1
|
Ranjit B, Chattopadhyay A, Mandal A, Biswas S, Chattopadhyay J. Beyond predation: Fish-coral interactions can tip the scales of coral disease. J Theor Biol 2025; 599:112031. [PMID: 39708959 DOI: 10.1016/j.jtbi.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Coral reefs are critical ecosystems, fostering biodiversity and sustaining the livelihoods of millions globally. Nonetheless, they confront escalating threats, with infectious diseases emerging as primary catalysts for extensive damage, surpassing the impacts of other human-induced stressors. Disease transmission via biotic factors, particularly during fish predation, is a crucial yet often overlooked pathway. While their feeding can spread infectious diseases through spores, it also controls the growth of macroalgae, a major competitor for space on the reef. Given this dual effect, the precise impact of fish on coral disease remains ambiguous and requires additional investigation. In this study, we addressed this gap for the first time by employing a mathematical model. Our analyses unveil intricate interactions between fish predation and coral health, revealing potential benefits and drawbacks for coral reef ecosystems. Coral survival hinges on a delicate balance of fish predation, with extremes (both low and high) offering some protection against disease outbreaks compared to moderate predation, which can cause sudden die-offs. More specifically, as fish predation intensifies, the ecosystem undergoes a tipping point, transitioning from a disease-dominated state to a healthier one. Moreover, the interplay between transmission rate and virulence in coral populations is significantly shaped by fish predation rates. Specifically, the threshold ratio of transmission to virulence, signalling a regime shift from a healthy to a disease-dominated state, exhibits a linear increase with fish predation rate. Overall, our findings emphasize the importance of considering biotic interactions in coral disease ecology and offer insights essential for effective reef conservation strategies.
Collapse
Affiliation(s)
- Buddhadev Ranjit
- Department of Mathematics, Jadavpur University, 188, Raja S.C. Mallik Road, Kolkata, 700032, West Bengal, India
| | - Arnab Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, West Bengal, India.
| | - Arindam Mandal
- Department of Mathematics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | - Santosh Biswas
- Department of Mathematics, Jadavpur University, 188, Raja S.C. Mallik Road, Kolkata, 700032, West Bengal, India
| | - Joydev Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, West Bengal, India
| |
Collapse
|
2
|
Li J, Bai M, He Y, Wang S, Wang G. Decay kinetics of human-associated pathogens in the marine microcosms reveals their new dynamics and potential indicators in the coastal waters of northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124936. [PMID: 39265768 DOI: 10.1016/j.envpol.2024.124936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Pathogens in coastal waters cause infectious diseases and endanger public sanitation safety in humans and animals worldwide. To avoid these risks, timely detection of human-associated pathogens in waters is crucial. In this study, the decay kinetics of the molecular markers for human-associated pathogens, including enteric bacteria (Escherichia coli, Enterococcus, and Bacteroides), non-enteric bacteria (Staphylococcus aureus), crAssphage, and polyomavirus, were monitored over time at different temperatures and background microbes in seawater microcosms. The results indicated that temperature and native marine microbes were the main influential factors in attenuating bacterial pathogens. Remarkably, the effect of native microorganisms was more evidentially striking. Furthermore, Enterococcus was a more reliable and suitable fecal indicator bacterium than E. coli for the marine environment. The decay of crAssphage was like that of polyomavirus, indicating that it may be a good indicator of enterovirus in seawater. More importantly, the 16S amplicon sequencing data highlighted the decay kinetics of multiple bacterial pathogens in parallel with the dynamic changes of the whole bacterial communities. This study provides valuable information for public health risk management and a new approach to understanding the fate of bacteria in the coastal environment.
Collapse
Affiliation(s)
- Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yaodong He
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Suisui Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Kennedy LC, Mattis AM, Boehm AB. You can bring plankton to fecal indicator organisms, but you cannot make the plankton graze: particle contribution to E. coli and MS2 inactivation in surface waters. mSphere 2024; 9:e0065624. [PMID: 39360835 PMCID: PMC11520309 DOI: 10.1128/msphere.00656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 10/30/2024] Open
Abstract
Organisms that are associated with feces ("fecal indicator organisms") are monitored to assess the potential for fecal contamination of surface water bodies in the United States. However, the effect of the complex mixtures of chemicals and the natural microbial community within surface water ("particles") on fecal indicator organism persistence is not well characterized. We aimed to better understand how particles, including biological (e.g., potential grazers) and inert (e.g., minerals) types, affect the fecal indicator organisms Escherichia coli K-12 ("E. coli") and bacteriophage MS2 in surface waters. A gradient of particles captured by a 0.2-µm-pore-size filter ("large particles") was generated, and the additional particles and dissolved constituents that passed through the filter were deemed "small particles." We measured the ratio of MS2 and E. coli that survived over a 24-h incubation period for each condition (0%-1,000% large-particle concentration in raw water) and completed a linear regression that included large- and small-particle coefficients. Particles were characterized by quantifying plankton, total bacterial cells, and total solids. E. coli and MS2 persistence was not significantly affected by large particles, but small particles had an effect in most waters. Small particles in higher-salinity waters had the largest, negative effect on E. coli and MS2 survival ratios: Significant small-particle coefficients ranged from -1.7 to -5.5 day-1 in the marine waters and -0.89 to -3.2 day-1 in the fresh and estuarine waters. This work will inform remediation efforts for impaired surface water bodies.IMPORTANCEMany surface water bodies in the United States have organisms associated with fecal contamination that exceed regulatory standards and prevent safe recreation. The process to remediate impaired water bodies is complicated because these fecal indicator organisms are affected by the local environmental conditions. For example, the effect of particles in surface water on fecal indicator concentrations are difficult to quantify in a way that is comparable between studies and water bodies. We applied a method that overcomes this limitation to assess the effects of large particles, including natural plankton that could consume the seeded fecal indicator organisms. Even in environmental water samples with diverse communities of plankton present, no effect of large particles on fecal indicator concentrations was observed. These findings have implications for the interpretation and design of future studies, including that particle characterization of surface water may be necessary to assess the fate of fecal indicators.
Collapse
Affiliation(s)
- Lauren C. Kennedy
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
- Department of Civil Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Ava M. Mattis
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Yoneda I, Nishiyama M, Watanabe T. Comparative experiment to select water quality parameters for modelling the survival of Escherichia coli in lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124423. [PMID: 38909774 DOI: 10.1016/j.envpol.2024.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Numerical health risk assessment models have been developed to describe faecal contamination of water using Escherichia coli as an indicator bacterium. Although many previously established numerical models for E. coli in aquatic environments have only considered the effects of one or two water quality parameters such as temperature and sunlight, it is difficult to simulate E. coli survival with only one or two parameters because the aquatic environment is a complex system. This study conducted a series of comparative experiments to select water quality parameters that should be preferentially considered in a numerical model for E. coli survival in lakes. The parameters considered were temperature, pH, dissolved oxygen (DO), total dissolved solids (TDS), suspended solids (SS), coexisting microbes, and light intensity. In the laboratory experiments, the survival of E. coli was observed by controlling two of these seven parameters, and the effects of these parameters on the rate of E. coli population change were statistically compared. Consequently, light intensity affected the survival of E. coli most significantly, followed by the presence of coexisting microbes, temperature, pH, and TDS. However, DO and SS had smaller effects on survival than other parameters. High-impact interactions on E. coli survival were observed between temperature and TDS and temperature and coexisting microbes. These results suggest that existing numerical models for simulating E. coli survival in lakes should be modified to consider the independent and interactive effects of multiple parameters such as sunlight, coexisting microbes, temperature, pH, and TDS.
Collapse
Affiliation(s)
- Ichiro Yoneda
- Department of Regional Environment Creation, United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3-Chome, Morioka, 020-8850, Japan.
| | - Masateru Nishiyama
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, 997-0037, Japan
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, 997-0037, Japan
| |
Collapse
|
5
|
Yoneda I, Nishiyama M, Watanabe T. Significant Factors for Modelling Survival of Escherichia coli in Lake Sediments. Microorganisms 2024; 12:1192. [PMID: 38930574 PMCID: PMC11206117 DOI: 10.3390/microorganisms12061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Currently available numerical models that describe the fecal contamination of aquatic environments using Escherichia coli as an indicator bacterium did not consider its survival in sediments. We conducted a series of comparative experiments to reveal the independent and interactive effects of sediment factors, including temperature, pH, water-extractable total dissolved solids (TDSs), coexisting microbes, and sampling sites, in lake environments on E. coli survival. In experiments, E. coli survival was observed by controlling any two factors at a time. Consequently, the decrease in pH and presence of coexisting microbes enhanced E. coli die-off, whereas the addition of water-extractable TDSs promoted its growth. To select factors to be considered for modelling E. coli survival in sediments, the independent effects of each factor and the interaction effect of the two factors were statistically compared based on their effect sizes (η2). As a result, pH (η2 = 59.5-89.0%) affected E. coli survival most significantly, followed by coexisting microbes (1.7-48.4%). Among the interactions affecting E. coli survival, including pH or coexisting microbes-which had larger independent effects-relatively larger statistically significant interactions were observed between pH and coexisting microbes (31.1%), coexisting microbes and water-extractable TDSs (85.4%), and coexisting microbes and temperature (26.4%).
Collapse
Affiliation(s)
- Ichiro Yoneda
- Department of Regional Environment Creation, United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3-Chome, Morioka 020-8850, Japan;
| | - Masateru Nishiyama
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Japan;
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Japan;
| |
Collapse
|
6
|
Gao S, Sutton NB, Wagner TV, Rijnaarts HHM, van der Wielen PWJJ. Influence of combined abiotic/biotic factors on decay of P. aeruginosa and E. coli in Rhine River water. Appl Microbiol Biotechnol 2024; 108:294. [PMID: 38598011 PMCID: PMC11399167 DOI: 10.1007/s00253-024-13128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.
Collapse
Affiliation(s)
- Sha Gao
- Department of Environmental Technology, Wageningen University, PO Box 17, 6700EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University, PO Box 17, 6700EV, Wageningen, The Netherlands.
| | - Thomas V Wagner
- Department of Environmental Technology, Wageningen University, PO Box 17, 6700EV, Wageningen, The Netherlands
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University, PO Box 17, 6700EV, Wageningen, The Netherlands
| | - Paul W J J van der Wielen
- KWR Water Research Institute, Groningenhaven 7, 3433PE, Nieuwegein, The Netherlands
- Laboratory of Microbiology, Wageningen University, PO Box 17, 6700EV, Wageningen, The Netherlands
| |
Collapse
|
7
|
Ahmed W, Korajkic A, Smith WJ, Payyappat S, Cassidy M, Harrison N, Besley C. Comparing the decay of human wastewater-associated markers and enteric viruses in laboratory microcosms simulating estuarine waters in a temperate climatic zone using qPCR/RT-qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167845. [PMID: 37879463 PMCID: PMC11070876 DOI: 10.1016/j.scitotenv.2023.167845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the decay rates of wastewater-associated markers and enteric viruses in laboratory microcosms mimicking estuarine water environments in temperate Sydney, NSW, Australia using qPCR and RT-qPCR assays. The results demonstrated the reduction in concentrations of Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), human adenovirus (HAdV 40/41), and enterovirus (EV) over a span of 42 days under spring/summer temperatures, presence/absence of microbiota, and different light conditions. The study found that HF183, Lachno3, crAssphage, PMMoV, HAdV 40/41, and EV exhibited varying decay rates depending on the experimental conditions. The average T90 values ranged from a few days to several months, indicating the rapid decay or prolonged persistence of these markers and enteric viruses in the estuarine environment. Furthermore, the study examined the effects of indigenous microbiota and spring/summer temperatures on wastewater-associated markers and enteric viruses decay rates. It was found that the presence of microbiota and temperature significantly influenced the decay rates of HF183 and PMMoV. Additionally, the study compared the effects of artificial sunlight and spring/summer temperatures on marker decay rates. Bacterial markers decayed faster than viral markers, although among viral markers crAssphage decay rates were relatively faster when compared to PMMoV. The exposure to artificial sunlight significantly accelerated the decay rates of bacterial markers, viral markers, and enteric viruses. Temperature also had an impact on the decay rates of Lachno3, crAssphage, and HAdV 40/41. In conclusion, this study provides valuable insights into the decay rates of wastewater-associated markers and enteric viruses under different experimental conditions that mimicked temperate environmental conditions. The findings contribute to our understanding of the fate and persistence of these markers in the environment which is crucial for assessing and managing risks from contamination by untreated human wastewater.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Wendy J Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
8
|
NandaKafle G, Blasius LA, Seale T, Brözel VS. Escherichia coli Strains Display Varying Susceptibility to Grazing by the Soil Amoeba Dictyostelium discoideum. Microorganisms 2023; 11:1457. [PMID: 37374960 DOI: 10.3390/microorganisms11061457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have shown that Escherichia coli can survive in different environments, including soils, and they can maintain populations in sterile soil for a long period of time. This indicates that growth-supporting nutrients are available; however, when grown in non-sterile soils, populations decline, suggesting that other biological factors play a role in controlling E. coli populations in soil. Free-living protozoa can affect the bacterial population by grazing. We hypothesized that E. coli strains capable of surviving in non-sterile soil possess mechanisms to protect themselves from amoeba predation. We determined the grazing rate of E. coli pasture isolates by using Dictyostelium discoideum. Bacterial suspensions applied to lactose agar as lines were allowed to grow for 24 h, when 4 μL of D. discoideum culture was inoculated in the center of each bacterial line. Grazing distances were measured after 4 days. The genomes of five grazing-susceptible and five grazing-resistant isolates were sequenced and compared. Grazing distance varied among isolates, which indicated that some E. coli are more susceptible to grazing by protozoa than others. When presented with a choice between grazing-susceptible and grazing-resistant isolates, D. discoideum grazed only on the susceptible strain. Grazing susceptibility phenotype did not align with the phylogroup, with both B1 and E strains found in both grazing groups. They also did not align by core genome phylogeny. Whole genome comparisons revealed that the five most highly grazed strains had 389 shared genes not found in the five least grazed strains. Conversely, the five least grazed strains shared 130 unique genes. The results indicate that long-term persistence of E. coli in soil is due at least in part to resistance to grazing by soil amoeba.
Collapse
Affiliation(s)
- Gitanjali NandaKafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Lane A Blasius
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Tarren Seale
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| | - Volker S Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| |
Collapse
|
9
|
Korajkic A, McMinn BR, Harwood VJ. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens 2023; 12:pathogens12030378. [PMID: 36986300 PMCID: PMC10053992 DOI: 10.3390/pathogens12030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Fecal indicator bacteria (FIB: Escherichia coli and enterococci) are used to assess recreational water quality. Viral indicators (i.e., somatic and F+ coliphage), could improve the prediction of viral pathogens in recreational waters, however, the impact of environmental factors, including the effect of predatory protozoa source, on their survival in water is poorly understood. We investigated the effect of lakewater or wastewater protozoa, on the decay (decreasing concentrations over time) of culturable FIB and coliphages under sunlight and shaded conditions. FIB decay was generally greater than the coliphages and was more rapid when indicators were exposed to lake vs. wastewater protozoa. F+ coliphage decay was the least affected by experimental variables. Somatic coliphage decayed fastest in the presence of wastewater protozoa and sunlight, though their decay under shaded conditions was-10-fold less than F+ after 14 days. The protozoa source consistently contributed significantly to the decay of FIB, and somatic, though not the F+ coliphage. Sunlight generally accelerated decay, and shade reduced somatic coliphage decay to the lowest level among all the indicators. Differential responses of FIB, somatic, and F+ coliphages to environmental factors support the need for studies that address the relationship between the decay of coliphages and viral pathogens under environmentally relevant conditions.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
- Correspondence: ; Tel.: +1-513-569-7306
| | - Brian R. McMinn
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
10
|
NtrC Increases Fitness of Salmonella enterica Serovar Typhimurium under Low and Fluctuating Nutrient Conditions. J Bacteriol 2022; 204:e0026422. [PMID: 36317920 PMCID: PMC9765038 DOI: 10.1128/jb.00264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enteric pathogens cycle between nutrient-rich host and nutrient-poor external environment. These pathogens compete for nutrients while cycling between host and external environment, and often experience starvation. In this context, we have studied the role of a global regulator (NtrC) of Salmonella Typhimurium. The ntrC knockout mutation caused extended lag phase (8 h) and slow growth in the minimal medium. In lag phase, the wild-type cells showed ~60-fold more expression of ntrC gene. Gene expression studies and biochemical assays showed that the extended lag phase and slow growth is due to slow metabolism, instead of nitrogen transport. Further, we observed that ntrC knockout mutation led extended lag phase and slow growth, made ΔntrC mutant unable to compete with wild-type S. Typhimurium in both static and fluctuating nutrient condition. In addition to this, ΔntrC knockout mutant was unable to survive long-term nitrogen starvation (150 days). The nutrient recycling assays and gene expression studies revealed that ntrC gene is essential for rapid recycling of nutrients from the dead cells. Moreover, in the absence of ntrC gene, magnesium limits the nutrient recycling efficiency of S. Typhimurium. Therefore, the ntrC gene, which is often studied with respect to nitrogen scavenging in a low nitrogen growing condition, is required even in the adequate supply of nitrogen to maintain optimal growth and fast exit from the lag phase. Hence, we conclude that, the ntrC expression is essential for competitive fitness of S. Typhimurium under the low and fluctuating nutrient condition. IMPORTANCE S. Typhimurium, both in host and external environment, faces enormous competition from other microorganisms. The competition may take place either in static or in fluctuating nutrient conditions. Thus, how S. Typhimurium survives under such overlapping stress conditions remained unclear. Therefore, using S. Typhimurium as model organism we report that a global regulator NtrC, found in enteric bacteria like Escherichia coli and Salmonella, activates the set of genes and operons involved in rapid adaptation and efficient nutrient recycling/scavenging. These properties enable cells to compete with other microbes under the characteristic feast-or-famine lifestyle of S. Typhimurium. Therefore, this work helps us to understand the starvation physiology of the enteric bacterial pathogen S. Typhimurium.
Collapse
|
11
|
Dean K, Mitchell J. Meta-Analysis Addressing the Implications of Model Uncertainty in Understanding the Persistence of Indicators and Pathogens in Natural Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12106-12115. [PMID: 35984692 DOI: 10.1021/acs.est.1c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study evaluates the impact persistence model selection has on the prediction of persistence values of interest and the identification of influential water quality and environmental factors for microorganisms in natural surface waters. Five persistence models representing first-order decay and nonlinear decay profiles were fit to a comprehensive database of 629 data sets for fecal indicator bacteria (FIB), bacteriophages, bacteria, viruses, and protozoa mined from the literature. Initial periods of minimal decay and decay rates tapering off over time were often observed, and a two-parameter model, based on the logistic probability distribution, provided the best fit to the data most frequently. First-order decay kinetics provided the best fit to less than 20% of the analyzed data. Using the best fitting models in this analysis, T90 and T99 metrics were calculated for each data set and used as the dependent variable in a variety of exploratory factor analyses. Random forest methods identified temperature and predation as some of the most important water quality factors influencing persistence, and the protozoa target type differed the most from FIB. This analysis further confirmed the interactions between temperature and predation and suggests that pH and turbidity be more frequently documented in persistence studies to further elucidate their impact on target persistence. The findings from this analysis and the calculated persistence metrics can be used to better inform quantitative microbial risk assessments and may lead to improved predictions of human health risks and water management decisions.
Collapse
Affiliation(s)
- Kara Dean
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, East Lansing, Michigan48824, United States
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, East Lansing, Michigan48824, United States
| |
Collapse
|
12
|
Behruznia M, Gordon DM. Molecular and metabolic characteristics of wastewater associated Escherichia coli strains. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:646-654. [PMID: 35638456 PMCID: PMC9543349 DOI: 10.1111/1758-2229.13076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/04/2023]
Abstract
We previously characterized the genetic diversity of Escherichia coli strains isolated from septic tanks in the Canberra region, Australia. In this study, we used repetitive element palindromic (REP) PCR fingerprinting to identify dominant REP-types belonging to phylogroups A and B1 strains across septic tanks. Subsequently, 76 E. coli strains were selected for whole-genome sequencing and phenotype microarrays. Comparative genome analysis was performed to compare septic tank E. coli genomes with a collection of 433 E. coli isolates from different hosts and freshwater. Clonal complexes (CCs) 10 (n = 15) and 399 (n = 10) along with sequence type (ST) 401 (n = 9) were the common lineages in septic tanks. CC10 strains have been detected from animal hosts and freshwater, whereas CC399 and ST401 strains appeared to be associated with septic tanks as they were uncommon in isolates from other sources. Comparative genome analysis revealed that CC399 and ST401 were genetically distinct from other isolates and carried an abundance of niche-specific traits involved in environmental adaptation. These strains also showed distinct metabolic characteristics, such as the ability to utilize pectin, which may provide a fitness advantage under nutrient-limited conditions. The results of this study characterized the adaptive mechanisms allowing E. coli to persist in wastewater.
Collapse
Affiliation(s)
- Mahboobeh Behruznia
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - David M. Gordon
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
13
|
Wolska L, Kowalewski M, Potrykus M, Redko V, Rybak B. Difficulties in the Modeling of E. coli Spreading from Various Sources in a Coastal Marine Area. Molecules 2022; 27:molecules27144353. [PMID: 35889226 PMCID: PMC9316465 DOI: 10.3390/molecules27144353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Coastal and transitional waters are often used as bathing waters. In many regions, such activities play an important economic role. According to the European Union Bathing Water Directive (2006/7/EC) (BWD) the concentration of Escherichia coli in bathing water exceeding 500 CFU·100 mL−1 poses a high risk for bathers’ health. In order to safeguard public health, microbiological environmental monitoring is carried out, which has recently been supported or replaced by mathematical models detailing the spread of sanitary contamination. This study focuses on the problems and limitations that can be encountered in the process of constructing a mathematical model describing the spread of biological contamination by E. coli bacteria in coastal seawater. This and other studies point to the following problems occurring during the process of building and validating a model: the lack of data on loads of sanitary contamination (often connected with multiple sources of biological contamination inflow) makes the model more complex; E. coli concentrations higher than 250 CFU·100 mL−1 (low hazard for health) are observed very rarely, and are associated with great uncertainty; the impossibility of predicting the time and intensity of precipitation as well as stronger winds and rougher sea, which may be a significant source of E. coli. However, there is universal agreement that such models will be useful in managing bathing water quality and protecting public health, especially during big failures of the wastewater network.
Collapse
Affiliation(s)
- Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, 80-204 Gdańsk, Poland; (L.W.); (M.P.); (V.R.)
| | - Marek Kowalewski
- Institute of Oceanography, University of Gdańsk, Av. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, 80-204 Gdańsk, Poland; (L.W.); (M.P.); (V.R.)
| | - Vladyslav Redko
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, 80-204 Gdańsk, Poland; (L.W.); (M.P.); (V.R.)
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, 80-204 Gdańsk, Poland; (L.W.); (M.P.); (V.R.)
- Correspondence: ; Tel.: +48-58-349-1935
| |
Collapse
|
14
|
Mahaney AP, Franklin RB. Persistence of wastewater-associated antibiotic resistant bacteria in river microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153099. [PMID: 35038511 DOI: 10.1016/j.scitotenv.2022.153099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The spread of antibiotic-resistant bacteria (ARB) associated with wastewater is a significant environmental concern, but little is known about the persistence and proliferation of these organisms in receiving water bodies after discharge. To address this knowledge gap, we performed a series of microcosm experiments in which river water was amended with either untreated or treated wastewater, and the abundance of viable ciprofloxacin-, Bactrim-, and erythromycin-resistant bacteria was monitored for 72 h. Both types of wastewater amendments significantly increased the initial abundance of ARB compared to microcosms containing only river water (all p < 0.03). The increase was greatest with untreated wastewater, but that effect decreased steadily over time. In contrast, microcosms amended with treated wastewater saw a smaller initial increase and more complex temporal dynamics. Following a brief lag, ARB abundance bloomed for all three of the antibiotics that we considered. This suggests that ARB that survive wastewater treatment are particularly hardy and may proliferate in riverine conditions after a short recovery period. To determine how interactions with the native river microbial community impacted the persistence of wastewater-associated ARB, an additional set of microcosms was prepared using filter-sterilized river water. Peak abundance in these microcosms was significantly higher by 1-2 orders of magnitude compared to microcosms containing an intact river microbial community (all p < 0.05), which suggests that biotic interactions play a significant role in regulating the persistence and proliferation of ARB. The data presented in this paper are among the first available that specifically consider persistence of viable ARB and represent an important step toward understanding AR-related human health risks downstream from wastewater discharge points and following sewer overflow events. Additional studies that consider longer time scales and the interplay of biotic and abiotic variables are essential for modeling public health risks associated with wastewater inputs of ARB to rivers and other aquatic environments.
Collapse
Affiliation(s)
- Aoife P Mahaney
- Department of Biology, Virginia Commonwealth University, 1000 W Cary Street, Richmond, Virginia 23284, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, 1000 W Cary Street, Richmond, Virginia 23284, USA.
| |
Collapse
|
15
|
Dean K, Mitchell J. Identifying water quality and environmental factors that influence indicator and pathogen decay in natural surface waters. WATER RESEARCH 2022; 211:118051. [PMID: 35051677 DOI: 10.1016/j.watres.2022.118051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biphasic decay has been observed for indicators and pathogens in bench-scale and in-situ water experiments for decades, however, first-order decay kinetics continue to be applied to persistence data because of their simplicity and ease of application. Model uncertainty introduced by broadly applying first-order decay kinetics to persistence data may lead to erroneous decision making in the fields of water management and protection. As surface waters are exposed to highly variable environmental and water quality factors that influence microbial and viral persistence, it is expected that first-order decay kinetics are not representative of most of the persistence literature for indicators and pathogens in surface water matrices. This review compiled the methods and results of 61 studies that conducted experiments evaluating the persistence of fecal indicator bacteria (FIB), bacteriophages, pathogenic bacteria, viruses, and protozoa in natural surface water matrices. The goals of this review were trifold: (1) collate studies in the literature with data available for future persistence modeling, (2) present the current state of knowledge with regards to the environmental and water quality factors affecting persistence in natural surface waters, and (3) identify recurrent evidence for interactions between the frequently studied factors to inform future factor analyses. Comparing the methods and results across the 61 studies suggest potential interactions between sunlight and water type; sunlight and method of detection; predation and water type; predation and temperature; and water type and method of detection. The majority of the identified literature evaluated FIB or bacteria persistence; future experiments are needed that focus on protozoa, brackish or marine water types, and molecular-based methods of detection.
Collapse
Affiliation(s)
- Kara Dean
- Department of Biosystems and Agricultural Engineering, Michigan State University, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, USA.
| |
Collapse
|
16
|
Cira M, Bafna A, Lee CM, Kong Y, Holt B, Ginger L, Cawse-Nicholson K, Rieves L, Jay JA. Turbidity and fecal indicator bacteria in recreational marine waters increase following the 2018 Woolsey Fire. Sci Rep 2022; 12:2428. [PMID: 35165307 PMCID: PMC8844011 DOI: 10.1038/s41598-022-05945-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWildfires increase runoff and sediment yields that impact downstream ecosystems. While the effects of wildfire on stream water quality are well documented, oceanic responses to wildfire remain poorly understood. Therefore, this study investigated oceanic responses to the 2018 Woolsey Fire using satellite remote sensing and in situ data analyses. We examined 2016–2020 turbidity plume (n = 192) and 2008–2020 fecal indicator bacteria (FIB, n = 15,015) measurements at variable proximity to the Woolsey Fire. Shifts in coastal water quality were more pronounced in the “inside” region, which drained the burn area. The inside region experienced 2018–2019 plume surface area monthly means that were 10 and 9 times greater than 2016–2017 and 2017–2018 monthly means, respectively. Further, linear regressions showed that 2018–2019 three-day precipitation totals produced plumes of greater surface area. We also noted statistically significant increases in the inside region in 2018–2019 total coliform and Enterococcus monthly means that were 9 and 53 times greater than 2008–2018 monthly means, respectively. These results indicate that sediment and microbial inputs to coastal ecosystems can increase substantially post-wildfire at levels relevant to public and environmental health, and underscore the benefit of considering remote sensing and in situ measurements for water quality monitoring.
Collapse
|
17
|
Behruznia M, O'Brien CL, Gordon DM. Prevalence, diversity and genetic structure of Escherichia coli isolates from septic tanks. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:138-146. [PMID: 34918455 DOI: 10.1111/1758-2229.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The present study investigated the diversity and genetic structure of Escherichia coli isolates from 100 septic tanks in the Canberra region, Australia. The physicochemical characteristics of the septic tanks were determined to examine the extent to which environmental factors might influence E. coli prevalence, diversity and population structure. The results of this study indicated that the temperature of the septic tank could explain some of the variation observed in the number of E. coli isolates recovered per septic tank, whereas pH was an important driver of E. coli diversity. Conductivity, pH and household size had a significant impact on E. coli population structure, and household size significantly affected the probability of detecting human-associated E. coli lineages [sequence types (STs) 69, 73, 95 and 131] in septic tanks. Phylogroup A and B1 strains were not randomly distributed among septic tanks, and the strong negative association between them may indicate intraspecific competition. The findings of this study suggest that the combination of environmental factors and intraspecific interactions may influence the distribution and genetic structure of E. coli in the environment.
Collapse
Affiliation(s)
- Mahboobeh Behruznia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Claire L O'Brien
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, 2617, Australia
| | - David M Gordon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Selective survival of Escherichia coli phylotypes in freshwater beach sand. Appl Environ Microbiol 2021; 87:AEM.02473-20. [PMID: 33257315 PMCID: PMC7851694 DOI: 10.1128/aem.02473-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli is used as an indicator of fecal pollution at beaches despite evidence of long-term survival in sand. This work investigated the basis for survival of E. coli through field microcosm experiments and phylotypic characterization of more than >1400 E. coli isolated from sand, sewage, and gulls, enabling identification of long-surviving populations and environmental drivers of their persistence. Microcosms containing populations of E. coli from each source (n=176) were buried in the backshore of Lake Michigan for 45 & 96 days under several different nutrient treatments, including unaltered native sand, sterile autoclaved sand and baked nutrient depleted sand. Availability of carbon and nitrogen and competition with the indigenous community were major factors that influenced E. coli survival. E. coli Clermont phylotypes B1 and A were the most dominant phylotypes surviving seasonally (>6 weeks), regardless of source and nutrient treatment, whereas cryptic clade and D/E phylotypes survived over winter (>300 days). Autoclaved sand, presumably supplying nutrients through increased availability, promoted growth and the presence of the indigenous microbial community reduced this effect. Screening of 849 sand E. coli from four freshwater beaches demonstrated that B1, but also D/E, were the most common phylotypes recovered. Analysis by qPCR for the Gull2, Lachno3 and HB human markers demonstrated only 25% of the samples had evidence of gull waste and none of the samples had evidence of human waste. These findings suggest prevalence of E. coli in the sand could be attributed more to long term surviving populations than to new fecal pollution.IMPORTANCE Fecal pollution monitoring still relies upon the enumeration of E. coli, despite the fact that this organism can survive for prolonged periods and has been shown to be easily transported from sand into surrounding waters through waves and runoff, thus no longer represents recent fecal pollution events. Here, we experimentally demonstrate that regardless of host source, certain genetically distinct subgroups, or phylotypes, survive longer than others under conditions typical of Great Lakes beach sites. We found nutrients were a major driver of survival and could actually promote growth, and the presence of native microorganisms modulated these effects. These insights into the dynamics and drivers of survival will improve the interpretation of E. coli measurements at beaches and inform strategies that could focus on reducing nutrient inputs to beaches or maintaining a robust natural microbiome in beach sand.
Collapse
|
19
|
Ahmed W, Toze S, Veal C, Fisher P, Zhang Q, Zhu Z, Staley C, Sadowsky MJ. Comparative decay of culturable faecal indicator bacteria, microbial source tracking marker genes, and enteric pathogens in laboratory microcosms that mimic a sub-tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141475. [PMID: 32890804 DOI: 10.1016/j.scitotenv.2020.141475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Enteric pathogens can be present in drinking water catchments due to several point and non-point sources of faecal contamination. Pathogen and contaminant signatures will decay due to environmental stresses, such as temperature, Ultra Violet (UV) radiation, salinity, and predation. In this study, we determined the decay of the culturable faecal indicator bacterium (FIB) Escherichia coli (E. coli), two sewage-associated marker genes (Bacteroides HF183 and crAssphage CPQ_056), and enteric pathogens (Campylobacter spp., human adenovirus 40/41, and Cryptosporidium parvum) in two freshwater laboratory microcosms using culture-based, quantitative PCR (qPCR) and vital dye (determine the fraction of viable Cryptosporidium oocysts) assays. Freshwater samples from the Lake Wappa and Lake Wivenhoe (Australia) were seeded with untreated sewage and C. parvum oocysts, and their declining concentrations were measured over a 28-day period. Moreover, 16S rRNA amplicon sequencing was also undertaken to determine the change/shift in sewage-associated bacterial communities using SourceTracker. Overall, culturable E. coli and the HF183 marker gene decayed significantly (p < 0.05) faster than did the qPCR measured enteric pathogens suggesting that the absence of culturable FIB or qPCR HF183 in water samples may not indicate the absence of pathogens. The decay of crAssphage was similar to that of HAdV 40/41 and other pathogens tested, suggesting crAssphage may be a better surrogate for enteric viruses in sub-tropical catchment waters. The decay rates were greater at 25 °C compared to 15 °C, suggesting that FIB and pathogens persist longer in the winter season compared to summer. Overall decay rates of the tested microorganisms in this microcosm study suggest that sub-tropical conditions, especially temperature, have a negative impact on the persistence of tested microorganisms. Sewage-associated bacterial communities also showed similar patterns. Based on the results, which showed differences in simulated summer and winter temperatures for pathogen decay, corresponding management options and treatment need to be adjusted accordingly to minimize human health risks effectively.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, Australia.
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, Australia
| | - Cameron Veal
- Seqwater, 117 Brisbane Street, Ipswich, QLD, Australia
| | - Paul Fisher
- Seqwater, 117 Brisbane Street, Ipswich, QLD, Australia
| | - Qian Zhang
- Department of Soil, Water, and Climate, and the BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhigang Zhu
- Department of Surgery, University of Minnesota, MN 55455, USA
| | | | - Michael J Sadowsky
- Department of Soil, Water, and Climate, and the BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
20
|
Ishii Y, Kurisu F, Kasuga I, Furumai H. Competition for growth substrates in river water between Escherichia coli and indigenous bacteria illustrated by high-resolution mass spectrometry. Lett Appl Microbiol 2020; 72:133-140. [PMID: 32671859 DOI: 10.1111/lam.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022]
Abstract
Escherichia coli normally cannot grow in the environment. One environmental stress that prevents E. coli growth may be the competition for growth substrates with co-existing micro-organisms. In this study, the growth substrates of E. coli were screened by high-resolution mass spectrometry and compared with those of indigenous bacteria in river water. In an incubation experiment, E. coli multiplied in sterilized river water, but did not multiply when indigenous micro-organisms were present in the water. By analysing dissolved organic matter in the river water before and after E. coli growth, 35 compounds were identified as putative growth substrates of E. coli. Among them, 33 compounds were also identified as putative growth substrates of indigenous bacteria. These results indicate that E. coli and indigenous bacteria compete for organic substrates in river water, which could suppress the growth of E. coli.
Collapse
Affiliation(s)
- Y Ishii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - F Kurisu
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - I Kasuga
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Master Program of Environmental Engineering, Vietnam Japan University, Nam Tu Liem, Ha Noi, Vietnam
| | - H Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Zemskaya TI, Zakharenko AS, Rusanov II, Bukin SV, Pogodaeva TV, Netsvetaeva OG, Ivanov VG, Shtykova YR, Pimenov NV. Ecology of Estuarine Basins of Southern Baikal Small Rivers According to Springtime Chemical and Microbiological Investigation. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Young S, Rohr JR, Harwood VJ. Vancomycin resistance plasmids affect persistence of Enterococcus faecium in water. WATER RESEARCH 2019; 166:115069. [PMID: 31536887 DOI: 10.1016/j.watres.2019.115069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/21/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Vancomycin resistant enterococci (VRE) cause 20,000 infections annually in the United States, most of which are nosocomial. Recent findings of VRE in sewage-contaminated surface waters demonstrate an alternate route of human exposure, and a possible setting for horizontal gene exchange facilitated by plasmids and other mobile genetic elements. Maintenance of antibiotic resistance genes and proteins may, however, present a fitness cost in the absence of selective pressure, particularly in habitats such as environmental waters that are not optimal for gut-associated bacteria. Nutrient levels, which are transiently elevated following sewage spills, may also affect survival. We tested the hypotheses that nutrients and/or plasmids conferring vancomycin resistance affect Enterococcus faecium survival in river water by measuring decay of strains that differed only by their plasmid, under natural and augmented nutrient conditions. In natural river water, decay rate (log10 reduction) correlated directly with plasmid size; however, plasmid presence and size had no effect on decay rate when nutrients levels were augmented. Under natural nutrient levels, the vancomycin-resistant strain with the largest plasmid (200 kb) decayed significantly more rapidly than the plasmid-less, susceptible parent strain, in contrast to similar decay rates among strains under augmented nutrient conditions. This work is among the first to show that plasmids conferring antibiotic resistance affect fitness of Enterococcus species in secondary habitats such as surface water. The nutrient-dependent nature of the fitness cost suggests that conveyance of VRE to environmental waters in nutrient-rich sewage may prolong survival of these pathogens, providing greater opportunity for host infection and/or horizontal gene transfer.
Collapse
Affiliation(s)
- Suzanne Young
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
23
|
Gaines A, Ludovice M, Xu J, Zanghi M, Meinersmann RJ, Berrang M, Daley W, Britton D. The dialogue between protozoa and bacteria in a microfluidic device. PLoS One 2019; 14:e0222484. [PMID: 31596855 PMCID: PMC6784911 DOI: 10.1371/journal.pone.0222484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2019] [Indexed: 01/28/2023] Open
Abstract
In nature, protozoa play a major role in controlling bacterial populations. This paper proposes a microfluidic device for the study of protozoa behaviors change due to their chemotactic response in the presence of bacterial cells. A three-channel microfluidic device was designed using a nitrocellulose membrane into which channels were cut using a laser cutter. The membrane was sandwiched between two glass slides; a Euglena suspension was then allowed to flow through the central channel. The two side channels were filled with either, 0.1% peptone as a negative control, or a Listeria suspension respectively. The membrane design prevented direct interaction but allowed Euglena cells to detect Listeria cells as secretions diffused through the nitrocellulose membrane. A significant number of Euglena cells migrated toward the chambers near the bacterial cells, indicating a positive chemotactic response of Euglena toward chemical cues released from Listeria cells. Filtrates collected from Listeria suspension with a series of molecular weight cutoffs (3k, 10k and 100k) were examined in Euglena chemotaxis tests. Euglena cells were attracted to all filtrates collected from the membrane filtration with different molecular weight cutoffs, suggesting small molecules from Listeria might be the chemical cues to attract protozoa. Headspace volatile organic compounds (VOC) released from Listeria were collected, spiked to 0.1% peptone and tested as the chemotactic effectors. It was discovered that the Euglena cells responded quickly to Listeria VOCs including decanal, 3,5- dimethylbenzaldehyde, ethyl acetate, indicating bacterial VOCs were used by Euglena to track the location of bacteria.
Collapse
Affiliation(s)
- Anna Gaines
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Miranda Ludovice
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jie Xu
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Marc Zanghi
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Richard J. Meinersmann
- Richard B. Russell Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Mark Berrang
- Richard B. Russell Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Wayne Daley
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Doug Britton
- Aerospace, Transportation and Advanced Systems Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Abstract
Fecal microorganisms can enter water bodies in diverse ways, including runoff, sewage discharge, and direct fecal deposition. Once in water, the microorganisms experience conditions that are very different from intestinal habitats. The transition from host to aquatic environment may lead to rapid inactivation, some degree of persistence, or growth. Microorganisms may remain planktonic, be deposited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these habitats offers a panoply of different stressors or advantages, including UV light exposure, temperature fluctuations, salinity, nutrient availability, and biotic interactions with the indigenous microbiota (e.g., predation and/or competition). The host sources of fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and humans. Most of these microorganisms are unlikely to affect human health, but certain taxa can cause waterborne disease. Others signal increased probability of pathogen presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacteriophages, or act as fecal source identifiers (microbial source tracking markers). The effects of environmental factors on decay are frequently inconsistent across microbial species, fecal sources, and measurement strategies (e.g., culture versus molecular). Therefore, broad generalizations about the fate of fecal microorganisms in aquatic environments are problematic, compromising efforts to predict microbial decay and health risk from contamination events. This review summarizes the recent literature on decay of fecal microorganisms in aquatic environments, recognizes defensible generalizations, and identifies knowledge gaps that may provide particularly fruitful avenues for obtaining a better understanding of the fates of these organisms in aquatic environments.
Collapse
|
25
|
Jokinen CC, Hillman E, Tymensen L. Sources of generic Escherichia coli and factors impacting guideline exceedances for food safety in an irrigation reservoir outlet and two canals. WATER RESEARCH 2019; 156:148-158. [PMID: 30913418 DOI: 10.1016/j.watres.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Nearly half of all cases of foodborne illness are associated with plant-based foods such as leafy greens and raw flour. An important potential source of pathogen contamination along the food-production continuum is irrigation water, which has led to the implementation of increasingly stringent agricultural irrigation water quality requirements. To better understand factors impacting irrigation water quality, we investigated sources of generic Escherichia coli and how they varied temporally among different sampling sites. Precipitation, Campylobacter species distribution, and physicochemical water quality parameters were also investigated to substantiate microbial source tracking findings. Biweekly sampling was conducted at a reservoir outlet and two downstream canals in southern Alberta, Canada, throughout two irrigation seasons, the latter of which was notable for drought conditions. Overall, 50% of canal samples exceeded Alberta's irrigation guideline for E. coli (100 E. coli per 100 ml), whereas all reservoir samples were below guideline limits. Collectively, E. coli source apportionment, Campylobacter species distribution, and physicochemical water quality data suggest runoff from surrounding agricultural land was a contributing factor to E. coli guideline exceedances in Year 1 only. In Year 2, the majority of exceedances occurred later in the season when there was little precipitation and were largely attributed to cosmopolitan E. coli from wild birds and cattle. Similarities in E. coli host-source and Campylobacter species distributions between the reservoir and canals when the guideline was exceeded suggest the reservoir could be a primary source of E. coli during drought. Increased bacterial concentrations in canals were likely due to environmental conditions that promoted bacterial survival and in-situ proliferation. Our findings support previous accounts that many E. coli isolates possess enhanced survival capabilities, which has implications to bacterial water quality assessments and risk mitigation, particularly under drought conditions.
Collapse
Affiliation(s)
- Cassandra C Jokinen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, 100, 5401 - 1st Ave S, Lethbridge, Alberta, T1J 4V6, Canada
| | - Evan Hillman
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, 100, 5401 - 1st Ave S, Lethbridge, Alberta, T1J 4V6, Canada
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, 100, 5401 - 1st Ave S, Lethbridge, Alberta, T1J 4V6, Canada.
| |
Collapse
|
26
|
Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, Liu Y. Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol 2019; 103:4203-4215. [PMID: 30972460 DOI: 10.1007/s00253-019-09757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
The TonB system functions in iron transport and has been identified in certain Gram-negative bacteria. Recently, we reported three TonB systems in the Aeromonas hydrophila Chinese epidemic strain NJ-35, but the functions of these systems have not been thoroughly elucidated to date. In this study, we investigated the role of these TonB systems in A. hydrophila iron utilization and virulence. We found that tonB1 and tonB2 were preferentially transcribed in iron-chelated conditions, where gene expression levels were approximately 8- and 68-fold higher compared with iron-rich conditions, respectively; tonB3 was consistently transcribed at a low level under iron-repleted and iron-depleted conditions. Only the TonB2 system was required to utilize iron-binding proteins. The tonB123 mutant showed increased susceptibility to erythromycin and roxithromycin. In addition, all three tonB genes were involved in A. hydrophila virulence in zebrafish, and various phenotypes associated with environmental survival were changed with varying degrees in each tonB mutant. TonB2 plays a relatively major role in adhesion, motility, and biofilm formation, while TonB3 is more involved in the anti-phagocytosis of A. hydrophila. In each observed phenotype, no significant difference was found between the single- and double-deletion mutants, whereas the triple-deletion mutant exhibited the most serious defects, indicating that all three TonB systems of A. hydrophila coordinately complement one another. In conclusion, this study elucidates the importance of TonB in iron acquisition and virulence of A. hydrophila, which lays the foundation for future studies regarding the survival mechanisms of this bacterium in iron-restricted environments.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Maoda Pang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
27
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
28
|
Zhang Y, Wu R, Zhang Y, Wang G, Li K. Impact of nutrient addition on diversity and fate of fecal bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:717-726. [PMID: 29727839 DOI: 10.1016/j.scitotenv.2018.04.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Understanding the variations in the microorganisms associated with human fecal pollution in different types of water is necessary to manage water quality and predict human health risks. Using an Illumina sequencing method, we investigated variations in the fecal bacteria originating from fresh human feces and their decay trends in nutrient-supplemented water and natural river water. Nutrient addition contributed to the growth of heterotrophic bacteria like Comamonadaceae, Cytophagaceae, and Sphingobacteriaceae, but led to lower concentrations for Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae. This result suggests that the utilization of nutrients by high-activity bacteria may suppress other bacteria via depletion of the available nutrient resources. As we did not observe proliferation of Bacteroidales, Lactobacillales, Clostridiales, or Ruminococcaceae in either supplemented or river water, we consider these groups suitable for use as indicators to determine the level of fecal pollution. Moreover, we tested the persistence of Bacteroidales markers, including general-Bacteroidales marker GenBac and human-specific Bacteroidales marker qHS601, by quantitative PCR. We observed similar trends in the decay of the Bacteroidales markers GenBac and qHS601 in the nutrient-supplemented water and natural river water, and the high R2 values of the GenBac (R2nutrient-supplemented = 0.93, R2natural river = 0.81) and qHS601 (R2nutrient-supplemented = 0.93, R2natural river = 0.91) suggests they are a good fit for the first-order decay model. We also found stronger correlations between the markers and potential pathogenic anaerobes in the different types of water, demonstrating the validity of the use of GenBac and qHS601 from Bacteroidales for the identification of human-associated pollution sources.
Collapse
Affiliation(s)
- Yang Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China
| | - Renren Wu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China.
| | - Yimin Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Guang Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| | - Kaiming Li
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| |
Collapse
|
29
|
Ung P, Peng C, Yuk S, Ann V, Mith H, Tan R, Miyanaga K, Tanji Y. Fate of Escherichia coli in dialysis device exposed into sewage influent and activated sludge. JOURNAL OF WATER AND HEALTH 2018; 16:380-390. [PMID: 29952327 DOI: 10.2166/wh.2018.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tracing the fate of pathogens in environmental water, particularly in wastewater, with a suitable methodology is a demanding task. We investigated the fate of Escherichia coli K12 in sewage influent and activated sludge using a novel approach that involves the application of a biologically stable dialysis device. The ion concentrations inside the device could reach that of surrounding solution when it was incubated in phosphate buffered saline for 2 h. E. coli K12 above 107 CFU mL-1 (inoculated in distilled water, influent, activated sludge) were introduced into the device and incubated in influent and activated sludge for 10 days. Without indigenous microorganisms, E. coli K12 could survive even with the limited ions and nutrients concentrations in influent and activated sludge. E. coli K12 abundance in influent and activated sludge were reduced by 60 and 85%, respectively, after just 1 day. The establishment of microbial community in wastewater played an important role in reducing E. coli K12. Bacteriophage propagated in filtered influent or activated sludge when E. coli K12 was introduced, but not in raw influent or activated sludge. The methodology developed in this study can be applied in the actual environmental water to trace the fate of pathogens.
Collapse
Affiliation(s)
- Porsry Ung
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail: ; Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Chanthol Peng
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail: ; Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Sokunsreiroat Yuk
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail: ; Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Vannak Ann
- Department of Rural Engineering, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Hasika Mith
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Reasmey Tan
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail:
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail:
| |
Collapse
|
30
|
Landscape-Scale Factors Affecting the Prevalence of Escherichia coli in Surface Soil Include Land Cover Type, Edge Interactions, and Soil pH. Appl Environ Microbiol 2018. [PMID: 29523546 DOI: 10.1128/aem.02714-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is deposited into soil with feces and exhibits subsequent population decline with concomitant environmental selection. Environmentally persistent strains exhibit longer survival times during this selection process, and some strains have adapted to soil and sediments. A georeferenced collection of E. coli isolates was developed comprising 3,329 isolates from 1,428 soil samples that were collected from a landscape spanning the transition from the grasslands to the eastern deciduous forest biomes. The isolate collection and sample database were analyzed together to discover how land cover, site characteristics, and soil chemistry influence the prevalence of cultivable E. coli in surface soil. Soils from forests and pasture lands had equally high prevalences of E. coli Edge interactions were also observed among land cover types, with proximity to forests and pastures affecting the likelihood of E. coli isolation from surrounding soils. E. coli is thought to be more prevalent in sediments with high moisture, but this was observed only in grass- or crop-dominated lands in this study. Because differing E. coli phylogroups are thought to have differing ecology profiles, isolates were also typed using a novel single-nucleotide polymorphism (SNP) genotyping assay. Phylogroup B1 was the dominant group isolated from soil, as has been reported in all other surveys of environmental E. coli Although differences were small, isolates belonging to phylogroups B2 and D were associated with wooded areas, slightly more acidic soils, and soil sampling after rainfall events. In contrast, isolates from phylogroups B1 and E were associated with pasture lands.IMPORTANCE The consensus is that complex niches or life cycles should select for complex genomes in organisms. There is much unexplained biodiversity in E. coli, and its cycling through complex extrahost environments may be a cause. In order to understand the evolutionary processes that lead to adaptation for survival and growth in soil, an isolate collection that associates soil conditions and isolate genome sequences is required. An equally important question is whether traits selected in soil or other extrahost habitats can be transmitted to E. coli residing in hosts via gene flow. The new findings about the distribution of E. coli in soil at the landscape scale (i) enhance our capability to study how extrahost environments influence the evolution of E. coli and other bacteria, (ii) advance our knowledge of the environmental biology of this microbe, and (iii) further affirm the emerging scientific consensus that E. coli in waterways originates from nonpoint sources not associated with human activity or livestock farming.
Collapse
|
31
|
Zimmer-Faust AG, Thulsiraj V, Marambio-Jones C, Cao Y, Griffith JF, Holden PA, Jay JA. Effect of freshwater sediment characteristics on the persistence of fecal indicator bacteria and genetic markers within a Southern California watershed. WATER RESEARCH 2017; 119:1-11. [PMID: 28433878 DOI: 10.1016/j.watres.2017.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, the aging of culturable FIB and DNA representing genetic markers for Enterococcus spp. (ENT1A), general Bacteroides (GB3), and human-associated Bacteroides (HF183) in freshwater sediments was evaluated. Freshwater sediment was collected from four different sites within the upper and lower reach of the Topanga Creek Watershed and two additional comparator sites within the Santa Monica Bay, for a total of six sites. Untreated (ambient) and oven-dried (reduced microbiota) sediment was inoculated with 5% sewage and artificial freshwater. Microcosms were held for a 21-day period and sampled on day 0, 1, 3, 5, 7, 12, and 21. There were substantial differences in decay among the sediments tested, and decay rates were related to sediment characteristics. In the ambient sediments, smaller particle size and higher levels of organic matter and nutrients (nitrogen and phosphorus) were associated with increased persistence of the GB3 marker and culturable Escherichia coli (cEC) and enterococci (cENT). The HF183 marker exhibited decay rates of -0.50 to -0.96 day-1, which was 2-5 times faster in certain ambient sediments than decay of culturable FIB and the ENT1A and GB3 markers. The ENT1A and GB3 markers decayed at rates of between -0.07 and -0.28 and -0.10 to -0.44 day-1, and cEC and cENT decayed at rates of between -0.22 and -0.81 and -0.03 and -0.40 day-1, respectively. In the oven-dried sediments, increased persistence of all indicators and potential for limited growth of culturable FIB and the GB3 and ENT1A markers was observed. A simplified two-box model using the HF183 marker and cENT decay rates generated from the microcosm experiments was applied to two reaches within the Topanga Canyon watershed in order to provide context for the variability in decay rates observed. The model predicted lower ambient concentrations of enterococci in sediment in the upper (90 MPN g-1) versus lower Topanga watershed (530 MPN g-1) and low ambient levels of the HF183 marker (below the LLOQ) in sediments in both lower and upper watersheds. It is important to consider the variability in the persistence of genetic markers and FIB when evaluating indicators of fecal contamination in sediments, even within one watershed.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Vanessa Thulsiraj
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Catalina Marambio-Jones
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Yiping Cao
- Southern California Coastal Water Research Project, 3535 Harbor Blvd Ste 110, Costa Mesa, CA 92626, United States
| | - John F Griffith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd Ste 110, Costa Mesa, CA 92626, United States
| | - Patricia A Holden
- Earth Research Institute and Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106, United States
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
32
|
Banihashemi A, Van Dyke MI, Huck PM. Application of long amplicon propidium monoazide-PCR to assess the effects of temperature and background microbiota on pathogens in river water. JOURNAL OF WATER AND HEALTH 2017; 15:418-428. [PMID: 28598346 DOI: 10.2166/wh.2017.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The decay rates of enteric waterborne pathogens were evaluated following the introduction of Yersinia enterocolitica, Salmonella enterica, Campylobacter jejuni and Arcobacter butzleri into river water at different temperatures (5, 15 and 25°C) for a period of 28 days. To improve the accuracy of the results a molecular viability assay, long amplicon propidium monoazide-polymerase chain reaction (PMA-PCR), was used to quantify the viable cell concentration and results from PCR with and without PMA were compared. As well, the effect of background microbiota was assessed for Y. enterocolitica and S. enterica by inoculating cells into sterile and non-sterile river water. Cell persistence was improved by up to 4 log for Y. enterocolitica and 4.5 log for S. enterica in sterile river water compared to natural river water, showing that the autochthonous biological activity in river water can accelerate the die-off of introduced bacteria. Results also showed that low temperature significantly improved the persistence of all four target bacteria in non-sterile river water. There was a more rapid decline in cell concentration in samples with PMA pretreatment; therefore using PMA-PCR analysis can provide more reliable data on viable/active enteric bacteria in aquatic microcosms and allows for improved assessment of pathogens in the environment.
Collapse
Affiliation(s)
- Avid Banihashemi
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 E-mail:
| | - Michele I Van Dyke
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 E-mail:
| | - Peter M Huck
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 E-mail:
| |
Collapse
|