1
|
Fortune J, van de Kamp J, Holmes B, Bodrossy L, Gibb K, Kaestli M. Dynamics of nitrogen genes in intertidal sediments of Darwin Harbour and their connection to N-biogeochemistry. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106500. [PMID: 38626627 DOI: 10.1016/j.marenvres.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Microbial mediated nitrogen (N) transformation is subject to multiple controlling factors such as prevailing physical and chemical conditions, and little is known about these processes in sediments of wet-dry tropical macrotidal systems such as Darwin Harbour in North Australia. To understand key transformations, we assessed the association between the relative abundance of nitrogen cycling genes with trophic status, sediment partition and benthic nitrogen fluxes in Darwin Harbour. We analysed nitrogen cycling gene abundance using a functional gene microarray and quantitative PCRs targeting the denitrification gene (nosZ) and archaeal ammonia oxidation (AOA.1). We found a significant negative correlation between archaeal ammonia oxidation and silicate flux (P = 0.004), an indicator for diatom and benthic microalgal activity. It is suggested that the degradation of the diatomaceous organic matter generates localised anoxic conditions and inhibition of nitrification. Abundance of the nosZ gene was negatively correlated with nutrient load. The lowest nosZ gene levels were in hyper-eutrophic tidal creeks with anoxic conditions and increased levels of sulphide limiting the coupling of nitrification-denitrification (P = 0.016). Significantly higher levels of nosZ genes were measured in the surface (top 2 cm) compared to bulk sediment (top 10 cm) and there was a positive association with di-nitrogen flux (N2) in surface (P = 0.024) but not bulk sediment. This suggests that denitrifiers are most active in surficial sediment at the sediment-water interface. Elevated levels of nosZ genes also occurred in the sediments of tidal creek mouths and mudflats with these depositional zones combining the diffuse and seaward supply of nitrogen and carbon supporting denitrifiers. N-cycle molecular assays using surface sediments show promise as a rapid monitoring technique for impact assessment and measuring ecosystem function. This is particularly pertinent for tropical macrotidal systems where systematic monitoring is sparse and in many cases challenged by climatic extremes and remoteness.
Collapse
Affiliation(s)
- Julia Fortune
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia; Department of Environment, Parks and Water Security, Northern Territory Government, Australia.
| | | | | | | | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Tao Y, Zhang L, Su Z, Dai T, Zhang Y, Huang B, Wen D. Nitrogen-cycling gene pool shrunk by species interactions among denser bacterial and archaeal community stimulated by excess organic matter and total nitrogen in a eutrophic bay. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105397. [PMID: 34157564 DOI: 10.1016/j.marenvres.2021.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial densities, functional genes, and their responses to environment factors have been studied for years, but still a lot remains unknown about their interactions with each other. In this study, the abundances of 7 nitrogen cycling genes in the sediments from Hangzhou Bay were analyzed along with bacterial and archaeal 16S rRNA abundances as the biomarkers of their densities. The amount of organic matter (OM) and total nitrogen (TN) strongly positively correlated with each other and microbial densities, while total phosphate (TP) and ammonia-nitrogen (NH3-N) did not. Most studied genes were density suppressed, while nirS was density stable, and nosZ and hzo were density irrelevant. This suggests eutrophication could limit inorganic nitrogen cycle pathways and the removal of nitrogen in the sediment and emit more greenhouse gases. This study provides a new insight of microbial community structures, functions and their interactions in the sediments of eutrophic bays.
Collapse
Affiliation(s)
- Yile Tao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Institute of Environmental Engineering, ETH Zurich, Zurich, 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Liyue Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Chen Q, Fan J, Ming H, Su J, Wang Y, Wang B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China. MARINE POLLUTION BULLETIN 2020; 160:111621. [PMID: 32919123 DOI: 10.1016/j.marpolbul.2020.111621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The ability of denitrifying microorganisms to respond to different ecological pressures remains unknown, especially in marine sediments rich in various heavy metals. Here, gene abundance and transcriptional abundance of five functional denitrification genes (narG, nirK, nirS, norB, and nosZ) in Bohai Sea sediments were examined, and high-throughput Illumina sequencing was used to analyze the community structure of nirK and nirS denitrifying bacteria. The nirS- and nirK-type denitrifying bacteria were classified into different genera. The heavy metal content in sediments was negatively correlated with transcriptional abundance of denitrifying genes, and RNA: DNA ratio for each gene was highest in central Bohai Sea. These results indicated the distribution of nitrite reductase denitrifying bacterial communities was affected by depth, total nitrogen, total phosphorus and sediment grain size. Heavy metal contamination in sediment environment may negatively regulate the transcriptional abundance of denitrifying genes and cause geographical differences in the denitrifying bacterial community structure.
Collapse
Affiliation(s)
- Quanrui Chen
- National Marine Environmental Monitoring Center, Dalian 116023, China; Xiamen University, Xiamen 361000, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Hongxia Ming
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jie Su
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yantao Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China; Dalian Ocean University, Dalian 116000, China
| | - Bin Wang
- Dalian Ocean University, Dalian 116000, China
| |
Collapse
|
4
|
Denitrification characterization of dissolved oxygen microprofiles in lake surface sediment through analyzing abundance, expression, community composition and enzymatic activities of denitrifier functional genes. AMB Express 2019; 9:129. [PMID: 31428884 PMCID: PMC6702497 DOI: 10.1186/s13568-019-0855-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The responses of denitrifiers and denitrification ability to dissolved oxygen (DO) concent in different layers of surface lake sediments are still poorly understood. Here, the optimal denitrification condition was constructed based on response surface methodology (RSM) to analyze the denitrification characteristics of surface sediments. The aerobic zone (AEZ), hypoxic zone (HYZ), up-anoxic zone (ANZ-1) and sub-anoxic zone (ANZ-2) were partitioned based on the oxygen contents, and sediments were collected using a customized-designed sub-millimeter scale sampling device. Integrated real-time quantitative PCR, Illumina Miseq-based sequencing and denitrifying enzyme activities analysis revealed that denitrification characteristics varied among different DO layers. Among the four layers, the DNA abundance and RNA expression levels of norB, nirS and nosZ were the highest at the aerobic layer, hypoxic layer and up-axoic layer, respectively. The hypoxia and up-anaerobic layer were the active nitrogen removal layers, since these two layers displayed the highest DNA abundance, RNA expression level and enzyme activities of denitrification functional genes. The abundance of major denitrifying bacteria showed significant differences among layers, with Azoarcus, Pseudogulbenkiania and Rhizobium identified as the main nirS, nirK and nosZ-based denitrifiers. Pearson’s correlation revealed that the response of denitrifiers to environmental factors differed greatly among DO layers. Furthermore, napA showed higher DNA abundance and RNA expression level in the aerobic and hypoxic layers than anaerobic layers, indicating that aerobic denitrifiers might play important roles at these layers.
Collapse
|
5
|
Cho TJ, Rhee MS. Underrecognized niche of spore-forming bacilli as a nitrite-producer isolated from the processing lines and end-products of powdered infant formula. Food Microbiol 2018; 80:50-61. [PMID: 30704596 DOI: 10.1016/j.fm.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/20/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023]
Abstract
Although nitrite in powdered milk formula (PIF) is a recognized health risk for infants, the presence of nitrite in PIF has only been investigated as a chemical contaminant during the inspection of end-products. The risk posed by microbial sources of nitrite during the PIF manufacturing process has not been considered. This is the first study to report the taxonomy and physiological characteristics of nitrite-producing bacteria isolated from PIF processing environments. All isolates identified as nitrite-producers (133 out of 501 strains collected over four years) from work-in-process and end-products of PIF were spore-forming bacilli. Nitrite-producing metabolism under PIF processing conditions was found in not only thermophilic isolates (3 Bacillus, 60 Geobacillus from 63 strains; 100%) but also in mesophilic isolates (65 Bacillus, 1 Anoxybacillus from 70 strains; 65.7%). Geobacillus was the only highly heat-resistant sporeformer and vigorous nitrite-producer exhibiting dramatic increases in nitrite over short periods of incubation (a maximum value within 3 h). High conversions of nitrate to nitrite (up to 88.8%) was also observed, highlighting bacteria as a key source of nitrite in PIF processing lines. Further research into the diversity of metabolic activity observed in this study can facilitate specialized management of nitrite-producers in PIF processing lines.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
6
|
Qiao Y, Liu J, Zhao M, Zhang XH. Sediment Depth-Dependent Spatial Variations of Bacterial Communities in Mud Deposits of the Eastern China Marginal Seas. Front Microbiol 2018; 9:1128. [PMID: 29904376 PMCID: PMC5990616 DOI: 10.3389/fmicb.2018.01128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The mud sediments of the eastern China marginal seas (ECMS) are deposited under different hydrodynamic conditions with different organic matter sources. These events have been demonstrated to exert significant influences on microbial communities and biogeochemical processes in surface sediments. However, the extent to which such effects occur in subsurface microbial communities remains unclear. In this study, both horizontal and vertical (five sites, each for eight layers) distributions of bacterial abundance and community composition in mud deposits of the South Yellow Sea (SYS) and East China Sea (ECS) were investigated by quantitative PCR and Illumina sequencing of the 16S rRNA gene. Both bacterial abundance and diversity were higher in the ECS than in the SYS, and tended to be higher in up than in deep layers. Proteobacteria (JTB255 marine benthic group), Acidobacteria and Bacteroidetes were dominant in the upper layers, whereas Lactococcus, Pseudomonas, and Dehalococcoidia were enriched in the deep layers. The bacterial communities in surface and subsurface sediments showed different inter-taxa relationships, indicating contrasting co-occurrence patterns. The bacterial communities in the upper layer samples clustered in accordance with mud zones, whereas those in the deep layer samples of all sites tended to cluster together. TOC δ13C and TON δ15N significantly affected the bacterial community composition, suggesting that the abundance and composition of organic matter played critical roles in shaping of sedimentary bacterial communities. This study provides novel insights into the distribution of subsurface bacterial communities in mud deposits of the ECMS, and provides clues for understanding the biogeochemical cycles in this area.
Collapse
Affiliation(s)
- Yanlu Qiao
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiwen Liu
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Li F, Li M, Shi W, Li H, Sun Z, Gao Z. Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary, China. Can J Microbiol 2017; 63:708-718. [PMID: 28414921 DOI: 10.1139/cjm-2017-0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Denitrification is considered to be the critical process in removing reactive nitrogen in estuarine ecosystems. In the present study, the abundance, diversity, and community structure of nirK- and nirS-type denitrifiers were compared in sediments from the Yellow River estuary. Quantitative polymerase chain reaction showed that the 2 types of denitrifiers exhibited different distribution patterns among the samples, indicating their distinct habitat preference. Phylogenetic analysis revealed that most of the sequences from clusters I, III, IV, and V for nirK-type denitrifiers were dominant and were distributed at sites where dissolved oxygen (DO) was lower, and the sequences in the other clusters were dominant at sites with higher DO. However, there was no spatially heterogeneous distribution for the nirS-type denitrifier community. Canonical correlation analysis and correlation analysis demonstrated that the community structure of nirK was more responsive to environmental factors than was that of nirS. Inversely, the abundance and α-diversity targeting nirS gene could be more easily influenced by environmental parameters. These findings can extend our current knowledge about the distribution patterns of denitrifying bacteria and provide a basic theoretical reference for the dynamics of denitrifying communities in estuarine ecosystem of China.
Collapse
Affiliation(s)
- Fenge Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Mingcong Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wenchong Shi
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Han Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhongtao Sun
- b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zheng Gao
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China.,c State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|