1
|
Wang Z, Wang S, Yang H. Understanding the Pathogenesis, Biocontrol Mechanisms, and Factors Influencing Biocontrol Effectiveness for Soil-Borne Diseases in Panax Plants. Microorganisms 2024; 12:2278. [PMID: 39597667 PMCID: PMC11596276 DOI: 10.3390/microorganisms12112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Panax plants are known for their significant medicinal and economic value. Being perennial, they are prone to soil-borne diseases during cultivation. However, there has been limited research on the pathogenesis of soil-borne diseases and the diversity of pathogens. While biological control has gained attention for its efficacy and environmental benefits, the factors affecting its efficiency still need thorough evaluation. This review summarizes the influence of biotic factors, such as pathogens and hosts, and environmental factors on the occurrence of soil-borne diseases and pathogen diversity. Additionally, we synthesized bacterial, actinobacterial, and fungal diversity for the biocontrol of soil-borne diseases and their functional mechanisms. Moreover, the review delves into the factors influencing the efficacy of biocontrol, including microbial species, the inoculation method and inoculation volume, and inoculant composition. This article serves as a valuable resource for enhancing the efficiency of biological control and optimizing strategies for managing soil-borne diseases in Panax cultivation in the future.
Collapse
Affiliation(s)
| | | | - Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.W.); (S.W.)
| |
Collapse
|
2
|
Michalska-Smith M, Schlatter DC, Pombubpa N, Castle SC, Grandy AS, Borer ET, Seabloom EW, Kinkel LL. Plant community richness and foliar fungicides impact soil Streptomyces inhibition, resistance, and resource use phenotypes. Front Microbiol 2024; 15:1452534. [PMID: 39435438 PMCID: PMC11491370 DOI: 10.3389/fmicb.2024.1452534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024] Open
Abstract
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associated Streptomyces phenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find that Streptomyces phenotypes varied more between richness plots-with the Streptomyces from polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance-than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Plant Science Research Unit, St. Paul, MN, United States
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Sarah C. Castle
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - A. Stuart Grandy
- Center for Biogeochemistry and Microbial Ecology (Soil BioME), University of New Hampshire, Durham, NC, United States
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NC, United States
| | - Elizabeth T. Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Eric W. Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Linda L. Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Chen L, Liu Y. The Function of Root Exudates in the Root Colonization by Beneficial Soil Rhizobacteria. BIOLOGY 2024; 13:95. [PMID: 38392313 PMCID: PMC10886372 DOI: 10.3390/biology13020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Soil-beneficial microbes in the rhizosphere play important roles in improving plant growth and health. Root exudates play key roles in plant-microbe interactions and rhizobacterial colonization. This review describes the factors influencing the dynamic interactions between root exudates and the soil microbiome in the rhizosphere, including plant genotype, plant development, and environmental abiotic and biotic factors. We also discuss the roles of specific metabolic mechanisms, regulators, and signals of beneficial soil bacteria in terms of colonization ability. We highlight the latest research progress on the roles of root exudates in regulating beneficial rhizobacterial colonization. Organic acids, amino acids, sugars, sugar alcohols, flavonoids, phenolic compounds, volatiles, and other secondary metabolites are discussed in detail. Finally, we propose future research objectives that will help us better understand the role of root exudates in root colonization by rhizobacteria and promote the sustainable development of agriculture and forestry.
Collapse
Affiliation(s)
- Lin Chen
- National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Hansen ZA, Fulcher MR, Wornson N, Spawn-Lee SA, Johnson M, Song Z, Michalska-Smith M, May G, Seabloom EW, Borer ET, Kinkel LL. Soil nutrient amendment increases the potential for inter-kingdom resource competition among foliar endophytes. ISME COMMUNICATIONS 2024; 4:ycae130. [PMID: 39583585 PMCID: PMC11586052 DOI: 10.1093/ismeco/ycae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Foliar endophytes play crucial roles in large-scale ecosystem functions such as plant productivity, decomposition, and nutrient cycling. While the possible effects of environmental nutrient supply on the growth and carbon use of endophytic microbes have critical implications for these processes, these impacts are not fully understood. Here, we examined the effects of long-term elevated nitrogen, phosphorus, potassium, and micronutrient (NPKμ) supply on culturable bacterial and fungal foliar endophytes inhabiting the prairie grass Andropogon gerardii. We hypothesized that elevated soil nutrients alter the taxonomic composition and carbon use phenotypes of foliar endophytes and significantly shift the potential for resource competition among microbes within leaves. We observed changes in taxonomic composition and carbon use patterns of fungal, but not bacterial, endophytes of A. gerardii growing in NPKμ-amended versus ambient conditions. Fungal endophytes from NPKμ-amended plants had distinct carbon use profiles and demonstrated greater specialization across carbon sources compared to control plots. Resource niche overlap between bacterial and fungal endophytes also increased with plot nutrient supply, suggesting enhanced potential for inter-kingdom competition. Collectively, this work suggests that soil nutrient enrichment alters how fungal endophyte communities exist in the foliar environment, with potentially significant implications for broad-scale ecosystem function.
Collapse
Affiliation(s)
- Zoe A Hansen
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Michael R Fulcher
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD 21702, United States
| | - Nicholas Wornson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Seth A Spawn-Lee
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mitch Johnson
- Department of Horticulture, University of Minnesota, Saint Paul, MN 55108, United States
| | - Zewei Song
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Matthew Michalska-Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
5
|
Ndinga-Muniania C, Wornson N, Fulcher MR, Borer ET, Seabloom EW, Kinkel L, May G. Cryptic functional diversity within a grass mycobiome. PLoS One 2023; 18:e0287990. [PMID: 37471328 PMCID: PMC10358963 DOI: 10.1371/journal.pone.0287990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grass Andropogon gerardii and characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities of A. gerardii.
Collapse
Affiliation(s)
- Cedric Ndinga-Muniania
- Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicholas Wornson
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael R Fulcher
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Frederick, Maryland, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Linda Kinkel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
6
|
Jamwal VL, Rather IA, Ahmed S, Kumar A, Gandhi SG. Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of Coleus barbatus. Microorganisms 2023; 11:microorganisms11030705. [PMID: 36985280 PMCID: PMC10056624 DOI: 10.3390/microorganisms11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere.
Collapse
Affiliation(s)
- Vijay Lakshmi Jamwal
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sajad Ahmed
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Amit Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sumit G. Gandhi
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or
| |
Collapse
|
7
|
Naz B, Liu Z, Malard LA, Ali I, Song H, Wang Y, Li X, Usman M, Ali I, Liu K, An L, Xiao S, Chen S. Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Front Microbiol 2023; 14:1130321. [PMID: 37032907 PMCID: PMC10076557 DOI: 10.3389/fmicb.2023.1130321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
In Antarctic terrestrial ecosystems, dominant plant species (grasses and mosses) and soil physicochemical properties have a significant influence on soil microbial communities. However, the effects of dominant plants on bacterial antagonistic interactions in Antarctica remain unclear. We hypothesized that dominant plant species can affect bacterial antagonistic interactions directly and indirectly by inducing alterations in soil physicochemical properties and bacterial abundance. We collected soil samples from two typical dominant plant species; the Antarctic grass Deschampsia antarctica and the Antarctic moss Sanionia uncinata, as well as bulk soil sample, devoid of vegetation. We evaluated bacterial antagonistic interactions, focusing on species from the genera Actinomyces, Bacillus, and Pseudomonas. We also measured soil physicochemical properties and evaluated bacterial abundance and diversity using high-throughput sequencing. Our results suggested that Antarctic dominant plants significantly influenced bacterial antagonistic interactions compared to bulk soils. Using structural equation modelling (SEM), we compared and analyzed the direct effect of grasses and mosses on bacterial antagonistic interactions and the indirect effects through changes in edaphic properties and bacterial abundance. SEMs showed that (1) grasses and mosses had a significant direct influence on bacterial antagonistic interactions; (2) grasses had a strong influence on soil water content, pH, and abundances of Actinomyces and Pseudomonas and (3) mosses influenced bacterial antagonistic interactions by impacting abundances of Actinomyces, Bacillus, and Pseudomonas. This study highlights the role of dominant plants in modulating bacterial antagonistic interactions in Antarctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Beenish Naz
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lucie A. Malard
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Izhar Ali
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxian Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yajun Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Muhammad Usman
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ikram Ali
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sa Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Shuyan Chen,
| |
Collapse
|
8
|
Yan Y, Xie Y, Zhang J, Li R, Ali A, Cai Z, Huang X, Liu L. Effects of Reductive Soil Disinfestation Combined with Liquid-Readily Decomposable Compounds and Solid Plant Residues on the Bacterial Community and Functional Composition. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02139-w. [PMID: 36374338 DOI: 10.1007/s00248-022-02139-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Reductive soil disinfestation (RSD) incorporated with sole plant residues or liquid-readily decomposable compounds is an effective management strategy to improve soil health. However, the synthetic effects of RSD incorporated with liquid-readily decomposable compounds and solid plant residues on soil ecosystem services remain unclear. Field experiments were carried out to investigate the effects of untreated soil (CK), RSD incorporated with sawdust (SA), molasses (MO), and their combinations (SA + MO) on the bacterial community and functional composition. The results showed that RSD treatments significantly altered soil bacterial community structure compared to CK treatment. The bacterial community structure and composition in MO and SA + MO treatments were clustered compared to SA treatment. This was mainly attributed to the readily decomposable carbon sources in molasses having a stronger driving force to reshape the soil microbial community during the RSD process. Furthermore, the functional compositions, such as the disinfestation efficiency of F. oxysporum (96.4 - 99.1%), abundances of nitrogen functional genes, soil metabolic activity, and functional diversity, were significantly increased in all of the RSD treatments. The highest disinfestation efficiency and abundances of denitrification (nirS and nrfA) and nitrogen fixation (nifH) genes were observed in SA + MO treatment. Specifically, SA + MO treatment enriched more abundant beneficial genera, e.g., Oxobacter, Paenibacillus, Cohnella, Rummeliibacillus, and Streptomyces, which were significantly and positively linked to disinfestation efficiency, soil metabolic activity, and denitrification processes. Our results indicated that combining RSD practices with liquid-readily decomposable compounds and solid plant residues could effectively improve soil microbial community and functional composition.
Collapse
Affiliation(s)
- Yuanyuan Yan
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yi Xie
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Jingqing Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ruimin Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ahmad Ali
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Liu
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China.
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Wang Y, Ma L, Liu Z, Chen J, Song H, Wang J, Cui H, Yang Z, Xiao S, Liu K, An L, Chen S. Microbial interactions play an important role in regulating the effects of plant species on soil bacterial diversity. Front Microbiol 2022; 13:984200. [PMID: 36187969 PMCID: PMC9521175 DOI: 10.3389/fmicb.2022.984200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Plant species and microbial interactions have significant impacts on the diversity of bacterial communities. However, few studies have explored interactions among these factors, such the role of microbial interactions in regulating the effects of plant species on soil bacterial diversity. We assumed that plant species not only affect bacterial community diversity directly, but also influence bacterial community diversity indirectly through changing microbial interactions. Specifically, we collected soil samples associated with three different plant species, one evergreen shrub (Rhododendron simsii) and the other two deciduous shrubs (Dasiphora fruticosa and Salix oritrepha). Soil bacterial community composition and diversity were examined by high-throughput sequencing. Moreover, soil bacterial antagonistic interactions and soil edaphic characteristics were evaluated. We used structural equation modeling (SEM) to disentangle and compare the direct effect of different plant species on soil bacterial community diversity, and their indirect effects through influence on soil edaphic characteristics and microbial antagonistic interactions. The results showed that (1) Plant species effects on soil bacterial diversity were significant; (2) Plant species effects on soil microbial antagonistic interactions were significant; and (3) there was not only a significant direct plant species effect on bacterial diversity, but also a significant indirect effect on bacterial diversity through influence on microbial antagonistic interactions. Our study reveals the difference among plant species in their effects on soil microbial antagonistic interactions and highlights the vital role of microbial interactions on shaping soil microbial community diversity.
Collapse
Affiliation(s)
- Yajun Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lan Ma
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxian Song
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jiajia Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hanwen Cui
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Zi Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sa Xiao
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liu
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Qiu Z, Verma JP, Liu H, Wang J, Batista BD, Kaur S, de Araujo Pereira AP, Macdonald CA, Trivedi P, Weaver T, Conaty WC, Tissue DT, Singh BK. Response of the plant core microbiome to Fusarium oxysporum infection and identification of the pathobiome. Environ Microbiol 2022; 24:4652-4669. [PMID: 36059126 DOI: 10.1111/1462-2920.16194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jay Prakash Verma
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Bruna D Batista
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Simranjit Kaur
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Tim Weaver
- CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, Australia
| | - Warren C Conaty
- CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
11
|
Kudjordjie EN, Hooshmand K, Sapkota R, Darbani B, Fomsgaard IS, Nicolaisen M. Fusarium oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis thaliana Roots. Microbiol Spectr 2022; 10:e0122622. [PMID: 35766498 PMCID: PMC9430778 DOI: 10.1128/spectrum.01226-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
While the plant host metabolome drives distinct enrichment of detrimental and beneficial members of the microbiome, the mechanistic interomics relationships remain poorly understood. Here, we studied microbiome and metabolome profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. mathioli (FOM) inoculation, Landsberg erecta (Ler-0) being susceptible and Col-0 being resistant against FOM. By using bacterial and fungal amplicon sequencing and targeted metabolite analysis, we observed highly dynamic microbiome and metabolome profiles across FOM host progression, while being markedly different between FOM-inoculated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed more robust microbial networks in the resistant Col-0 compared to Ler-0 during FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in Ler-0 compared with Col-0 which could possibly be explained by missense variants of the Rfo3 and Rlp2 genes in Ler-0. Remarkably, we observed positive correlations in Ler-0 between most of the analyzed metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The glucosinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phenolic compounds were strongly correlating with the relative abundances of indicator and hub OTUs and thus could be active in structuring the A. thaliana root-associated microbiome. Our results highlight interactive effects of host plant defense and root-associated microbiota on Fusarium infection and progression. Our findings provide significant insights into plant interomic dynamics during pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control. IMPORTANCE Plant health and fitness are determined by plant-microbe interactions which are guided by host-synthesized metabolites. To understand the orchestration of this interaction, we analyzed the distinct interomic dynamics in resistant and susceptible Arabidopsis ecotypes across different time points after infection with Fusarium oxysporum (FOM). Our results revealed distinct microbial profiles and network resilience during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and further pinpointed specific microbe-metabolite associations in the Arabidopsis microbiome. These findings provide significant insights into plant interomics dynamics that are likely affecting fungal pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Behrooz Darbani
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Inge S. Fomsgaard
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| |
Collapse
|
12
|
Microbial eco-evolutionary dynamics in the plant rhizosphere. Curr Opin Microbiol 2022; 68:102153. [DOI: 10.1016/j.mib.2022.102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
|
13
|
Satterlee TR, Williams FN, Nadal M, Glenn AE, Lofton LW, Duke MV, Scheffler BE, Gold SE. Transcriptomic Response of Fusarium verticillioides to Variably Inhibitory Environmental Isolates of Streptomyces. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:894590. [PMID: 37746240 PMCID: PMC10512263 DOI: 10.3389/ffunb.2022.894590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 09/26/2023]
Abstract
Fusarium verticillioides is a mycotoxigenic fungus that is a threat to food and feed safety due to its common infection of maize, a global staple crop. A proposed strategy to combat this threat is the use of biological control bacteria that can inhibit the fungus and reduce mycotoxin contamination. In this study, the effect of multiple environmental isolates of Streptomyces on F. verticillioides was examined via transcriptome analysis. The Streptomyces strains ranged from inducing no visible response to dramatic growth inhibition. Transcriptionally, F. verticillioides responded proportionally to strain inhibition with either little to no transcript changes to thousands of genes being differentially expressed. Expression changes in multiple F. verticillioides putative secondary metabolite gene clusters was observed. Interestingly, genes involved in the fusaric acid gene cluster were suppressed by inhibitory strains of Streptomyces. A F. verticillioides beta-lactamase encoding gene (FVEG_13172) was found to be highly induced by specific inhibitory Streptomyces strains and its deletion increased visible response to those strains. This study demonstrates that F. verticillioides does not have an all or nothing response to bacteria it encounters but rather a measured response that is strain specific and proportional to the strength of inhibition.
Collapse
Affiliation(s)
- Timothy R. Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Felicia N. Williams
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Marina Nadal
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Lily W. Lofton
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| |
Collapse
|
14
|
Abstract
Coffee is one of the most important commodities in the global market. Of the 130 species of Coffea, only Coffea arabica and Coffea canephora are actually cultivated on a large scale. Despite the economic and social importance of coffee, little research has been done on the coffee tree microbiome. To assess the structure and function of the rhizosphere microbiome, we performed a deep shotgun metagenomic sequencing of the rhizospheres of five different species, C. arabica, C. canephora, Coffea stenophylla, Coffea racemosa, and Coffea liberica. Our findings indicated that C. arabica and C. stenophylla have different microbiomes, while no differences were detected between the other Coffea species. The core rhizosphere microbiome comprises genera such as Streptomyces, Mycobacterium, Bradyrhizobium, Burkholderia, Sphingomonas, Penicillium, Trichoderma, and Rhizophagus, several of which are potential plant-beneficial microbes. Streptomyces and mycorrhizal fungi dominate the microbial communities. The concentration of sucrose in the rhizosphere seems to influence fungal communities, and the concentration of caffeine/theobromine has little effect on the microbiome. We also detected a possible relationship between drought tolerance in Coffea and known growth-promoting microorganisms. The results provide important information to guide future studies of the coffee tree microbiome to improve plant production and health. IMPORTANCE The microbiome has been identified as a fundamental factor for the maintenance of plant health, helping plants to fight diseases and the deleterious effects of abiotic stresses. Despite this, in-depth studies of the microbiome have been limited to a few species, generally with a short life cycle, and perennial species have mostly been neglected. The coffee tree microbiome, on the other hand, has gained interest in recent years as Coffea trees are perennial tropical species of enormous importance, especially for developing countries. A better understanding of the microorganisms associated with coffee trees can help to mitigate the deleterious effects of climate change on the crop, improving plant health and making the system more sustainable.
Collapse
|
15
|
Michalska-Smith M, Song Z, Spawn-Lee SA, Hansen ZA, Johnson M, May G, Borer ET, Seabloom EW, Kinkel LL. Network structure of resource use and niche overlap within the endophytic microbiome. THE ISME JOURNAL 2022; 16:435-446. [PMID: 34413476 PMCID: PMC8776778 DOI: 10.1038/s41396-021-01080-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Endophytes often have dramatic effects on their host plants. Characterizing the relationships among members of these communities has focused on identifying the effects of single microbes on their host, but has generally overlooked interactions among the myriad microbes in natural communities as well as potential higher-order interactions. Network analyses offer a powerful means for characterizing patterns of interaction among microbial members of the phytobiome that may be crucial to mediating its assembly and function. We sampled twelve endophytic communities, comparing patterns of niche overlap between coexisting bacteria and fungi to evaluate the effect of nutrient supplementation on local and global competitive network structure. We found that, despite differences in the degree distribution, there were few significant differences in the global network structure of niche-overlap networks following persistent nutrient amendment. Likewise, we found idiosyncratic and weak evidence for higher-order interactions regardless of nutrient treatment. This work provides a first-time characterization of niche-overlap network structure in endophytic communities and serves as a framework for higher-resolution analyses of microbial interaction networks as a consequence and a cause of ecological variation in microbiome function.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA.
- Department of Plant Pathology, University of Minnesota, St Paul, MN, USA.
| | - Zewei Song
- Department of Plant Pathology, University of Minnesota, St Paul, MN, USA
| | - Seth A Spawn-Lee
- Department of Geography, University of Wisconsin, Madison, WI, USA
- Center for Sustainability and the Global Environment (SAGE), University of Wisconsin, Madison, WI, USA
| | - Zoe A Hansen
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mitch Johnson
- Department of Horticultural Science, University of Minnesota, St Paul, MN, USA
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
16
|
Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH. Back to our roots: exploring the role of root morphology as a mediator of beneficial plant-microbe interactions. Environ Microbiol 2022; 24:3264-3272. [PMID: 35106901 PMCID: PMC9543362 DOI: 10.1111/1462-2920.15926] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Plant breeding for belowground traits that have a positive impact on the rhizosphere microbiome is a promising strategy to sustainably improve crop yields. Root architecture and morphology are understudied plant breeding targets despite their potential to significantly shape microbial community structure and function in the rhizosphere. In this review, we explore the relationship between various root architectural and morphological traits and rhizosphere interactions, focusing on the potential of root diameter to impact the rhizosphere microbiome structure and function while discussing the potential biological and ecological mechanisms underpinning this process. In addition, we propose three future research avenues to drive this research area in an effort to unravel the effect of belowground traits on rhizosphere microbiology. This knowledge will pave the way for new plant breeding strategies that can be exploited for sustainable and high‐yielding crop cultivars.
Collapse
Affiliation(s)
- Courtney Horn Herms
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Rosanna Catherine Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Frederik Bak
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Dorte Bodin Dresbøll
- Section for Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 30, Taastrup, 2630, Denmark
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
17
|
Li P, Liu M, Li G, Liu K, Liu T, Wu M, Saleem M, Li Z. Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by Ralstonia. Environ Microbiol 2021; 23:5992-6003. [PMID: 34347357 DOI: 10.1111/1462-2920.15696] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Soil disease-suppressiveness depends on complex interactions among pathogens, native microbiota, and physicochemical properties, while these interactions remain understudied. Comparing field and microcosm experiments, we investigated the significance of these interactions in disease emergence or suppression using structural equation modelling (SEM) and receiver operating characteristic curve (ROC) analyses. We observed significant differences in the relative abundance of pathogenic and beneficial microbes, alpha and beta diversity indices between disease-conducive and -suppressive rhizosphere soils. The pathogenic (Ralstonia) and beneficial (Bacillus) taxa dominated disease-conducive and -suppressive rhizosphere soils, respectively. Moreover, the co-occurrences of Ralstonia with native microorganisms were positive and negative in the disease-conducive and -suppressive soils, respectively. These results suggest the supportive (Rudaea) and suppressive (Enterobacter, Bacillus) role of indigenous microbes in the invasion of soil and plant systems by Ralstonia. The SEM and ROC analysis predicted that Ralstonia invaded rhizospheric microbial networks and caused peanut wilt under high than low soil phosphorus conditions. Our results suggest the importance of soil phosphorus availability in altering the microbial interactions, thus leading to soil invasion by Ralstonia. Thus, we conclude by saying that feeding soil with high amounts of available phosphorus could deplete plant-beneficial microbes and increase the pathobiome abundance that may compromise plant health.
Collapse
Affiliation(s)
- Pengfa Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianshun Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Dibner RR, Weaver AM, Brock MT, Custer GF, Morrison HG, Maignien L, Weinig C. Time outweighs the effect of host developmental stage on microbial community composition. FEMS Microbiol Ecol 2021; 97:6321163. [PMID: 34259857 DOI: 10.1093/femsec/fiab102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Thousands of microbial taxa in the soil form symbioses with host plants, and due to their contribution to plant performance, these microbes are often considered an extension of the host genome. Given microbial effects on host performance, it is important to understand factors that govern microbial community assembly. Host developmental stage could affect rhizosphere microbial diversity while, alternatively, microbial assemblages could change simply as a consequence of time and the opportunity for microbial succession. Previous studies suggest that rhizosphere microbial assemblages shift across plant developmental stages, but time since germination is confounded with developmental stage. We asked how elapsed time and potential microbial succession relative to host development affected microbial diversity in the rhizosphere using monogenic flowering-time mutants of Arabidopsis thaliana. Under our experimental design, different developmental stages were present among host genotypes after the same amount of time following germination, e.g. at 76 days following germination some host genotypes were flowering while others were fruiting or senescing. We found that elapsed time was a strong predictor of microbial diversity whereas there were few differences among developmental stages. Our results support the idea that time and, likely, microbial succession more strongly affect microbial community assembly than host developmental stage.
Collapse
Affiliation(s)
- Reilly R Dibner
- University of Wyoming, Botany, USA; University of Wyoming, EPSCoR, USA
| | - A Monique Weaver
- The University of Iowa Roy J and Lucille A Carver College of Medicine, Molecular Otolaryngology and Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, USA; The University of Iowa, Interdisciplinary PhD Program in Genetics, USA
| | | | - Gordon F Custer
- University of Wyoming, Department of Ecosystem Science and Management, USA; University of Wyoming, Program in Ecology, USA
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, USA
| | - Lois Maignien
- UBO, CNRS, IFREMER, France; Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, USA
| | - Cynthia Weinig
- University of Wyoming, Department of Botany, USA; University of Wyoming, Program in Ecology, USA; University of Wyoming, Department of Molecular Biology, USA
| |
Collapse
|
19
|
Gieske MF, Kinkel LL. Long-term nitrogen addition in maize monocultures reduces in vitro inhibition of actinomycete standards by soil-borne actinomycetes. FEMS Microbiol Ecol 2021; 96:5898669. [PMID: 32857848 DOI: 10.1093/femsec/fiaa181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Management of soil microbial communities for enhanced crop disease suppression is an attractive approach to biocontrol, but the effects of agricultural practices on the disease-suppressive potential of the soil microbial community remain unknown. We investigated the effects of long-term nitrogen addition (103 kg ha-1 nitrogen as urea vs. no fertilizer) and crop residue incorporation vs. removal on in vitro antibiotic inhibitory capacities of actinomycetes from 57-year maize (Zea mays L.) monocultures in southeastern Minnesota. We hypothesized that both nitrogen and crop residue addition would increase inhibitor frequencies by increasing microbial population densities and thus increasing the importance of competitive interactions among microbes to their fitness. We found that although soil carbon and nitrogen and microbial densities (actinomycete and total colony-forming units) tended to be greater with nitrogen fertilizer, the frequency of in vitro inhibitory phenotypes among culturable actinomycetes in fertilized plots was approximately half that in non-fertilized plots. Residue incorporation had little to no effect on soil chemistry, microbial density and inhibitor frequency. These results suggest that density-mediated processes alone cannot explain the effects of amendments on inhibitor frequencies. Fitness costs and benefits of inhibitory phenotypes may vary over time and may depend on the type of resource amendment.
Collapse
Affiliation(s)
- Miriam F Gieske
- Division of Science and Mathematics, University of Minnesota Morris, 600 East 4th St, Morris MN 56267, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| |
Collapse
|
20
|
Higgins SA, Panke-Buisse K, Buckley DH. The biogeography of Streptomyces in New Zealand enabled by high-throughput sequencing of genus-specific rpoB amplicons. Environ Microbiol 2020; 23:1452-1468. [PMID: 33283920 DOI: 10.1111/1462-2920.15350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
We evaluated Streptomyces biogeography in soils along a 1200 km latitudinal transect across New Zealand (NZ). Streptomyces diversity was examined using high-throughput sequencing of rpoB amplicons generated with a Streptomyces specific primer set. We detected 1287 Streptomyces rpoB operational taxonomic units (OTUs) with 159 ± 92 (average ± SD) rpoB OTUs per site. Only 12% (n = 149) of these OTUs matched rpoB sequences from cultured specimens (99% nucleotide identity cutoff). Streptomyces phylogenetic diversity (Faith's PD) was correlated with soil pH, mean annual temperature and plant community richness (Spearman's r: 0.77, 0.64 and -0.79, respectively; P < 0.05), but not with latitude. In addition, soil pH and plant community richness both explained significant variation in Streptomyces beta diversity. Streptomyces communities exhibited both high dissimilarity and strong dominance of one or a few species at each site. Taken together, these results suggest that dispersal limitation due to competitive interactions limits the colonization success of spores that relocate to new sites. Cultivated Streptomyces isolates represent a major source of clinically useful antibiotics, but only a small fraction of extant diversity within the genus have been identified and most species of Streptomyces have yet to be described.
Collapse
Affiliation(s)
- S A Higgins
- School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.,Boyce Thompson Institute, Ithaca, NY, USA
| | - K Panke-Buisse
- School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.,USDA Agricultural Research Service, Madison, WI, USA
| | | |
Collapse
|
21
|
Ma A, Zhang X, Jiang K, Zhao C, Liu J, Wu M, Wang Y, Wang M, Li J, Xu S. Phylogenetic and Physiological Diversity of Cultivable Actinomycetes Isolated From Alpine Habitats on the Qinghai-Tibetan Plateau. Front Microbiol 2020; 11:555351. [PMID: 33117304 PMCID: PMC7566193 DOI: 10.3389/fmicb.2020.555351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Actinomycetes in extreme alpine habitat have attracted much attention due to their unique physiological activities and functions. However, little is known about their ecological distribution and diversity. Here, we explored the phylogenetic relationship and physiological heterogeneity of cultivable actinomycetes from near-root soils of different plant communities in the Laohu Ditch (2200 - 4200 m) and Gaize County area (5018 - 5130 m) on the Qinghai-Tibetan Plateau. A total of 128 actinomycete isolates were obtained, 16S rDNA-sequenced and examined for antimicrobial activities and organic acid, H2S, diffusible pigments, various extracellular enzymes production. Seventy three isolates of the total seventy eight isolates from the Laohu Ditch, frequently isolated from 2200 to 4200 m, were closely related to Streptomyces spp. according to the 16S rDNA sequencing, while four isolates within the genus Nocardia spp. were found at 2200, 2800, and 3800 m. In addition, one potential novel isolate with 92% sequence similarity to its nearest match Micromonospora saelicesensis from the GenBank database, was obtained at 2200 m. From the Gaize County area, fifty Streptomyces isolates varied in diversity at different sites from 5018 to 5130 m. The investigation of phenotypic properties of 128 isolates showed that 94.5, 78.9, 68, 64.8, 53, 51.6, 50, 36.7, 31.2, and 22.7% of the total isolates produced catalase, lipase 2, urease, protease, H2S, lipase 3, amylase, lipase 1, diffusible pigment and organic acid, respectively. The antimicrobial assays of the total isolates revealed that 5, 28, 19, and 2 isolates from Streptomyces spp. exhibited antimicrobial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa, respectively. This study intends to bring helpful insights in the exploitation and utilization of alpine actinomycetes for novel bioactive compounds discovery.
Collapse
Affiliation(s)
- Aiai Ma
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, China
| | - Xinfang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kan Jiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Changming Zhao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Junlin Liu
- Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, China
| | - Mengdan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingming Wang
- Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, China
| | - Jinhui Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shijian Xu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Afkhami ME, Almeida BK, Hernandez DJ, Kiesewetter KN, Revillini DP. Tripartite mutualisms as models for understanding plant-microbial interactions. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:28-36. [PMID: 32247158 DOI: 10.1016/j.pbi.2020.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
All plants host diverse microbial assemblages that shape plant health, productivity, and function. While some microbial effects are attributable to particular symbionts, interactions among plant-associated microbes can nonadditively affect plant fitness and traits in ways that cannot be predicted from pairwise interactions. Recent research into tripartite plant-microbe mutualisms has provided crucial insight into this nonadditivity and the mechanisms underlying plant interactions with multiple microbes. Here, we discuss how interactions among microbial mutualists affect plant performance, highlight consequences of biotic and abiotic context-dependency for nonadditive outcomes, and summarize burgeoning efforts to determine the molecular bases of how plants regulate establishment, resource exchange, and maintenance of tripartite interactions. We conclude with four goals for future tripartite studies that will advance our overall understanding of complex plant-microbial interactions.
Collapse
Affiliation(s)
- Michelle E Afkhami
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA.
| | - Brianna K Almeida
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA
| | | | | | | |
Collapse
|
23
|
Otto-Hanson LK, Kinkel LL. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats. MICROBIAL ECOLOGY 2020; 79:694-705. [PMID: 31656973 DOI: 10.1007/s00248-019-01443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Streptomyces spp. perform vital roles in natural and agricultural soil ecosystems including in decomposition and nutrient cycling, promotion of plant growth and fitness, and plant disease suppression. Streptomyces densities can vary across the landscape, and inhibitory phenotypes are often a result of selection mediated by microbial competitive interactions in soil communities. Diverse environmental factors, including those specific to habitat, are likely to determine microbial densities in the soil and the outcomes of microbial species interactions. Here, we characterized indigenous Streptomyces densities and inhibitory phenotypes from soil samples (n = 82) collected in 6 distinct habitats across the Cedar Creek Ecosystem Science Reserve (CCESR; agricultural, prairie, savanna, wetland, wet-woodland, and forest). Significant variation in Streptomyces density and the frequency of antagonistic Streptomyces were observed among habitats. There was also significant variation in soil chemical properties among habitats, including percent carbon, percent nitrogen, available phosphorus, extractable potassium, and pH. Density and frequency of antagonists were significantly correlated with one or more environmental parameters across all habitats, though relationships with some parameters differed among habitats. In addition, we found that habitat rather than spatial proximity was a better predictor of variation in Streptomyces density and inhibitory phenotypes. Moreover, habitats least conducive for Streptomyces growth and proliferation, as determined by population density, had increased frequencies of inhibitory phenotypes. Identifying environmental parameters that structure variation in density and frequency of antagonistic Streptomyces can provide insight for determining factors that mediate selection for inhibitory phenotypes across the landscape.
Collapse
Affiliation(s)
- L K Otto-Hanson
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA.
| | - L L Kinkel
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA
| |
Collapse
|
24
|
Dundore-Arias JP, Castle SC, Felice L, Dill-Macky R, Kinkel LL. Carbon Amendments Influence Composition and Functional Capacities of Indigenous Soil Microbiomes. Front Mol Biosci 2020; 6:151. [PMID: 31993439 PMCID: PMC6964746 DOI: 10.3389/fmolb.2019.00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
Soil nutrient amendments are recognized for their potential to improve microbial activity and biomass in the soil. However, the specific selective impacts of carbon amendments on indigenous microbiomes and their metabolic functions in agricultural soils remain poorly understood. We investigated the changes in soil chemical characteristics and phenotypes of Streptomyces communities following carbon amendments to soil. Mesocosms were established with soil from two field sites varying in soil organic matter content (low organic matter, LOM; high organic matter, HOM), that were amended at intervals over nine months with low or high dose solutions of glucose, fructose, malic acid, a mixture of these compounds, or water only (non-amended control). Significant shifts in soil chemical characteristics and antibiotic inhibitory capacities of indigenous Streptomyces were observed in response to carbon additions. All high dose carbon amendments consistently increased soil total carbon, while amendments with malic acid decreased soil pH. In LOM soils, higher frequencies of Streptomyces inhibitory phenotypes of the two plant pathogens, Streptomyces scabies and Fusarium oxysporum, were observed in response to soil carbon additions. Additionally, to determine if shifts in Streptomyces functional characteristics correlated with microbiome composition, we investigated whether shifts in functional characteristics of soil Streptomyces correlated with composition of soil bacterial communities, analyzed using 16S rRNA gene sequencing. Regardless of dose, community composition differed significantly among carbon-amended and non-amended soils from both sites. Carbon type and dose had significant effects on bacterial community composition in both LOM and HOM soils. Relationships among microbial community richness (observed species number), diversity, and soil characteristics varied among soils from different sites. These results suggest that manipulation of soil resource availability has the potential to selectively modify the functional capacities of soil microbiomes, and specifically to enhance pathogen inhibitory populations of high value to agricultural systems.
Collapse
Affiliation(s)
- José Pablo Dundore-Arias
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, CA, United States.,Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Sarah C Castle
- Plant Science Research Unit, USDA-ARS, Saint Paul, MN, United States
| | - Laura Felice
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
25
|
Heinsch SC, Hsu SY, Otto-Hanson L, Kinkel L, Smanski MJ. Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils. BMC Genomics 2019; 20:994. [PMID: 31856709 PMCID: PMC6923854 DOI: 10.1186/s12864-019-6279-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. Results Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93–23, Streptomyces sp. 3211–3, and Streptomyces sp. S3–4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp. We compared these newly sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. Conclusions Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of biosynthetic gene clusters. The strong sequence similarity between GS93–23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.
Collapse
Affiliation(s)
- Stephen C Heinsch
- Bioinformatics and Computational Biology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Szu-Yi Hsu
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Lindsey Otto-Hanson
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,Department of Plant Pathology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Linda Kinkel
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,Department of Plant Pathology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Michael J Smanski
- Bioinformatics and Computational Biology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA. .,BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA. .,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
26
|
Critical Assessment of Streptomyces spp. Able to Control Toxigenic Fusaria in Cereals: A Literature and Patent Review. Int J Mol Sci 2019; 20:ijms20246119. [PMID: 31817248 PMCID: PMC6941072 DOI: 10.3390/ijms20246119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022] Open
Abstract
Mycotoxins produced by Fusarium species on cereals represent a major concern for food safety worldwide. Fusarium toxins that are currently under regulation for their content in food include trichothecenes, fumonisins, and zearalenone. Biological control of Fusarium spp. has been widely explored with the aim of limiting disease occurrence, but few efforts have focused so far on limiting toxin accumulation in grains. The bacterial genus Streptomyces is responsible for the production of numerous drug molecules and represents a huge resource for the discovery of new molecules. Streptomyces spp. are also efficient plant colonizers and able to employ different mechanisms of control against toxigenic fungi on cereals. This review describes the outcomes of research using Streptomyces strains and/or their derived molecules to limit toxin production and/or contamination of Fusarium species in cereals. Both the scientific and patent literature were analyzed, starting from the year 2000, and we highlight promising results as well as the current pitfalls and limitations of this approach.
Collapse
|
27
|
Oberhofer M, Hess J, Leutgeb M, Gössnitzer F, Rattei T, Wawrosch C, Zotchev SB. Exploring Actinobacteria Associated With Rhizosphere and Endosphere of the Native Alpine Medicinal Plant Leontopodium nivale Subspecies alpinum. Front Microbiol 2019; 10:2531. [PMID: 31781058 PMCID: PMC6857621 DOI: 10.3389/fmicb.2019.02531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/21/2019] [Indexed: 11/24/2022] Open
Abstract
The rhizosphere of plants is enriched in nutrients facilitating growth of microorganisms, some of which are recruited as endophytes. Endophytes, especially Actinobacteria, are known to produce a plethora of bioactive compounds. We hypothesized that Leontopodium nivale subsp. alpinum (Edelweiss), a rare alpine medicinal plant, may serve as yet untapped source for uncommon Actinobacteria associated with this plant. Rhizosphere soil of native Alpine plants was used, after physical and chemical pre-treatments, for isolating Actinobacteria. Isolates were selected based on morphology and identified by 16S rRNA gene-based barcoding. Resulting 77 Actinobacteria isolates represented the genera Actinokineospora, Kitasatospora, Asanoa, Microbacterium, Micromonospora, Micrococcus, Mycobacterium, Nocardia, and Streptomyces. In parallel, Edelweiss plants from the same location were surface-sterilized, separated into leaves, roots, rhizomes, and inflorescence and pooled within tissues before genomic DNA extraction. Metagenomic 16S rRNA gene amplicons confirmed large numbers of actinobacterial operational taxonomic units (OTUs) descending in diversity from roots to rhizomes, leaves and inflorescences. These metagenomic data, when queried with isolate sequences, revealed an overlap between the two datasets, suggesting recruitment of soil bacteria by the plant. Moreover, this study uncovered a profound diversity of uncultured Actinobacteria from Rubrobacteridae, Thermoleophilales, Acidimicrobiales and unclassified Actinobacteria specifically in belowground tissues, which may be exploited by a targeted isolation approach in the future.
Collapse
Affiliation(s)
- Martina Oberhofer
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Jaqueline Hess
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Marlene Leutgeb
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Florian Gössnitzer
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Christoph Wawrosch
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Sergey B. Zotchev
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Schlatter DC, Paul NC, Shah DH, Schillinger WF, Bary AI, Sharratt B, Paulitz TC. Biosolids and Tillage Practices Influence Soil Bacterial Communities in Dryland Wheat. MICROBIAL ECOLOGY 2019; 78:737-752. [PMID: 30796467 DOI: 10.1007/s00248-019-01339-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Class B biosolids are used in dryland wheat (Triticum aestivum L.) production in eastern Washington as a source of nutrients and to increase soil organic matter, but little is known about their effects on bacterial communities and potential for harboring human pathogens. Moreover, conservation tillage is promoted to reduce erosion and soil degradation. We explored the impacts of biosolids or synthetic fertilizer in combination with traditional (conventional) or conservation tillage on soil bacterial communities. Bacterial communities were characterized from fresh biosolids, biosolid aggregates embedded in soil, and soil after a second application of biosolids using high-throughput amplicon sequencing. Biosolid application significantly affected bacterial communities, even 4 years after their application. Bacteria in the families Clostridiaceae, Norcardiaceae, Anaerolinaceae, Dietziaceae, and Planococcaceae were more abundant in fresh biosolids, biosolid aggregates, and soils treated with biosolids than in synthetically fertilized soils. Taxa identified as Turcibacter, Dietzia, Clostridiaceae, and Anaerolineaceae were highly abundant in biosolid aggregates in the soil and likely originated from the biosolids. In contrast, Oxalobacteriaceae, Streptomyceteaceae, Janthinobacterium, Pseudomonas, Kribbella, and Bacillus were rare in the fresh biosolids, but relatively abundant in biosolid aggregates in the soil, and probably originated from the soil to colonize the substrate. However, tillage had relatively minor effects on bacterial communities, with only a small number of taxa differing in relative abundance between traditional and conventional tillage. Although biosolid-associated bacteria persisted in soil, potentially pathogenic taxa were extremely rare and no toxin genes for key groups (Salmonella, Clostridium) were detectable, suggesting that although fecal contamination was apparent via indicator taxa, pathogen populations had declined to low levels. Thus, biosolid amendments had profound effects on soil bacterial communities both by introducing gut- or digester-derived bacteria and by enriching potentially beneficial indigenous soil populations.
Collapse
Affiliation(s)
- Daniel C Schlatter
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - William F Schillinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andy I Bary
- Puyallup Research and Extension Center, Washington State University, Puyallup, WA, 98371, USA
| | - Brenton Sharratt
- Northwest Sustainable Agroecosystems Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Timothy C Paulitz
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA.
| |
Collapse
|
29
|
Essarioui A, LeBlanc N, Otto-Hanson L, Schlatter DC, Kistler HC, Kinkel LL. Inhibitory and nutrient use phenotypes among coexisting Fusarium and Streptomyces populations suggest local coevolutionary interactions in soil. Environ Microbiol 2019; 22:976-985. [PMID: 31424591 DOI: 10.1111/1462-2920.14782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/22/2019] [Accepted: 08/14/2019] [Indexed: 11/29/2022]
Abstract
Bacteria and fungi are key components of virtually all natural habitats, yet the significance of fungal-bacterial inhibitory interactions for the ecological and evolutionary dynamics of specific bacterial and fungal populations in natural habitats have been overlooked. More specifically, despite the broad consensus that antibiotics play a key role in providing a fitness advantage to competing microbes, the significance of antibiotic production in mediating cross-kingdom coevolutionary interactions has received relatively little attention. Here, we characterize reciprocal inhibition among Streptomyces and Fusarium populations from prairie soil, and explore antibiotic inhibition in relation to niche overlap among sympatric and allopatric populations. We found evidence for local adaptation between Fusarium and Streptomyces populations as indicated by significantly greater inhibition among sympatric than allopatric populations. Additionally, for both taxa, there was a significant positive correlation between the strength of inhibition against the other taxon and the intensity of resource competition from that taxon among sympatric but not allopatric populations. These data suggest that coevolutionary antagonistic interactions between Fusarium and Streptomyces are driven by resource competition, and support the hypothesis that antibiotics act as weapons in mediating bacterial-fungal interactions in soil.
Collapse
Affiliation(s)
- Adil Essarioui
- National Institute of Agronomic Research, Regional Center of Errachidia, Errachidia, Morocco.,Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas LeBlanc
- Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsey Otto-Hanson
- Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Harold Corby Kistler
- USDA-ARS Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Linda L Kinkel
- Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Dundore-Arias JP, Felice L, Dill-Macky R, Kinkel LL. Carbon Amendments Induce Shifts in Nutrient Use, Inhibitory, and Resistance Phenotypes Among Soilborne Streptomyces. Front Microbiol 2019; 10:498. [PMID: 30972036 PMCID: PMC6445949 DOI: 10.3389/fmicb.2019.00498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Carbon amendments are used in agriculture for increasing microbial activity and biomass in the soil. Changes in microbial community composition and function in response to carbon additions to soil have been associated with biological suppression of soilborne diseases. However, the specific selective impacts of carbon amendments on microbial antagonistic populations are not well understood. We investigated the effects of soil carbon amendments on nutrient use profiles, and antibiotic inhibitory and resistance phenotypes of Streptomyces populations from agricultural soils. Soil mesocosms were amended at intervals over 9 months with low or high dose solutions of glucose, fructose, a complex amendment, or water only (non-amendment control). Over 130 Streptomyces isolates were collected from amended and non-amended mesocosm soils, and nutrient utilization profiles on 95 different carbon substrates were determined. A subset of isolates (n = 40) was characterized for their ability to inhibit or resist one another. Carbon amendments resulted in Streptomyces populations with greater niche widths, and increased growth efficiencies as compared with Streptomyces in non-amended soils. Shifts in microbial nutrient use and growth capacities coincided with positive selection for Streptomyces antibiotic inhibitory phenotypes in carbon-amended soils, resulting in populations dominated by phenotypes that combine both antagonistic capacities and a generalist lifestyle. Carbon inputs resulted in populations that on average were more resistant to one another than populations in non-amended soils. Shifts in metabolic capacities and antagonistic activity indicate that carbon additions to soil may selectively enrich Streptomyces antagonistic phenotypes, that are rare under non-nutrient selection, but can inhibit more intensively nutrient competitors, and resist phenotypes with similar functional traits. These results shed light on the potential for using carbon amendments to strategically mediate soil microbial community assembly, and contribute to the establishment of pathogen-suppressive soils in agricultural systems.
Collapse
Affiliation(s)
| | - Laura Felice
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|