1
|
Li S, Dong Y, Sun X, Zhao Y, Zhao L, Zhang W, Xiao T. Seasonal and spatial variations of Synechococcus in abundance, pigment types, and genetic diversity in a temperate semi-enclosed bay. Front Microbiol 2024; 14:1322548. [PMID: 38274747 PMCID: PMC10808157 DOI: 10.3389/fmicb.2023.1322548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Synechococcus is abundant and globally widespread in various marine environments. Seasonal and spatial variations in Synechococcus abundance, pigment types, and genetic diversity were investigated based on flow cytometric analysis and high-throughput sequencing of cpcBA operon (encoding phycocyanin) and rpoC1 gene (encoding RNA polymerase) in a temperate semi-enclosed bay. Synechococcus abundance exhibited seasonal variations with the highest value in summer and the lowest value in winter, which was consistent with temperature variation. Three pigment types of Synechococcus type 1, type 2, and type 3 were distinguished based on cpcBA operon, which displayed obvious variations spatially between the inner and the outer bay. Freshwater discharge and water turbidity played important roles in regulating Synechococcus pigment types. Synechococcus assemblages were phylogenetically diverse (12 different lineages) based on rpoC1 gene and dominated by three core lineages S5.1-I, S5.1-IX, and S5.2-CB5 in different seasons. Our study demonstrated that Synechococcus abundance, pigment types, and genetic diversity displayed variations seasonally and spatially by different techniques, which were mainly driven by temperature, salinity, nutrients, and turbidity. The combination of more technical means provides more information for studying Synechococcus distribution. In this study, three pigment types of Synechococcus were discriminated simultaneously by dual lasers flow cytometer for the first time.
Collapse
Affiliation(s)
- Suheng Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoxia Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yuan Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Spatio-temporal patterns of Synechococcus oligotypes in Moroccan lagoonal environments. Sci Rep 2023; 13:110. [PMID: 36596878 PMCID: PMC9810706 DOI: 10.1038/s41598-022-27263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Synechococcus are unicellular cyanobacteria susceptible to environmental fluctuations and can be used as bioindicators of eutrophication in marine ecosystems. We examined their distribution in two Moroccan lagoons, Marchica on the Mediterranean coast and Oualidia on the Atlantic, in the summers of 2014 and 2015 using 16S rRNA amplicon oligotyping. Synechococcus representatives recruited a higher number of reads from the 16S rRNA in Marchica in comparison to Oualidia. We identified 31 Synechococcus oligotypes that clustered into 10 clades with different distribution patterns. The Synechococcus community was mainly represented by oligotype 1 (clade III) in Marchica. Cooccurring clades IV and I had an important relative abundance in Marchica in the summer of 2014, which is unusual, as these clades are widespread in cold waters. Moreover, Clades VII and subcluster "5.3" formed a sizeable percentage of the Synechococcus community in Marchica. Notably, we found low Synechococcus sequence counts in the Atlantic Lagoon. These results showed that the relative abundance of Synechococcus reads is not constant over space and time and that rare members of the Synechococcus community did not follow a consistent pattern. Further studies are required to decipher Synechococcus dynamics and the impact of environmental parameters on their spatial and temporal distributions.
Collapse
|
3
|
Abstract
Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of "who is where" by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades.
Collapse
|
4
|
Wang T, Li J, Jing H, Qin S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105622. [PMID: 35429822 DOI: 10.1016/j.marenvres.2022.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine Synechococcus, a main group of picocyanobacteria, has been ubiquitously observed across the global oceans. Synechococcus exhibits high phylogenetical and phenotypical diversity, and horizontal gene transfer makes its genetic evolution much more intricate. With the development of measurement technologies and analysis methods, the genomic information and niche partition of each Synechococcus lineage tend to be precisely described, but the global analysis is still lacking. Therefore, it is necessary to summarize existing studies and integrate published data to gain a comprehensive understanding of Synechococcus on genetic variation, niche division, and potential functions. In this review, the maximum likelihood trees are constructed based on existing sequence data, including both phylogenetic and pigmentary gene markers. The global distribution characteristics of abundance, lineages, and pigment types are concluded through pooled analysis of more than 700 samples obtained from approximately 50 scientific research cruises. The potential functions of Synechococcus are explored in element cycles and biological interactions. Future work on Synechococcus is suggested to focus on not only elucidating the nature of Synechococcus biodiversity but also demonstrating its interactions with the ecosystem by combining bioinformatics and macroscopic isotope-labeled environmental parameters.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
5
|
Zhang X, Cheung S, Wang J, Zhang G, Wei Y, Liu H, Sun J, Liu H. Highly Diverse Synechococcus Pigment Types in the Eastern Indian Ocean. Front Microbiol 2022; 13:806390. [PMID: 35283844 PMCID: PMC8914260 DOI: 10.3389/fmicb.2022.806390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Marine picocyanobacteria Synechococcus exhibit highly diverse pigment types (PTs) and hence possess great advantage to utilize different spectrum of light effectively and to occupy a wide range of light niches. In this study, we explored the diversity of Synechococcus PTs in the eastern Indian Ocean (EIO), surface water of Strait of Malacca (SSM), and coastal waters of Sri Lanka (SSL). All the detected PTs were phycourobilin (PUB) containing PT 3 and showed distinct distribution patterns. Low PUB PT 3a and partial chromatic acclimater PT 3eA dominated in coastal and shallow waters (SSM and SSL). In contrast, high PUB and chromatic acclimaters PT 3dA and PT 3c/3dB were mainly distributed in open ocean (EIO). PT 3dA and PT 3c/3dB occurred at similar depths of the lower euphotic layers but showed distinct distribution pattern that are partially exclusive, indicating that they compete with each other for the same light niche. Interestingly, the newly described PT 3f was detected with high relative abundances at all stations and particularly dominated in the upper euphotic layer in EIO, which was confirmed with PT-specific quantitative polymerase chain reaction (qPCR). The relative abundance of PT 3f was negatively correlated with nutrient level, implying that PT 3f is adapted to oligotrophic waters. Pronounced niche partition of different PTs was observed in the upper and lower layers of euphotic zone in EIO and SSM/SSL. Light, nutrients, and strong stratification may play important roles in the niche partition of different PTs. Further analysis about ecologically significant taxonomic units revealed high diversity within each PT at different locations, which provided insights for understanding specific PT with wide range of niches.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shunyan Cheung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jing Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqiu Wei
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Alegria Zufia J, Farnelid H, Legrand C. Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution. Front Microbiol 2021; 12:786590. [PMID: 34938282 PMCID: PMC8685431 DOI: 10.3389/fmicb.2021.786590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Picophytoplankton in the Baltic Sea includes the simplest unicellular cyanoprokaryotes (Synechococcus/Cyanobium) and photosynthetic picoeukaryotes (PPE). Picophytoplankton are thought to be a key component of the phytoplankton community, but their seasonal dynamics and relationships with nutrients and temperature are largely unknown. We monitored pico- and larger phytoplankton at a coastal site in Kalmar Sound (K-Station) weekly during 2018. Among the cyanoprokaryotes, phycoerythrin-rich picocyanobacteria (PE-rich) dominated in spring and summer while phycocyanin-rich picocyanobacteria (PC-rich) dominated during autumn. PE-rich and PC-rich abundances peaked during summer (1.1 × 105 and 2.0 × 105 cells mL–1) while PPE reached highest abundances in spring (1.1 × 105 cells mL–1). PPE was the main contributor to the total phytoplankton biomass (up to 73%). To assess nutrient limitation, bioassays with combinations of nitrogen (NO3 or NH4) and phosphorus additions were performed. PE-rich and PC-rich growth was mainly limited by nitrogen, with a preference for NH4 at >15°C. The three groups had distinct seasonal dynamics and different temperature ranges: 10°C and 17–19°C for PE-rich, 13–16°C for PC-rich and 11–15°C for PPE. We conclude that picophytoplankton contribute significantly to the carbon cycle in the coastal Baltic Sea and underscore the importance of investigating populations to assess the consequences of the combination of high temperature and NH4 in a future climate.
Collapse
Affiliation(s)
- Javier Alegria Zufia
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| |
Collapse
|
7
|
Hunter-Cevera KR, Hamilton BR, Neubert MG, Sosik HM. Seasonal environmental variability drives microdiversity within a coastal Synechococcus population. Environ Microbiol 2021; 23:4689-4705. [PMID: 34245073 PMCID: PMC8456951 DOI: 10.1111/1462-2920.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Marine microbes often show a high degree of physiological or ecological diversity below the species level. This microdiversity raises questions about the processes that drive diversification and permit coexistence of diverse yet closely related marine microbes, especially given the theoretical efficiency of competitive exclusion. Here, we provide insight with an 8‐year time series of diversity within Synechococcus, a widespread and important marine picophytoplankter. The population of Synechococcus on the Northeast U.S. Shelf is comprised of six main types, each of which displays a distinct and consistent seasonal pattern. With compositional data analysis, we show that these patterns can be reproduced with a simple model that couples differential responses to temperature and light with the seasonal cycle of the physical environment. These observations support the hypothesis that temporal variability in environmental factors can maintain microdiversity in marine microbial populations. We also identify how seasonal diversity patterns directly determine overarching Synechococcus population abundance features.
Collapse
Affiliation(s)
- Kristen R Hunter-Cevera
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Bryan R Hamilton
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
8
|
Nagarkar M, Wang M, Valencia B, Palenik B. Spatial and temporal variations in Synechococcus microdiversity in the Southern California coastal ecosystem. Environ Microbiol 2020; 23:252-266. [PMID: 33169926 DOI: 10.1111/1462-2920.15307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/27/2022]
Abstract
The Synechococcus cyanobacterial population at the Scripps Institution of Oceanography pier in La Jolla, CA, shows large increases in abundance, typically in the spring and summer followed, by rapid declines within weeks. Here we used amplicon sequencing of the ribosomal RNA internal transcribed spacer region to examine the microdiversity within this cyanobacterial genus during these blooms as well as further offshore in the Southern California coastal ecosystem (CCE). These analyses revealed numerous Synechococcus amplicon sequence variants (ASVs) and that clade and ASV composition can change over the course of blooms. We also found that a large bloom in August 2016 was highly anomalous both in its overall Synechococcus abundance and in terms of the presence of normally oligotrophic Synechococcus clade II. The dominant ASVs at the pier were found further offshore and in the California Current, but we did observe more oligotrophic ASVs and clades along with depth variation in Synechococcus diversity. We also observed that the dominant sequence variant switched during the peak of multiple Synechococcus blooms, with this switch occurring in multiple clades, but we present initial evidence that this apparent ASV switch is a physiological response rather than a change in the dominant population.
Collapse
Affiliation(s)
- Maitreyi Nagarkar
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maggie Wang
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bellineth Valencia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Hunter‐Cevera KR, Neubert MG, Olson RJ, Shalapyonok A, Solow AR, Sosik HM. Seasons of Syn. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1085-1102. [PMID: 32612307 PMCID: PMC7319482 DOI: 10.1002/lno.11374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 06/11/2023]
Abstract
Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16-yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature-limited in winter and spring, but light-limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.
Collapse
Affiliation(s)
- Kristen R. Hunter‐Cevera
- Josephine Bay Paul CenterMarine Biological LaboratoryWoods HoleMassachusetts
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Michael G. Neubert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Robert J. Olson
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Alexi Shalapyonok
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Andrew R. Solow
- Marine Policy CenterWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Heidi M. Sosik
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| |
Collapse
|
10
|
Buerger P, Weynberg KD, Wood-Charlson EM, Sato Y, Willis BL, van Oppen MJH. Novel T4 bacteriophages associated with black band disease in corals. Environ Microbiol 2018; 21:1969-1979. [PMID: 30277308 DOI: 10.1111/1462-2920.14432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023]
Abstract
Research into causative agents underlying coral disease have focused primarily on bacteria, whereas potential roles of viruses have been largely unaddressed. Bacteriophages may contribute to diseases through the lysogenic introduction of virulence genes into bacteria, or prevent diseases through lysis of bacterial pathogens. To identify candidate phages that may influence the pathogenicity of black band disease (BBD), communities of bacteria (16S rRNA) and T4-bacteriophages (gp23) were simultaneously profiled with amplicon sequencing among BBD-lesions and healthy-coral-tissue of Montipora hispida, as well as seawater (study site: the central Great Barrier Reef). Bacterial community compositions were distinct among BBD-lesions, healthy coral tissue and seawater samples, as observed in previous studies. Surprisingly, however, viral beta diversities based on both operational taxonomic unit (OTU)-compositions and overall viral community compositions of assigned taxa did not differ statistically between the BBD-lesions and healthy coral tissue. Nonetheless, relative abundances of three bacteriophage OTUs, affiliated to Cyanophage PRSM6 and Prochlorococcus phages P-SSM2, were significantly higher in BBD-lesions than in healthy tissue. These OTUs associated with BBD samples suggest the presence of bacteriophages that infect members of the cyanobacteria-dominated BBD community, and thus have potential roles in BBD pathogenicity.
Collapse
Affiliation(s)
- P Buerger
- AIMS@JCU, Townsville, QLD, 4814, Australia.,Australian Institute of Marine Science, Townsville, 4810, QLD, Australia.,James Cook University, College of Science and Engineering, Townsville, QLD, 4811, Australia
| | - K D Weynberg
- Australian Institute of Marine Science, Townsville, 4810, QLD, Australia
| | - E M Wood-Charlson
- Center for Microbial Oceanography: Research and Education, University of Hawai'i, Honolulu, Hawaii, 96822
| | - Y Sato
- Australian Institute of Marine Science, Townsville, 4810, QLD, Australia
| | - B L Willis
- James Cook University, College of Science and Engineering, Townsville, QLD, 4811, Australia.,ARC CoE for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - M J H van Oppen
- Australian Institute of Marine Science, Townsville, 4810, QLD, Australia.,School of BioSciences, University of Melbourne, Melbourne, 3010, VIC, Australia
| |
Collapse
|
11
|
Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc Natl Acad Sci U S A 2018; 115:E2010-E2019. [PMID: 29440402 DOI: 10.1073/pnas.1717069115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marine Synechococcus cyanobacteria are major contributors to global oceanic primary production and exhibit a unique diversity of photosynthetic pigments, allowing them to exploit a wide range of light niches. However, the relationship between pigment content and niche partitioning has remained largely undetermined due to the lack of a single-genetic marker resolving all pigment types (PTs). Here, we developed and employed a robust method based on three distinct marker genes (cpcBA, mpeBA, and mpeW) to estimate the relative abundance of all known Synechococcus PTs from metagenomes. Analysis of the Tara Oceans dataset allowed us to reveal the global distribution of Synechococcus PTs and to define their environmental niches. Green-light specialists (PT 3a) dominated in warm, green equatorial waters, whereas blue-light specialists (PT 3c) were particularly abundant in oligotrophic areas. Type IV chromatic acclimaters (CA4-A/B), which are able to dynamically modify their light absorption properties to maximally absorb green or blue light, were unexpectedly the most abundant PT in our dataset and predominated at depth and high latitudes. We also identified populations in which CA4 might be nonfunctional due to the lack of specific CA4 genes, notably in warm high-nutrient low-chlorophyll areas. Major ecotypes within clades I-IV and CRD1 were preferentially associated with a particular PT, while others exhibited a wide range of PTs. Altogether, this study provides important insights into the ecology of Synechococcus and highlights the complex interactions between vertical phylogeny, pigmentation, and environmental parameters that shape Synechococcus community structure and evolution.
Collapse
|
12
|
Bach LT, Alvarez-Fernandez S, Hornick T, Stuhr A, Riebesell U. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS One 2017; 12:e0188198. [PMID: 29190760 PMCID: PMC5708705 DOI: 10.1371/journal.pone.0188198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022] Open
Abstract
The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
Collapse
Affiliation(s)
- Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Santiago Alvarez-Fernandez
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Thomas Hornick
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Stechlin, Germany
| | - Annegret Stuhr
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
13
|
Mackey KRM, Hunter-Cevera K, Britten GL, Murphy LG, Sogin ML, Huber JA. Seasonal Succession and Spatial Patterns of Synechococcus Microdiversity in a Salt Marsh Estuary Revealed through 16S rRNA Gene Oligotyping. Front Microbiol 2017; 8:1496. [PMID: 28848514 PMCID: PMC5552706 DOI: 10.3389/fmicb.2017.01496] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
Synechococcus are ubiquitous and cosmopolitan cyanobacteria that play important roles in global productivity and biogeochemical cycles. This study investigated the fine scale microdiversity, seasonal patterns, and spatial distributions of Synechococcus in estuarine waters of Little Sippewissett salt marsh (LSM) on Cape Cod, MA. The proportion of Synechococcus reads was higher in the summer than winter, and higher in coastal waters than within the estuary. Variations in the V4-V6 region of the bacterial 16S rRNA gene revealed 12 unique Synechococcus oligotypes. Two distinct communities emerged in early and late summer, each comprising a different set of statistically co-occurring Synechococcus oligotypes from different clades. The early summer community included clades I and IV, which correlated with lower temperature and higher dissolved oxygen levels. The late summer community included clades CB5, I, IV, and VI, which correlated with higher temperatures and higher salinity levels. Four rare oligotypes occurred in the late summer community, and their relative abundances more strongly correlated with high salinity than did other co-occurring oligotypes. The analysis revealed that multiple, closely related oligotypes comprised certain abundant clades (e.g., clade 1 in the early summer and clade CB5 in the late summer), but the correlations between these oligotypes varied from pair to pair, suggesting they had slightly different niches despite being closely related at the clade level. Lack of tidal water exchange between sampling stations gave rise to a unique oligotype not abundant at other locations in the estuary, suggesting physical isolation plays a role in generating additional microdiversity within the community. Together, these results contribute to our understanding of the environmental and ecological factors that influence patterns of Synechococcus microbial community composition over space and time in salt marsh estuarine waters.
Collapse
Affiliation(s)
| | - Kristen Hunter-Cevera
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| | - Gregory L Britten
- Earth System Science, University of California IrvineIrvine, CA, United States
| | - Leslie G Murphy
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| | - Mitchell L Sogin
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| |
Collapse
|
14
|
Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 2017; 354:326-329. [PMID: 27846565 DOI: 10.1126/science.aaf8536] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/09/2016] [Indexed: 11/02/2022]
Abstract
Climate affects the timing and magnitude of phytoplankton blooms that fuel marine food webs and influence global biogeochemical cycles. Changes in bloom timing have been detected in some cases, but the underlying mechanisms remain elusive, contributing to uncertainty in long-term predictions of climate change impacts. Here we describe a 13-year hourly time series from the New England shelf of data on the coastal phytoplankter Synechococcus, during which the timing of its spring bloom varied by 4 weeks. We show that multiyear trends are due to temperature-induced changes in cell division rate, with earlier blooms driven by warmer spring water temperatures. Synechococcus loss rates shift in tandem with division rates, suggesting a balance between growth and loss that has persisted despite phenological shifts and environmental change.
Collapse
Affiliation(s)
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Robert J Olson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andrew R Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Alexi Shalapyonok
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
15
|
Mackey KRM, Post AF, McIlvin MR, Saito MA. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ Microbiol 2017; 19:2348-2365. [PMID: 28371229 DOI: 10.1111/1462-2920.13744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Marine Synechococcus thrive over a range of light regimes in the ocean. We examined the proteomic, genomic and physiological responses of seven Synechococcus isolates to moderate irradiances (5-80 μE m-2 s-1 ), and show that Synechococcus spans a continuum of light responses ranging from low light optimized (LLO) to high light optimized (HLO). These light responses are linked to phylogeny and pigmentation. Marine sub-cluster 5.1A isolates with higher phycouribilin: phycoerythrobilin ratios fell toward the LLO end of the continuum, while sub-cluster 5.1B, 5.2 and estuarine Synechococcus with less phycouribilin fell toward the HLO end of the continuum. Global proteomes were highly responsive to light, with > 50% of abundant proteins varying more than twofold between the lowest and highest irradiance. All strains downregulated phycobilisome proteins with increasing irradiance. Regulation of proteins involved in photosynthetic electron transport, carbon fixation, oxidative stress protection (superoxide dismutases) and iron and nitrogen metabolism varied among strains, as did the number of high light inducible protein (Hlip) and DNA photolyase genes in their genomes. All but one LLO strain possessed the photoprotective orange carotenoid protein (OCP). The unique combinations of light responses in each strain gives rise to distinct photophysiological phenotypes that may affect Synechococcus distributions in the ocean.
Collapse
Affiliation(s)
| | - Anton F Post
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02536, USA
| | - Mak A Saito
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02536, USA
| |
Collapse
|
16
|
Xia X, Partensky F, Garczarek L, Suzuki K, Guo C, Yan Cheung S, Liu H. Phylogeography and pigment type diversity ofSynechococcuscyanobacteria in surface waters of the northwestern pacific ocean. Environ Microbiol 2016; 19:142-158. [DOI: 10.1111/1462-2920.13541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaomin Xia
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Frédéric Partensky
- Sorbonne Universités, Université Paris 6, CNRS UMR 7144, Marine Plankton Group, MaPP teamCS 90074, Station Biologique, 29688Roscoff Cedex France
| | - Laurence Garczarek
- Sorbonne Universités, Université Paris 6, CNRS UMR 7144, Marine Plankton Group, MaPP teamCS 90074, Station Biologique, 29688Roscoff Cedex France
| | - Koji Suzuki
- Faculty of Environmental Earth ScienceHokkaido University/JST‐ CREST Japan
| | - Cui Guo
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Shun Yan Cheung
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Hongbin Liu
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|