1
|
Sala MM, Ruiz-González C, Borrull E, Azúa I, Baña Z, Ayo B, Álvarez-Salgado XA, Gasol JM, Duarte CM. Prokaryotic Capability to Use Organic Substrates Across the Global Tropical and Subtropical Ocean. Front Microbiol 2020; 11:918. [PMID: 32582044 PMCID: PMC7287293 DOI: 10.3389/fmicb.2020.00918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Prokaryotes play a fundamental role in decomposing organic matter in the ocean, but little is known about how microbial metabolic capabilities vary at the global ocean scale and what are the drivers causing this variation. We aimed at obtaining the first global exploration of the functional capabilities of prokaryotes in the ocean, with emphasis on the under-sampled meso- and bathypelagic layers. We explored the potential utilization of 95 carbon sources with Biolog GN2 plates® in 441 prokaryotic communities sampled from surface to bathypelagic waters (down to 4,000 m) at 111 stations distributed across the tropical and subtropical Atlantic, Indian, and Pacific oceans. The resulting metabolic profiles were compared with biological and physico-chemical properties such as fluorescent dissolved organic matter (DOM) or temperature. The relative use of the individual substrates was remarkably consistent across oceanic regions and layers, and only the Equatorial Pacific Ocean showed a different metabolic structure. When grouping substrates by categories, we observed some vertical variations, such as an increased relative utilization of polymers in bathypelagic layers or a higher relative use of P-compounds or amino acids in the surface ocean. The increased relative use of polymers with depth, together with the increases in humic DOM, suggest that deep ocean communities have the capability to process complex DOM. Overall, the main identified driver of the metabolic structure of ocean prokaryotic communities was temperature. Our results represent the first global depiction of the potential use of a variety of carbon sources by prokaryotic communities across the tropical and the subtropical ocean and show that acetic acid clearly emerges as one of the most widely potentially used carbon sources in the ocean.
Collapse
Affiliation(s)
- Maria Montserrat Sala
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Encarna Borrull
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Iñigo Azúa
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Zuriñe Baña
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Begoña Ayo
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | | | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados-Universitat de les Illes Balears, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| |
Collapse
|
2
|
Mai YZ, Lai ZN, Li XH, Peng SY, Wang C. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China. MARINE POLLUTION BULLETIN 2018; 136:309-321. [PMID: 30509812 DOI: 10.1016/j.marpolbul.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.
Collapse
Affiliation(s)
- Yong-Zhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zi-Ni Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Hui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Song-Yao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
3
|
Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, Medeiros PM, Payet JP, Richey JE, Satinsky BM, Sawakuchi HO, Ward ND, Crump BC. Bacterial Biogeography across the Amazon River-Ocean Continuum. Front Microbiol 2017; 8:882. [PMID: 28588561 PMCID: PMC5440517 DOI: 10.3389/fmicb.2017.00882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
Collapse
Affiliation(s)
- Mary Doherty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Victoria J Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Caroline S Fortunato
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods HoleMA, United States
| | - Alex V Krusche
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Patricia M Medeiros
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| | - Jeffrey E Richey
- School of Oceanography, University of Washington, SeattleWA, United States
| | | | - Henrique O Sawakuchi
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, SequimWA, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| |
Collapse
|
4
|
They NH, Ferreira LMH, Marins LF, Abreu PC. Bacterial community composition and physiological shifts associated with the El Niño Southern Oscillation (ENSO) in the Patos Lagoon estuary. MICROBIAL ECOLOGY 2015; 69:525-534. [PMID: 25339307 DOI: 10.1007/s00248-014-0511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
The Patos Lagoon estuary is a microtidal system that is strongly regulated by atmospheric forces, including remote large-scale phenomena such as the El Niño Southern Oscillation (ENSO), which affects precipitation patterns in the region. In this study, we investigated whether the bacterial community composition (BCC), community-level physiological profiles (CLPP), and a set of environmental variables were affected by the transition from a moderate El Niño to a strong La Niña event (June 2010 to May 2011). We identified two distinct periods: a period following El Niño that was characterized by low salinity and high concentrations of NO3(-) and PO4(-3) and low molecular weight (LMW) substances and a period following La Niña during which salinity, temperature, and transparency increased and the concentrations of nutrients and LMW substances decreased. The BCC and CLPP were significantly altered in response to this transition. This is the first study addressing the effect of ENSO on bacteria at the community level in an estuarine system. Our results suggest that there is a link between ENSO and bacteria, indicating the role of climate variability in bacterial activities and, hence, the cycling of organic matter by these microorganisms.
Collapse
Affiliation(s)
- Ng Haig They
- Post-Graduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Av. Itália km 08, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil,
| | | | | | | |
Collapse
|
5
|
Bastidas Navarro M, Balseiro E, Modenutti B. Bacterial community structure in patagonian Andean Lakes above and below timberline: from community composition to community function. MICROBIAL ECOLOGY 2014; 68:528-541. [PMID: 24863131 DOI: 10.1007/s00248-014-0439-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Lakes located above the timberline are remote systems with a number of extreme environmental conditions, becoming physically harsh ecosystems, and sensors of global change. We analyze bacterial community composition and community-level physiological profiles in mountain lakes located in an altitude gradient in North Patagonian Andes below and above the timberline, together with dissolved organic carbon (DOC) characterization and consumption. Our results indicated a decrease in 71 % of DOC and 65 % in total dissolved phosphorus (TDP) concentration as well as in bacteria abundances along the altitude range (1,380 to 1,950 m a.s.l.). Dissolved organic matter (DOM) fluorescence analysis revealed a low global variability composed by two humic-like components (allochthonous substances) and a single protein-like component (autochthonous substances). Lakes below the timberline showed the presence of all the three components, while lakes above the timberline the protein-like compound constituted the main DOC component. Furthermore, bacterial community composition similarity and ordination analysis showed that altitude and resource concentration (DOC and TDP) were the main variables determining the ordination of groups. Community-level physiological profiles showed a mismatch with bacteria community composition (BCC), indicating the absence of a relationship between genetic and functional diversity in the altitude gradient. However, carbon utilization efficiencies varied according to the presence of different compounds in DOM bulk. The obtained results suggest that the different bacterial communities in these mountain lakes seem to have similar metabolic pathways in order to be able to exploit the available DOC molecules.
Collapse
Affiliation(s)
- Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA, UNComahue-CONICET, Quintral 1250, 8400, Bariloche, Argentina,
| | | | | |
Collapse
|