1
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Rebollar EA. Gene functions of the Ambystoma altamirani skin microbiome vary across space and time but potential antifungal genes are widespread and prevalent. Microb Genom 2024; 10:001181. [PMID: 38240649 PMCID: PMC10868611 DOI: 10.1099/mgen.0.001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Amphibian skin microbiomes can play a critical role in host survival against emerging diseases by protecting their host against pathogens. While a plethora of biotic and abiotic factors have been shown to influence the taxonomic diversity of amphibian skin microbiomes it remains unclear whether functional genomic diversity varies in response to temporal and environmental factors. Here we applied a metagenomic approach to evaluate whether seasonality, distinct elevations/sites, and pathogen presence influenced the functional genomic diversity of the A. altamirani skin microbiome. We obtained a gene catalogue of 92 107 nonredundant annotated genes and a set of 50 unique metagenome assembled genomes (MAGs). Our analysis showed that genes linked to general and potential antifungal traits significantly differed across seasons and sampling locations at different elevations. Moreover, we found that the functional genomic diversity of A. altamirani skin microbiome differed between B. dendrobatidis infected and not infected axolotls only during winter, suggesting an interaction between seasonality and pathogen infection. In addition, we identified the presence of genes and biosynthetic gene clusters (BGCs) linked to potential antifungal functions such as biofilm formation, quorum sensing, secretion systems, secondary metabolite biosynthesis, and chitin degradation. Interestingly genes linked to these potential antifungal traits were mainly identified in Burkholderiales and Chitinophagales MAGs. Overall, our results identified functional traits linked to potential antifungal functions in the A. altamirani skin microbiome regardless of variation in the functional diversity across seasons, elevations/sites, and pathogen presence. Our findings suggest that potential antifungal traits found in Burkholderiales and Chitinophagales taxa could be related to the capacity of A. altamirani to survive in the presence of Bd, although further experimental analyses are required to test this hypothesis.
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Siomko SA, Greenspan SE, Barnett KM, Neely WJ, Chtarbanova S, Woodhams DC, McMahon TA, Becker CG. Selection of an anti-pathogen skin microbiome following prophylaxis treatment in an amphibian model system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220126. [PMID: 37305917 PMCID: PMC10258671 DOI: 10.1098/rstb.2022.0126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/03/2022] [Indexed: 06/13/2023] Open
Abstract
With emerging diseases on the rise, there is an urgent need to identify and understand novel mechanisms of prophylactic protection in vertebrate hosts. Inducing resistance against emerging pathogens through prophylaxis is an ideal management strategy that may impact pathogens and their host-associated microbiome. The host microbiome is recognized as a critical component of immunity, but the effects of prophylactic inoculation on the microbiome are unknown. In this study, we investigate the effects of prophylaxis on host microbiome composition, focusing on the selection of anti-pathogenic microbes contributing to host acquired immunity in a model host-fungal disease system, amphibian chytridiomycosis. We inoculated larval Pseudacris regilla against the fungal pathogen Batrachochytrium dendrobatidis (Bd) with a Bd metabolite-based prophylactic. Increased prophylactic concentration and exposure duration were associated with significant increases in proportions of putatively Bd-inhibitory host-associated bacterial taxa, indicating a protective prophylactic-induced shift towards microbiome members that are antagonistic to Bd. Our findings are in accordance with the adaptive microbiome hypothesis, where exposure to a pathogen alters the microbiome to better cope with subsequent pathogen encounters. Our study advances research on the temporal dynamics of microbiome memory and the role of prophylaxis-induced shifts in microbiomes contributing to prophylaxis effectiveness. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Samantha A. Siomko
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sasha E. Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - K. M. Barnett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Wesley J. Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | | | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Taegan A. McMahon
- Department of Biology, Connecticut College, New London, CT 06320, USA
| | - C. Guilherme Becker
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
4
|
Bacterial biofilm thickness and fungal-inhibitory bacterial richness both prevent establishment of the amphibian fungal pathogen, Batrachochytrium dendrobatidis. Appl Environ Microbiol 2022; 88:e0160421. [PMID: 35044804 DOI: 10.1128/aem.01604-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host-associated microbial biofilms can provide protection against pathogen establishment. In many host-microbe symbioses (including, but not limited to: humans, plants, insects, and amphibians), there is a correlation between host-associated microbial diversity and pathogen infection risk. Diversity may prevent infection by pathogens through sampling effects and niche complementarity- but an alternative hypothesis may be that microbial biomass is confounded with diversity, and that host-associated biofilms are deterring pathogen establishment through space pre-emption. In this study, we use the amphibian system as a model for host-microbe-pathogen interactions to ask two questions: (1) is bacterial richness confounded with biofilm thickness or cell density, and (2) to what extent does biofilm thickness, cell density, and bacterial richness each deter the establishment of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd)? To answer these questions, we built a custom biofilm microcosm that mimics the host-environment interface by allowing nutrients to diffuse out of a fine-pore biofilm scaffolding. This created a competitive environment in which bacteria and the fungal pathogen compete for colonization space. We then challenged bacterial biofilms ranging in community richness, biofilm thickness, bacterial cell density, and Bd-inhibitory metabolite production with live Bd zoospores to determine how Bd establishment success on membranes vary. We found that biofilm thickness and Bd-inhibitory isolate richness work in complement to reduce Bd establishment success. This work underscores that physical aspects of biofilm communities can play a large role in pathogen inhibition and in many studies, these traits are not studied. IMPORTANCE Our finding highlights the fact that diversity, as measured through 16S rDNA sequencing, may obscure the true mechanisms behind microbe-mediated pathogen defence, and that physical space occupation by biofilm-forming symbionts may significantly contribute to pathogen protection. These findings have implications across a wide range of host-microbe systems, since 16S rDNA sequencing is a standard tool used across many microbial systems. Further, our results are potentially relevant to many host-pathogen systems, since host-associated bacterial biofilms are ubiquitous.
Collapse
|
5
|
B. Assis A, R. Bevier C, Chaves Barreto C, Arturo Navas C. Environmental influences on and antimicrobial activity of the skin microbiota of Proceratophrys boiei (Amphibia, Anura) across forest fragments. Ecol Evol 2020; 10:901-913. [PMID: 32015853 PMCID: PMC6988551 DOI: 10.1002/ece3.5949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 01/07/2023] Open
Abstract
The composition of the skin microbiota of amphibians is related to the biology of host species and environmental microbial communities. In this system, the environment serves as a microbial source and can modulate the hosted community. When habitats are fragmented and the environment disturbed, changes in the structure of this microbial community are expected. One important potential consequence of fragmentation is a compromised protective function of the microbiota against pathogenic microorganisms. In this study, the skin microbiota of the amphibian Proceratophrys boiei was characterized, evaluated for relationships with environmental variables and environmental sources of microbial communities, and its diversity evaluated for frog populations from fragmented and continuous forests. In addition, the antimicrobial activity of this skin community was studied in frogs from both forest types. Culture methods and 16S rRNA high-throughput gene sequencing were used to characterize the microbial community and demonstrated that the skin microbiota of P. boiei is more closely related to the soil microbial communities than those inhabiting water bodies or fragment matrix, the unforested area around the forested fragment. The microbial diversity and abundance of P. boiei skin microbiota are different between continuous forests and fragments. This community is correlated with environmental variables, especially with temperature of microhabitat and distance to human dwelling. All individuals of P. boiei harbored bacteria capable of inhibiting the growth of pathogenic bacteria and different strains of the pathogenic fungus Batrachochytrium dendrobatidis, and a total of 27 bacterial genera were detected. The results of this study indicate that the persistence of populations of this species will need balanced and sustained interactions among host, microorganisms, and environment.
Collapse
Affiliation(s)
- Ananda B. Assis
- Department of PhysiologyInstitute of BioscienceUniversity of São PauloSão PauloBrazil
| | | | - Cristine Chaves Barreto
- Graduate Program in Genomic Sciences and BiotechnologyCatholic University of BrasíliaBrasíliaBrazil
| | - Carlos Arturo Navas
- Department of PhysiologyInstitute of BioscienceUniversity of São PauloSão PauloBrazil
| |
Collapse
|
6
|
Bletz MC, Kelly M, Sabino-Pinto J, Bales E, Van Praet S, Bert W, Boyen F, Vences M, Steinfartz S, Pasmans F, Martel A. Disruption of skin microbiota contributes to salamander disease. Proc Biol Sci 2018; 285:rspb.2018.0758. [PMID: 30135150 DOI: 10.1098/rspb.2018.0758] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
Escalating occurrences of emerging infectious diseases underscore the importance of understanding microbiome-pathogen interactions. The amphibian cutaneous microbiome is widely studied for its potential to mitigate disease-mediated amphibian declines. Other microbial interactions in this system, however, have been largely neglected in the context of disease outbreaks. European fire salamanders have suffered dramatic population crashes as a result of the newly emerged Batrachochytrium salamandrivorans (Bsal). In this paper, we investigate microbial interactions on multiple fronts within this system. We show that wild, healthy fire salamanders maintain complex skin microbiotas containing Bsal-inhibitory members, but these community are present at a remarkably low abundance. Through experimentation, we show that increasing bacterial densities of Bsal-inhibiting bacteria via daily addition slowed disease progression in fire salamanders. Additionally, we find that experimental-Bsal infection elicited subtle changes in the skin microbiome, with selected opportunistic bacteria increasing in relative abundance resulting in septicemic events that coincide with extensive destruction of the epidermis. These results suggest that fire salamander skin, in natural settings, maintains bacterial communities at numbers too low to confer sufficient protection against Bsal, and, in fact, the native skin microbiota can constitute a source of opportunistic bacterial pathogens that contribute to pathogenesis. By shedding light on the complex interaction between the microbiome and a lethal pathogen, these data put the interplay between skin microbiomes and a wildlife disease into a new perspective.
Collapse
Affiliation(s)
- Molly C Bletz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA .,Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Moira Kelly
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Joana Sabino-Pinto
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Emma Bales
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sarah Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Wim Bert
- Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000 Ghent, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Antwis RE, Harrison XA. Probiotic consortia are not uniformly effective against different amphibian chytrid pathogen isolates. Mol Ecol 2018; 27:577-589. [PMID: 29218845 DOI: 10.1111/mec.14456] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Symbiotic bacterial communities can protect their hosts from infection by pathogens. Treatment of wild individuals with protective bacteria (probiotics) isolated from hosts can combat the spread of emerging infectious diseases. However, it is unclear whether candidate probiotic bacteria can offer consistent protection across multiple isolates of globally distributed pathogens. Here, we use the lethal amphibian fungal pathogen Batrachochytrium dendrobatidis to investigate whether probiotic richness (number of bacteria) or genetic distance among consortia members influences broad-scale in vitro inhibitory capabilities of probiotics across multiple isolates of the pathogen. We show that inhibition of multiple pathogen isolates by individual bacteria is rare, with no systematic pattern among bacterial genera in ability to inhibit multiple B. dendrobatidis isolates. Bacterial consortia can offer stronger protection against B. dendrobatidis compared to single strains, and this tended to be more pronounced for consortia containing multiple genera compared with those consisting of bacteria from a single genus (i.e., with lower genetic distance), but critically, this effect was not uniform across all B. dendrobatidis isolates. These novel insights have important implications for the effective design of bacterial probiotics to mitigate emerging infectious diseases.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
8
|
Muletz-Wolz CR, Almario JG, Barnett SE, DiRenzo GV, Martel A, Pasmans F, Zamudio KR, Toledo LF, Lips KR. Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria. Front Microbiol 2017; 8:1551. [PMID: 28871241 PMCID: PMC5566582 DOI: 10.3389/fmicb.2017.01551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023] Open
Abstract
Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans), for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C). We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423). We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (μ = 46–53%), but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (μ = 5–71%). Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (μ = 5–100%). Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (μ = 57–100%). All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together, suggesting that bacterial inhibition strength may be predictable based on Batrachochytrium relatedness. We conclude that bacterial inhibition capabilities change among bacterial strains, Batrachochytrium genotypes and temperatures. A comprehensive understanding of bacterial inhibitory function, across pathogen genotypes and temperatures, is needed to better predict the role of bacterial symbionts in amphibian disease ecology. For targeted conservation applications, we recommend using bacterial strains identified as strongly inhibitory as they are most likely to produce broad-spectrum antimicrobial agents at a range of temperatures.
Collapse
Affiliation(s)
- Carly R Muletz-Wolz
- Department of Biology, University of Maryland, College ParkMD, United States.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, WashingtonDC, United States
| | - Jose G Almario
- Department of Biology, University of Maryland, College ParkMD, United States
| | - Samuel E Barnett
- Department of Biology, University of Maryland, College ParkMD, United States.,Department of Microbiology, Cornell University, IthacaNY, United States
| | - Graziella V DiRenzo
- Department of Biology, University of Maryland, College ParkMD, United States.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa BarbaraCA, United States
| | - An Martel
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent UniversityGhent, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent UniversityGhent, Belgium
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, IthacaNY, United States
| | - Luís Felipe Toledo
- Department of Animal Biology, State University of CampinasCampinas, Brazil
| | - Karen R Lips
- Department of Biology, University of Maryland, College ParkMD, United States
| |
Collapse
|
9
|
Walke JB, Becker MH, Hughey MC, Swartwout MC, Jensen RV, Belden LK. Dominance‐function relationships in the amphibian skin microbiome. Environ Microbiol 2017; 19:3387-3397. [DOI: 10.1111/1462-2920.13850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Myra C. Hughey
- Department of Biological SciencesVirginia TechBlacksburg VA USA
| | | | | | - Lisa K. Belden
- Department of Biological SciencesVirginia TechBlacksburg VA USA
| |
Collapse
|
10
|
Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Appl Environ Microbiol 2017; 83:AEM.00186-17. [PMID: 28213545 DOI: 10.1128/aem.00186-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.
Collapse
|
11
|
Sanchez E, Bletz MC, Duntsch L, Bhuju S, Geffers R, Jarek M, Dohrmann AB, Tebbe CC, Steinfartz S, Vences M. Cutaneous Bacterial Communities of a Poisonous Salamander: a Perspective from Life Stages, Body Parts and Environmental Conditions. MICROBIAL ECOLOGY 2017; 73:455-465. [PMID: 27677894 DOI: 10.1007/s00248-016-0863-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2016] [Indexed: 05/20/2023]
Abstract
Amphibian skin provides a habitat for bacterial communities in its mucus. Understanding the structure and function of this "mucosome" in the European fire salamander (Salamandra salamandra) is critical in the context of novel emerging pathogenic diseases. We compare the cutaneous bacterial communities of this species using amplicon-based sequencing of the 16S rRNA V4 region. Across 290 samples, over 4000 OTUs were identified, four of them consistently present in all samples. Larvae and post-metamorphs exhibited distinct cutaneous microbial communities. In adults, the parotoid gland surface had a community structure different from the head, dorsum, flanks and ventral side. Larvae from streams had higher phylogenetic diversity than those found in ponds. Their bacterial community structure also differed; species of Burkholderiaceae, Comamonadaceae, Methylophilaceae and Sphingomonadaceae were more abundant in pond larvae, possibly related to differences in factors like desiccation and decomposition rate in this environment. The observed differences in the cutaneous bacterial community among stages, body parts and habitats of fire salamanders suggest that both host and external factors shape these microbiota. We hypothesize that the variation in cutaneous bacterial communities might contribute to variation in pathogen susceptibility among individual salamanders.
Collapse
Affiliation(s)
- Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany.
| | - Molly C Bletz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Laura Duntsch
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anja B Dohrmann
- Thünen Institute of Biodiversity, Bundesallee 50, 38116, Braunschweig, Germany
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 50, 38116, Braunschweig, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| |
Collapse
|
12
|
Longo AV, Zamudio KR. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME JOURNAL 2016; 11:349-361. [PMID: 27935596 DOI: 10.1038/ismej.2016.138] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Fluctuating environments can modulate host-pathogen interactions by providing a temporary advantage to one of the interacting organisms. However, we know very little about how environmental conditions facilitate beneficial interactions between hosts and their microbial communities, resulting in individual persistence with a particular pathogen. Here, we experimentally infected Eleutherodactylus coqui frogs with the fungal pathogen Batrachochytrium dendrobatidis (Bd) under environmental conditions known to confer the survival advantage to the host during the warm-wet season, or alternatively to the pathogen during the cool-dry season. We used 16S rRNA amplicon sequencing to quantify changes in bacterial richness and phylogenetic diversity, and identified operational taxonomic units (OTUs) that became overrepresented or suppressed as a consequence of Bd infection. During the warm-wet season, frogs limited Bd infections, recruited putatively beneficial bacteria and returned to pre-infection levels of richness and phylogenetic diversity. In contrast, during the cool-dry season, Bd infections kept increasing through time, and bacterial diversity remained constant. Our findings confirm that infection outcome not only depends on abiotic factors, but also on biotic interactions between hosts and their associated bacterial communities.
Collapse
Affiliation(s)
- Ana V Longo
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|