PMID: 39489436 DOI: 10.1016/j.scitotenv.2024.177270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
It is widely recognized that anoxic conditions facilitate the preservation of organic carbon in marine sediments. However, the specific geological factors that lead to the development of such conditions in paleo-lakes are less well understood. Owing to their smaller size, paleolakes could experience more frequent and stronger changes in geochemical conditions than oceans. Such changes, such as volcanism, hydrothermal fluids, or ocean transgressions, can also strongly affect the lacustrine organic carbon burial thereby complicating sediment diagenesis record. Here, we used total organic carbon content (TOC), organic carbon isotope (δ13Corg), iron speciation, and pyrite sulfur isotope (δ34Spy) data to establish relationships between organic carbon preservation and anoxic conditions in fine-grained sediments from the middle Eocene lacustrine depositional environments from the Shahejie Formation of the Jiyang Depression, Bohai Bay Basin, eastern China. The results reveal TOC between 1 % and 10 %, highly-reactive iron to total iron ratios >0.38, and most TOC to total sulfur ratios exceeding 2. These data indicate that the organic-rich shales of the Shahejie Formation were formed as a result of high primary productivity during the warm and humid middle Eocene period, coupled with the efficient preservation of organic matter in anoxic bottom waters. Negative δ13Corg and δ34Spy excursions recorded in the Shahejie Formation indicate water column conditions to have been influenced by transient volcanic eruptions. Positive δ13Corg and negative δ34Spy excursions may have been caused by hydrothermal fluids input whereas δ34Spy values approaching 20 ‰ suggest frequent marine transgressions. In particular, despite potential inputs of S into the paleolake by volcanism, hydrothermal fluids, or marine transgressions, bacterial sulfate reduction efficiently depleted the sulfate pool to have created ferruginous geochemistry water conditions for the effective preservation of organic carbon in sediments. Our results establish a direct link between lacustrine shale geochemical signatures and geological phenomena that impact its sedimentation.
Collapse
Affiliation(s)
- Xinping Liang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Institute of Energy, Peking University, Beijing 100871, China; Géosciences Environnement Toulouse, Université Toulouse III - Paul Sabatier, CNRS, IRD, CNES, OMP, 14 avenue Edouard Belin, F-31400 Toulouse, France; National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing, 102249, China
| | - Sergei Katsev
- Large Lakes Observatory and Department of Physics, University of Minnesota Duluth, 2205 E 5th St, Duluth, MN 55812, USA
| | - Quanyou Liu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Institute of Energy, Peking University, Beijing 100871, China.
| | - Gleb S Pokrovski
- Géosciences Environnement Toulouse, Université Toulouse III - Paul Sabatier, CNRS, IRD, CNES, OMP, 14 avenue Edouard Belin, F-31400 Toulouse, France
| | - Zhijun Jin
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Institute of Energy, Peking University, Beijing 100871, China; Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China.
| |
Collapse
|
2
|
Fan Y, Fu Q, Zhang S, Zhang M, Chang S, Zhao S, Wang M. Spatiotemporal variation in nitrogen and phosphorus levels and microbial community in the upstream water transport channel to the Douhe Reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50471-50487. [PMID: 35233670 DOI: 10.1007/s11356-022-19273-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The Douhe Reservoir is an important diversion water source and drinking water resource for Tianjin and the Tangshan cities. Panjiakou, Daheiting, Qiuzhuang, and the Douhe Reservoirs located from top to bottom in the LuanHe River region forming a group of cascade reservoirs. After over 30 years of aquaculture, the concentration of nitrogen (N) and phosphorus (P) have exceeded Class III of Environmental Quality Standard for Surface Water in China. We selected the Douhe Reservoir as the study site and choose sampling points in several upstream reservoirs and main reservoir area, and we collected a total of 18 water samples. Moreover, the distribution characteristics of N and P levels in flood season and dry season were studied in the Douhe Reservoir and upstream water channel, respectively. The results indicated that there were significant spatial differences between N and P distribution in the Douhe Reservoir and the upstream sites. We observed that the distribution of N and P had seasonal characteristics, and the contents of nitrate(NO3--N), nitrogen(TN), total phosphorus(TP), and total dissolved phosphorus(TDP) in flood periods were higher than those in dry periods. The microbial community structure illustrated that the dominant phylum displayed seasonal differences between the upstream channel and the reservoir area. Among them, the abundance of some genera changed with the location of the channel, the microbial community structure, and the levels of N and P, especially in flood season. Particularly, NO3--N and TN had the most significant correlation. Hence, this study presented an important theoretical foundation for the risk prevention and the control of nutrient elements in the LuanHe River basin in the future, which would enhance the drinking water safety of Tianjin and Tangshan residents.
Collapse
Affiliation(s)
- Yueting Fan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qing Fu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shusong Zhang
- College of Ocean and Bioengineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Moli Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Sheng Chang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shaoyan Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Minling Wang
- Shandong Yantai Ecological Environmental Monitoring Center, Shandong, 264000, China
| |
Collapse
|
3
|
Yuan B, Wu W, Guo M, Zhou X, Xie S. Spatial-temporal dynamics and influencing factors of archaeal communities in the sediments of Lancang River cascade reservoirs (LRCR), China. PLoS One 2021; 16:e0253233. [PMID: 34129622 PMCID: PMC8205147 DOI: 10.1371/journal.pone.0253233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
The spatial and temporal distribution of the archaeal community and its driving factors in the sediments of large-scale regulated rivers, especially in rivers with cascade hydropower development rivers, remain poorly understood. Quantitative PCR (qPCR) and Illumina MiSeq sequencing of the 16S rRNA archaeal gene were used to comprehensively investigate the spatiotemporal diversity and structure of archaeal community in the sediments of the Lancang River cascade reservoirs (LRCR). The archaeal abundance ranged from 5.11×104 to 1.03×106 16S rRNA gene copies per gram dry sediment and presented no temporal variation. The richness, diversity, and community structure of the archaeal community illustrated a drastic spatial change. Thaumarchaeota and Euryyarchaeota were the dominant archaeal phyla in the sediments of the cascade rivers, and Bathyarchaeota was also an advantage in the sediments. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and carbon and nitrogen metabolism in downstream reservoirs, indicating that anthropogenic pollution discharges might act as the dominant selective force to alter the archaeal communities. Nitrate and C/N ratio were found to play important roles in the formation of the archaeal community composition. In addition, the sediment archaeal community structure was also closely related to the age of the cascade reservoir and hydraulic retention time (HRT). This finding indicates that the engineering factors of the reservoir might be the greatest contributor to the archaeal community structure in the LRCR.
Collapse
Affiliation(s)
- Bo Yuan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Xiaode Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
4
|
Li W, Feng D, Yang G, Deng Z, Rui J, Chen H. Soil water content and pH drive archaeal distribution patterns in sediment and soils of water-level-fluctuating zones in the East Dongting Lake wetland, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29127-29137. [PMID: 31392608 DOI: 10.1007/s11356-019-06109-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Archaea play a vital role in Earth's geochemical cycles, but the factors that drive their distribution between sediments and water-level-fluctuating zones in the East Dongting Lake (EDL) wetland are poorly understood. Here, we used Illumina MiSeq to investigate the variation in the soil archaeal community structure and diversity among sediments and four water-level-fluctuating zones (mudflat, sedge, sedge-Phragmites, and Phragmites) in the EDL wetland. Diverse archaeal assemblages were found in our study, Crenarchaeota, Euryarchaeota, and ammonia-oxidizing and methanogenic subset were the dominant groups, and all their abundances shifted from sediment to water-level-fluctuating zones. The principal coordinates analysis and cluster analysis showed that the overall archaeal community structure was separated into two clusters: cluster I contained nine samples from sediment, mudflat, and sedge zones, whereas cluster II contained six samples from sedge-Phragmites and Phragmites zones. Archaeal diversity was significantly highest in sediment and lowest in Phragmites zone soils. The Mantel test showed that the variation in archaeal community structure was significantly positively correlated with soil water content and pH. The relative abundances of Crenarchaeota and Nitrososphaerales decreased with soil water content, while Euryarchaeota and Methanomicrobiales increased with soil water content. The relative abundance of Methanomicrobiales significantly decreased with pH (R2 = 0.34-0.48). Chao 1, observed operational taxonomic units, Shannon index, and Simpson index all correlated significantly positively with water content (R2 = 0.40-0.60), while Shannon and Simpson indexes both correlated significantly negatively with pH (R2 = 0.20-0.37). Our results demonstrated that the variations in the archaeal community structure were markedly driven by soil water content and pH in the EDL wetland. Our findings suggested that archaeal communities shifted among sediment and four water-level-fluctuating zones, highlighting that the spatiotemporal heterogeneity of greenhouse gas flux in small scale should be taken into account for accurate prediction of greenhouse gas emissions in the Dongting Lake area, especially on the background of climate change and human activities.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China
| | - Defeng Feng
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, 650224, China
| | - Gang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhengmiao Deng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Hunan, 410125, China
| | - Junpeng Rui
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Guo Q, Li N, Chen S, Chen Y, Xie S. Response of freshwater sediment archaeal community to metal spill. CHEMOSPHERE 2019; 217:584-590. [PMID: 30445403 DOI: 10.1016/j.chemosphere.2018.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Archaea play an important role in the biogeochemical cycling of elements in the environment. Heavy metals are ubiquitous pollutants in the environment. Previous studies have revealed a considerable influence of metal pollution on the archaeal community, but the short-term response of the archaeal community to metal pollution remains unclear. Hence, the present study investigated the short versus long-term responses of overall archaeal communities in freshwater sediments after exposure to accidental metal pollution caused by the discharge of heavy metal-containing wastewater from an indium-producing factory. Quantitative PCR was used to determine the archaeal abundance, while Illumina MiSeq sequencing was applied to characterize the diversity and structure of the archaeal community. The abundance (2.47 × 105-1.55 × 108 archaeal 16S rRNA gene copies per gram dry sediment), diversity (Shannon diversity index = 2.49-4.45) and structure of overall archaeal community illustrated a drastic temporal change. The archaeal communities mainly comprised the phyla Euryarchaeota, Thaumarchaeota and Bathyarchaeota. The exposure to metal pollution induced an increase in the proportion of Euryarchaeota but lowered the proportion of Thaumarchaeota. The accidental metal pollution exerted a profound impact on the archaeal community in freshwater sediment. This study could contribute our understanding of the short versus long-term response of archaeal communities to metal pollution.
Collapse
Affiliation(s)
- Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Yao Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Tassi F, Fazi S, Rossetti S, Pratesi P, Ceccotti M, Cabassi J, Capecchiacci F, Venturi S, Vaselli O. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS One 2018; 13:e0193914. [PMID: 29509779 PMCID: PMC5839588 DOI: 10.1371/journal.pone.0193914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/07/2018] [Indexed: 11/18/2022] Open
Abstract
Volcanic lakes are characterized by physicochemical favorable conditions for the development of reservoirs of C-bearing greenhouse gases that can be dispersed to air during occasional rollover events. By combining a microbiological and geochemical approach, we showed that the chemistry of the CO2- and CH4-rich gas reservoir hosted within the meromictic Lake Averno (Campi Flegrei, southern Italy) are related to the microbial niche differentiation along the vertical water column. The simultaneous occurrence of diverse functional groups of microbes operating under different conditions suggests that these habitats harbor complex microbial consortia that impact on the production and consumption of greenhouse gases. In the epilimnion, the activity of aerobic methanotrophic bacteria and photosynthetic biota, together with CO2 dissolution at relatively high pH, enhanced CO2- and CH4 consumption, which also occurred in the hypolimnion. Moreover, results from computations carried out to evaluate the dependence of the lake stability on the CO2/CH4 ratios, suggested that the water density vertical gradient was mainly controlled by salinity and temperature, whereas the effect of dissolved gases was minor, excepting if extremely high increases of CH4 are admitted. Therefore, biological processes, controlling the composition of CO2 and CH4, contributed to stabilize the lake stratification of the lake. Overall, Lake Averno, and supposedly the numerous worldwide distributed volcanic lakes having similar features (namely bio-activity lakes), acts as a sink for the CO2 supplied from the hydrothermal/magmatic system, displaying a significant influence on the local carbon budget.
Collapse
Affiliation(s)
- Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
- * E-mail:
| | - Stefano Fazi
- IRSA-CNR Water Research Institute, National Research Council of Italy, Via Salaria, Monterotondo, Rome, Italy
| | - Simona Rossetti
- IRSA-CNR Water Research Institute, National Research Council of Italy, Via Salaria, Monterotondo, Rome, Italy
| | - Paolo Pratesi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
| | - Marco Ceccotti
- IRSA-CNR Water Research Institute, National Research Council of Italy, Via Salaria, Monterotondo, Rome, Italy
| | - Jacopo Cabassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
| | | | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
| | - Orlando Vaselli
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
| |
Collapse
|
7
|
Compte-Port S, Subirats J, Fillol M, Sànchez-Melsió A, Marcé R, Rivas-Ruiz P, Rosell-Melé A, Borrego CM. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula. MICROBIAL ECOLOGY 2017; 74:776-787. [PMID: 28508926 DOI: 10.1007/s00248-017-0989-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jèssica Subirats
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Rafael Marcé
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Pedro Rivas-Ruiz
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Rosell-Melé
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain.
| |
Collapse
|
8
|
Laskar F, Das Purkayastha S, Sen A, Bhattacharya MK, Misra BB. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems. J Basic Microbiol 2017; 58:101-119. [PMID: 29083035 DOI: 10.1002/jobm.201700341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
About half of the global methane (CH4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea.
Collapse
Affiliation(s)
- Folguni Laskar
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Aniruddha Sen
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio 78227, Texas, USA
| |
Collapse
|
9
|
Houbraken M, Habimana V, Senaeve D, López-Dávila E, Spanoghe P. Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:888-894. [PMID: 27838579 DOI: 10.1016/j.scitotenv.2016.10.127] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND To boost agricultural productivity for both domestic and export purposes, agricultural inputs such as pesticides are being promoted in Rwanda. Even though the use of pesticides is important for agriculture, their residues eventually end up in different environmental compartments and may negatively affect the environment. The purpose of this study was to determine the level of knowledge and awareness of the smallholder farmers towards the use of pesticides in Rwanda and to evaluate the ecological risks of pesticides in the surface water and in the vertical profile of Lake Kivu. RESULTS Based on the collected data, a method to monitor 33 currently used pesticides was developed. No contamination of the lower water layer was found, indicating that the groundwater that flows into Lake Kivu has not been polluted. Of the pesticides in the surface water, malathion exceeded the risk thresholds and posed a risk towards arthropods. CONCLUSION The results of this study show that there is a lack of farmer's awareness towards the hazards of pesticides when working with these compounds. Farmers in Rwanda are in need of specialised stewardship for pesticide application training and guiding services. Surface water has been contaminated with malathion, metalaxyl and carbendazim which were the most used pesticides by the farmers in the environment.
Collapse
Affiliation(s)
- Michael Houbraken
- Ghent University, Faculty of Bioscience Engineering, Department of Crop Protection, Laboratory of Crop Protection Chemistry, Ghent, Belgium.
| | - Valens Habimana
- Ghent University, Faculty of Bioscience Engineering, Department of Crop Protection, Laboratory of Crop Protection Chemistry, Ghent, Belgium
| | - David Senaeve
- Ghent University, Faculty of Bioscience Engineering, Department of Crop Protection, Laboratory of Crop Protection Chemistry, Ghent, Belgium
| | - Edelbis López-Dávila
- Ghent University, Faculty of Bioscience Engineering, Department of Crop Protection, Laboratory of Crop Protection Chemistry, Ghent, Belgium
| | - Pieter Spanoghe
- Ghent University, Faculty of Bioscience Engineering, Department of Crop Protection, Laboratory of Crop Protection Chemistry, Ghent, Belgium
| |
Collapse
|
10
|
The Distribution Pattern of Sediment Archaea Community of the Poyang Lake, the Largest Freshwater Lake in China. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9278929. [PMID: 28070167 PMCID: PMC5187460 DOI: 10.1155/2016/9278929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/23/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022]
Abstract
Archaea plays an important role in the global geobiochemical circulation of various environments. However, much less is known about the ecological role of archaea in freshwater lake sediments. Thus, investigating the structure and diversity of archaea community is vital to understand the metabolic processes in freshwater lake ecosystems. In this study, sediment physicochemical properties were combined with the results from 16S rRNA clone library-sequencing to examine the sediment archaea diversity and the environmental factors driving the sediment archaea community structures. Seven sites were chosen from Poyang Lake, including two sites from the main lake body and five sites from the inflow river estuaries. Our results revealed high diverse archaea community in the sediment of Poyang Lake, including Bathyarchaeota (45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%), Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended Lokiarchaeota (0.7%), Aigarchaeota (0.2%), and Unclassified Archaea (3.8%). The archaea community compositions differed among sites, and sediment property had considerable influence on archaea community structures and distribution, especially total organic carbon (TOC) and metal lead (Pb) (p < 0.05). This study provides primary profile of sediment archaea distribution in freshwater lakes and helps to deepen our understanding of lake sediment microbes.
Collapse
|
11
|
Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China. Appl Microbiol Biotechnol 2016; 101:3379-3391. [PMID: 27942905 DOI: 10.1007/s00253-016-8019-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Bacterial and archaeal assemblages are one of the most important contributors to the recycling of nutrients and the decomposition of organic matter in aquatic sediments. However, their spatiotemporal variation and its driving factors remain unclear, especially for drinking reservoirs, which are strongly affected by human consumption. Using quantitative PCR and Illumina MiSeq sequencing, we investigated the bacterial and archaeal communities in the sediments of a drinking reservoir, the Miyun Reservoir, one of the most important drinking sources for Beijing City. The abundance of bacteria and archaea presented no spatiotemporal variation. With respect to community diversity, visible spatial and temporal differences were observed in archaea, whereas the bacterial community showed minor variation. The bacterial communities in the reservoir sediment mainly included Proteobacteria, Bacteroidetes, Nitrospirae, Acidobacteria, and Verrucomicrobia. The bacterial community structure showed obvious spatial variation. The composition of the bacterial operational taxonomic units (OTUs) and main phyla were dam-specific; the composition of samples in front of the dam were significantly different from the composition of the other samples. The archaeal communities were mainly represented by Woesearchaeota and Euryarchaeota. Distinctly spatial and seasonal variation was observed in the archaeal community structure. The sediment NH4+-N, pH, and water depth were identified as the key driving factors of changes in the composition of the bacterial and archaeal communities. Water depth might have the greatest influence on the microbial community structure. The dam-specific community structure may be related to the greater water depth in front of the dam. This finding indicates that water depth might be the greatest contributor to the microbial community structure in the Miyun Reservoir.
Collapse
|
12
|
Li GN, Xia XJ, Tang WC, Zhu Y. Intestinal microecology associated with fluoride resistance capability of the silkworm (Bombyx mori L.). Appl Microbiol Biotechnol 2016; 100:6715-6724. [DOI: 10.1007/s00253-016-7480-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/13/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
|
13
|
Yang Y, Dai Y, Wu Z, Xie S, Liu Y. Temporal and Spatial Dynamics of Archaeal Communities in Two Freshwater Lakes at Different Trophic Status. Front Microbiol 2016; 7:451. [PMID: 27065997 PMCID: PMC4814500 DOI: 10.3389/fmicb.2016.00451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
In either eutrophic Dianchi Lake or mesotrophic Erhai Lake, the abundance, diversity, and structure of archaeaplankton communities in spring were different from those in summer. In summer, archaeaplankton abundance generally decreased in Dianchi Lake but increased in Erhai Lake, while archaeaplankton diversity increased in both lakes. These two lakes had distinct archaeaplankton community structure. Archaeaplankton abundance was influenced by organic content, while trophic status determined archaeaplankton diversity and structure. Moreover, in summer, lake sediment archaeal abundance considerably decreased. Sediment archaeal abundance showed a remarkable spatial change in spring but only a slight one in summer. The evident spatial change of sediment archaeal diversity occurred in both seasons. In Dianchi Lake, sediment archaeal community structure in summer was remarkably different from that in spring. Compared to Erhai Lake, Dianchi Lake had relatively high sediment archaeal abundance but low diversity. These two lakes differed remarkably in sediment archaeal community structure. Trophic status determined sediment archaeal abundance, diversity and structure. Archaeal diversity in sediment was much higher than that in water. Water and sediment habitats differed greatly in archaeal community structure. Euryarchaeota predominated in water column, but showed much lower proportion in sediment. Bathyarchaeota was an important component of sediment archaeal community.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Zhen Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University Beijing, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University Beijing, China
| |
Collapse
|
14
|
Archaeal community structure in the tropical coastal waters of Peninsular Malaysia. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME JOURNAL 2015; 10:665-77. [PMID: 26284443 DOI: 10.1038/ismej.2015.143] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 11/08/2022]
Abstract
Members of the archaeal Miscellaneous Crenarchaeotic Group (MCG) are among the most successful microorganisms on the planet. During its evolutionary diversification, this very diverse group has managed to cross the saline-freshwater boundary, one of the most important evolutionary barriers structuring microbial communities. However, the current understanding on the ecological significance of MCG in freshwater habitats is scarce and the evolutionary relationships between freshwater and saline MCG remains poorly known. Here, we carried out molecular phylogenies using publicly available 16S rRNA gene sequences from various geographic locations to investigate the distribution of MCG in freshwater and saline sediments and to evaluate the implications of saline-freshwater transitions during the diversification events. Our approach provided a robust ecological framework in which MCG archaea appeared as a core generalist group in the sediment realm. However, the analysis of the complex intragroup phylogeny of the 21 subgroups currently forming the MCG lineage revealed that distinct evolutionary MCG subgroups have arisen in marine and freshwater sediments suggesting the occurrence of adaptive evolution specific to each habitat. The ancestral state reconstruction analysis indicated that this segregation was mainly due to the occurrence of a few saline-freshwater transition events during the MCG diversification. In addition, a network analysis showed that both saline and freshwater MCG recurrently co-occur with archaea of the class Thermoplasmata in sediment ecosystems, suggesting a potentially relevant trophic connection between the two clades.
Collapse
|
16
|
Characterisation of the subaquatic groundwater discharge that maintains the permanent stratification within Lake Kivu; East Africa. PLoS One 2015; 10:e0121217. [PMID: 25799098 PMCID: PMC4370871 DOI: 10.1371/journal.pone.0121217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 12/04/2022] Open
Abstract
Warm and cold subaquatic groundwater discharge into Lake Kivu forms the large-scale density gradients presently observed in the lake. This structure is pertinent to maintaining the stratification that locks the high volume of gases in the deepwater. Our research presents the first characterisation of these inflows. Temperature and conductivity profiling was conducted from January 2010 to March 2013 to map the locations of groundwater discharge. Water samples were obtained within the lake at the locations of the greatest temperature anomalies observed from the background lake-profile. The isotopic and chemical signatures of the groundwater were applied to assess how these inflows contribute to the overall stratification. It is inferred that Lake Kivu’s deepwater has not been completely recharged by the groundwater inflows since its turnover that is speculated to have occurred within the last ~1000 yrs. Given a recent salinity increase in the lake constrained to within months of seismic activity measured beneath the basin, it is plausible that increased hydrothermal-groundwater inflows into the deep basin are correlated with episodic geologic events. These results invalidate the simple two-component end-member mixing regime that has been postulated up to now, and indicate the importance of monitoring this potentially explosive lake.
Collapse
|
17
|
Fillol M, Sànchez-Melsió A, Gich F, M. Borrego C. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats. FEMS Microbiol Ecol 2015; 91:fiv020. [DOI: 10.1093/femsec/fiv020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
|
18
|
Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 2014; 99:3291-302. [PMID: 25432677 DOI: 10.1007/s00253-014-6262-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022]
Abstract
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.
Collapse
Affiliation(s)
- Jingxu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|
19
|
Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 2013; 97:7553-62. [PMID: 23877581 DOI: 10.1007/s00253-013-5102-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.
Collapse
|
20
|
La Cono V, La Spada G, Arcadi E, Placenti F, Smedile F, Ruggeri G, Michaud L, Raffa C, De Domenico E, Sprovieri M, Mazzola S, Genovese L, Giuliano L, Slepak VZ, Yakimov MM. Partaking of Archaea to biogeochemical cycling in oxygen-deficient zones of meromictic saline Lake Faro (Messina, Italy). Environ Microbiol 2012; 15:1717-33. [PMID: 23253149 DOI: 10.1111/1462-2920.12060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 11/29/2022]
Abstract
We used a combination of molecular and microbiological approaches to determine the activity, abundance and diversity of archaeal populations inhabiting meromictic saline Lake Faro (Messina, Italy). Analysis of archaeal 16S rRNA, amoA, accA and hbd genes and transcripts revealed that sub- and anoxic layers of Lake Faro are primarily inhabited by the organisms related to the clusters of Marine Group I.1a of Thaumarchaeota frequently recovered from oxygen-depleted marine ecosystems. These organisms dominated the metabolically active archaea down to the bottom of the lake, indicating their adaptation to recurrent changes in the levels of water column hypoxia. The upper microaerobic layer of Lake Faro redoxcline has the maximal rates of dark primary production much lower than those of other previously studied pelagic redoxclines, but comparable to the values of meso- and bathypelagic areas of Mediterranean Sea. Application of bacterial inhibitors, especially azide, significantly declined the CO2 fixation rates in the low interface and monimolimnion, whereas archaea-specific inhibitor had effect only in upper part of the redoxcline. Based on these findings, we hypothesize that dark bicarbonate fixation in suboxic zone of Lake Faro results mainly from archaeal activity which is affected by the predicted lack in oxygen in lower layers.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Borrel G, Lehours AC, Crouzet O, Jézéquel D, Rockne K, Kulczak A, Duffaud E, Joblin K, Fonty G. Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured archaeal lineages. PLoS One 2012; 7:e43346. [PMID: 22927959 PMCID: PMC3424224 DOI: 10.1371/journal.pone.0043346] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
As for lineages of known methanogens, several lineages of uncultured archaea were recurrently retrieved in freshwater sediments. However, knowledge is missing about how these lineages might be affected and structured according to depth. In the present study, the vertical changes of archaeal communities were characterized in the deep sediment of the freshwater meromictic Lake Pavin. For that purpose, an integrated molecular approach was performed to gain information on the structure, composition, abundance and vertical stratification of archaeal communities thriving in anoxic freshwater sediments along a gradient of sediments encompassing 130 years of sedimentation. Huge changes occurred in the structure and composition of archaeal assemblages along the sediment core. Methanogenic taxa (i.e. Methanosaeta and Methanomicrobiales) were progressively replaced by uncultured archaeal lineages (i.e. Marine Benthic Group-D (MBG-D) and Miscellaneous Crenarchaeal Group (MCG)) which are suspected to be involved in the methane cycle.
Collapse
Affiliation(s)
- Guillaume Borrel
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Aubière, France.
| | | | | | | | | | | | | | | | | |
Collapse
|