1
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Abate R, Oon YS, Oon YL, Bi Y. Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications. Heliyon 2024; 10:e31170. [PMID: 38813150 PMCID: PMC11133723 DOI: 10.1016/j.heliyon.2024.e31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Microalgae and bacteria, known for their resilience, rapid growth, and proximate ecological partnerships, play fundamental roles in environmental and biotechnological advancements. This comprehensive review explores the synergistic interactions between microalgae and bacteria as an innovative approach to address some of the most pressing environmental issues and the demands of clean and renewable freshwater and energy sources. Studies indicated that microalgae-bacteria consortia can considerably enhance the output of biotechnological applications; for instance, various reports showed during wastewater treatment the COD removal efficiency increased by 40%-90.5 % due to microalgae-bacteria consortia, suggesting its great potential amenability in biotechnology. This review critically synthesizes research works on the microalgae and bacteria nexus applied in the advancements of renewable energy generation, with a special focus on biohydrogen, reclamation of wastewater and desalination processes. The mechanisms of underlying interactions, the environmental factors influencing consortia performance, and the challenges and benefits of employing these bio-complexes over traditional methods are also discussed in detail. This paper also evaluates the biotechnological applications of these microorganism consortia for the augmentation of biomass production and the synthesis of valuable biochemicals. Furthermore, the review sheds light on the integration of microalgae-bacteria systems in microbial fuel cells for concurrent energy production, waste treatment, and resource recovery. This review postulates microalgae-bacteria consortia as a sustainable and efficient solution for clean water and energy, providing insights into future research directions and the potential for industrial-scale applications.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
3
|
Wang T, Li D, Tian X, Huang G, He M, Wang C, Kumbhar AN, Woldemicael AG. Mitigating salinity stress through interactions between microalgae and different forms (free-living & alginate gel-encapsulated) of bacteria isolated from estuarine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171909. [PMID: 38522526 DOI: 10.1016/j.scitotenv.2024.171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Salinity stress in estuarine environments poses a significant challenge for microalgal survival and proliferation. The interaction between microalgae and bacteria shows promise in alleviating the detrimental impacts of salinity stress on microalgae. Our study investigates this interaction by co-cultivating Chlorella sorokiniana, a freshwater microalga, with a marine growth-promoting bacterium Pseudomonas gessardii, both of which were isolated from estuary. In this study, bacteria were encapsulated using sodium alginate microspheres to establish an isolated co-culture system, preventing direct exposure between microalgae and bacteria. We evaluated microalgal responses to different salinities (5 PSU, 15 PSU) and interaction modes (free-living, gel-encapsulated), focusing on growth, photosynthesis, cellular metabolism, and extracellular polymeric substances (EPS) properties. High salinity inhibited microalgal proliferation, while gel-fixed interaction boosted Chlorella growth rate by 50.7 %. Both attached and free-living bacteria restored Chlorella's NPQ to normal levels under salt stress. Microalgae in the free-living interaction group exhibited a significantly lower respiratory rate compared to the pure algae group (-17.2 %). Increased salinity led to enhanced EPS polysaccharide secretion by microalgae, particularly in interaction groups (19.7 %). Both salt stress and interaction increased the proportion of aromatic proteins in microalgae's EPS, enhancing its stability by modulating EPS glycosidic bond C-O-C and protein vibrations. This alteration caused microalgal cells to aggregate, free-living bacteria co-culture group, and fixed co-culture group increasing by 427.5 %, 567.1 %, and 704.1 %, respectively. In gel-fixed bacteria groups, reduced neutral lipids don't accumulate starch instead, carbon redirects to cellular growth, aiding salt stress mitigation. These synergistic activities between salinity and bacterial interactions are vital in mitigating salinity stress, improving the resilience and growth of microalgae in saline conditions. Our research sheds light on the mechanisms of microalgal-bacterial interactions in coping with salt stress, offering insights into the response of estuarine microorganisms to global environmental changes and their ecological stability.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Li
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xin Tian
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guolin Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Ali Nawaz Kumbhar
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Abeselom Ghirmai Woldemicael
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Garciglia-Mercado C, Contreras CA, Choix FJ, de-Bashan LE, Gómez-Anduro GA, Palacios OA. Metabolic and physiological adaptations of microalgal growth-promoting bacterium Azospirillum brasilense growing under biogas atmosphere: a microarray-based transcriptome analysis. Arch Microbiol 2024; 206:173. [PMID: 38492040 DOI: 10.1007/s00203-024-03890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.
Collapse
Affiliation(s)
| | - Claudia A Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Francisco J Choix
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
- CONAHCYT-Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Luz E de-Bashan
- The Bashan Institute of Science, Auburn, AL, USA
- Departament of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico.
- The Bashan Institute of Science, Auburn, AL, USA.
| |
Collapse
|
5
|
Gonzalez-Gonzalez LM, de-Bashan LE. The Potential of Microalgae-Bacteria Consortia to Restore Degraded Soils. BIOLOGY 2023; 12:biology12050693. [PMID: 37237506 DOI: 10.3390/biology12050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Soil restoration is one of the biggest challenges of this century. Besides the negative impacts of climate change, the current increase in food demands has put severe pressure on soil resources, resulting in a significant area of degraded land worldwide. However, beneficial microorganisms, such as microalgae and plant growth-promoting bacteria, have an outstanding ability to restore soil health and fertility. In this mini-review, we summarize state-of-the-art knowledge on these microorganisms as amendments that are used to restore degraded and contaminated soils. Furthermore, the potential of microbial consortia to maximize beneficial effects on soil health and boost the production of plant-growth-promoting compounds within a mutualistic interaction is discussed.
Collapse
Affiliation(s)
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Avenida IPN 195, La Paz 23096, Mexico
| |
Collapse
|
6
|
Palacios OA, Espinoza-Hicks JC, Camacho-Dávila AA, López BR, de-Bashan LE. Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense : Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense. MICROBIAL ECOLOGY 2023; 85:1412-1422. [PMID: 35524818 DOI: 10.1007/s00248-022-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.
Collapse
Affiliation(s)
- Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Circuito Universitario S/N, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - José C Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Circuito Universitario S/N, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - Alejandro A Camacho-Dávila
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Circuito Universitario S/N, Chihuahua, México
| | - Blanca R López
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, B.C.S, Mexico
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA.
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, B.C.S, Mexico.
- Dept. of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Obtaining Bioproducts from the Studies of Signals and Interactions between Microalgae and Bacteria. Microorganisms 2022; 10:microorganisms10102029. [PMID: 36296305 PMCID: PMC9607603 DOI: 10.3390/microorganisms10102029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
The applications of microalgae biomass have been widely studied worldwide. The classical processes used in outdoor cultivations of microalgae, in closed or open photobioreactors, occur in the presence of bacteria. Understanding how communication between cells occurs through quorum sensing and evaluating co-cultures allows the production of microalgae and cyanobacteria to be positively impacted by bacteria, in order to guarantee safety and profitability in the production process. In addition, the definition of the effects that occur during an interaction, promotes insights to improve the production of biomolecules, and to develop innovative products. This review presents the interactions between microalgae and bacteria, including compounds exchanges and communication, and addresses the development of new pharmaceutical, cosmetic and food bioproducts from microalgae based on these evaluations, such as prebiotics, vegan skincare products, antimicrobial compounds, and culture media with animal free protein for producing vaccines and other biopharmaceutical products. The use of microalgae as raw biomass or in biotechnological platforms is in line with the fulfillment of the 2030 Agenda related to the Sustainable Development Goals (SDGs).
Collapse
|
8
|
Becerril-Espinosa A, Hernández-Herrera RM, Meza-Canales ID, Perez-Ramirez R, Rodríguez-Zaragoza FA, Méndez-Morán L, Sánchez-Hernández CV, Palmeros-Suárez PA, Palacios OA, Choix FJ, Juárez-Carrillo E, Lara-González MA, Hurtado-Oliva MÁ, Ocampo-Alvarez H. Habitat-adapted heterologous symbiont Salinispora arenicola promotes growth and alleviates salt stress in tomato crop plants. FRONTIERS IN PLANT SCIENCE 2022; 13:920881. [PMID: 36003821 PMCID: PMC9393590 DOI: 10.3389/fpls.2022.920881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.
Collapse
Affiliation(s)
- Amayaly Becerril-Espinosa
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosalba M. Hernández-Herrera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivan D. Meza-Canales
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto Transdisciplinar de Investigación y Servicios, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rodrigo Perez-Ramirez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabián A. Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lucila Méndez-Morán
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carla V. Sánchez-Hernández
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paola A. Palmeros-Suárez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oskar A. Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Francisco J. Choix
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Eduardo Juárez-Carrillo
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Martha A. Lara-González
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Héctor Ocampo-Alvarez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
9
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Cole N, Naidu R, Megharaj M. Extracellular Polymeric Substances Drive Symbiotic Interactions in Bacterial‒Microalgal Consortia. MICROBIAL ECOLOGY 2022; 83:596-607. [PMID: 34132846 DOI: 10.1007/s00248-021-01772-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp. IS3, all isolated from poultry slaughterhouse wastewater. The bacterium increased the specific growth rates of microalgal species significantly in the consortia by enhancing the uptake of nitrate (88‒99%) and phosphate (92‒95%) besides accumulating higher amounts of carbohydrates and proteins. The EPS obtained from exudates, collected from the bacterial or microalgal cultures, contained numerous phytohormones, vitamins, polysaccharides and amino acids that are likely involved in interspecies interactions. The addition of EPS obtained from V. paradoxus IS1 to the culture medium doubled the growth of both the microalgal strains. The EPS collected from T. obliquus IS2 significantly increased the growth of V. paradoxus IS1, but there was no apparent change in bacterial growth when it was cultured in the presence of EPS from Coelastrella sp. IS3. These observations indicate that the interaction between V. paradoxus IS1 and T. obliquus IS2 was mutualism, while commensalism was the interaction between the bacterial strain and Coelastrella sp. IS3. Our present findings thus, for the first time, unveil the EPS-induced symbiotic interactions among the partners involved in bacterial‒microalgal consortia.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Nicole Cole
- Analytical and Biomolecular Research Facility (ABRF), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
10
|
Barbosa-Nuñez JA, Palacios OA, de-Bashan LE, Snell-Castro R, Corona-González RI, Choix FJ. Active indole-3-acetic acid biosynthesis by the bacterium Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. J Appl Microbiol 2022; 132:3650-3663. [PMID: 35233885 DOI: 10.1111/jam.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study assessed, at the physiological and molecular levels, the effect of biogas on indole-3-acetic acid (IAA) biosynthesis by Azospirillum brasilense as well as the impact of this bacterium during CO2 fixation from biogas by Chlorella vulgaris and Scenedesmus obliquus. METHODS AND RESULTS IpdC gene expression, IAA production, and the growth of A. brasilense cultured under air (control) and biogas (treatment) were evaluated. The results demonstrated that A. brasilense had a better growth capacity and IAA production (105.7 ± 10.3 μg ml-1 ) when cultured under biogas composed of 25% CO2 + 75% methane (CH4 ) with respect to the control (72.4 ± 7.9 μg ml-1 ), although the ipdC gene expression level was low under the stressful condition generated by biogas. Moreover, this bacterium was able to induce a higher cell density and CO2 fixation rate from biogas by C. vulgaris (0.27 ± 0.08 g l-1 d-1 ) and S. obliquus (0.22 ± 0.08 g l-1 d-1 ). CONCLUSIONS This study demonstrated that A. brasilense has the capacity to grow and actively maintain its main microalgal growth-promoting mechanism when cultured under biogas and positively influence CO2 fixation from the biogas of C. vulgaris and S. obliquus. SIGNIFICANCE AND IMPACT OF THE STUDY These findings broaden research in the field of Azospirillum-microalga interactions and the prevalence of Azospirillum in environmental and ecological topics in addition to supporting the uses of plant growth-promoting bacteria to enhance biotechnological strategies for biogas upgrading.
Collapse
Affiliation(s)
- J A Barbosa-Nuñez
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - O A Palacios
- Facultad de Ciencias químicas, Universidad Autónoma de Chihuahua, Circuito interior S/N, Chihuahua, Chihuahua, Mexico.,Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., Mexico
| | - L E de-Bashan
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., Mexico.,The Bashan Institute of Science, Auburn, AL, USA.,Departament of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL, USA
| | - R Snell-Castro
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | | - F J Choix
- Facultad de Ciencias químicas, Universidad Autónoma de Chihuahua, Circuito interior S/N, Chihuahua, Chihuahua, Mexico.,CONACYT - Universidad Autónoma de Chihuahua, Circuito interior S/N, Chihuahua, Chihuahua, Mexico
| |
Collapse
|
11
|
Palacios OA, López BR, de-Bashan LE. Microalga Growth-Promoting Bacteria (MGPB): A formal term proposed for beneficial bacteria involved in microalgal–bacterial interactions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
The immediate effect of riboflavin and lumichrome on the mitigation of saline stress in the microalga Chlorella sorokiniana by the plant-growth-promoting bacterium Azospirillum brasilense. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Cassan FD, Coniglio A, Amavizca E, Maroniche G, Cascales E, Bashan Y, de-Bashan LE. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana. Environ Microbiol 2021; 23:6257-6274. [PMID: 34472164 DOI: 10.1111/1462-2920.15749] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.
Collapse
Affiliation(s)
- Fabricio D Cassan
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Anahí Coniglio
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Edgar Amavizca
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico
| | - Guillermo Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA.,Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL, USA
| |
Collapse
|
14
|
Perera IA, Abinandan S, R Subashchandrabose S, Venkateswarlu K, Naidu R, Megharaj M. Microalgal-bacterial consortia unveil distinct physiological changes to facilitate growth of microalgae. FEMS Microbiol Ecol 2021; 97:6105210. [PMID: 33476378 DOI: 10.1093/femsec/fiab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Physiological changes that drive the microalgal-bacterial consortia are poorly understood so far. In the present novel study, we initially assessed five morphologically distinct microalgae for their ability in establishing consortia in Bold's basal medium with a bacterial strain, Variovorax paradoxus IS1, all isolated from wastewaters. Tetradesmus obliquus IS2 and Coelastrella sp. IS3 were further selected for gaining insights into physiological changes, including those of metabolomes in consortia involving V. paradoxus IS1. The distinct parameters investigated were pigments (chlorophyll a, b, and carotenoids), reactive oxygen species (ROS), lipids and metabolites that are implicated in major metabolic pathways. There was a significant increase (>1.2-fold) in pigments, viz., chlorophyll a, b and carotenoids, decrease in ROS and an enhanced lipid yield (>2-fold) in consortia than in individual cultures. In addition, the differential regulation of cellular metabolites such as sugars, amino acids, organic acids and phytohormones was distinct among the two microalgal-bacterial consortia. Our results thus indicate that the selected microalgal strains, T. obliquus IS2 and Coelastrella sp. IS3, developed efficient consortia with V. paradoxus IS1 by effecting the required physiological changes, including metabolomics. Such microalgal-bacterial consortia could largely be used in wastewater treatment and for production of value-added metabolites.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
16
|
Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Peng H, de-Bashan LE, Bashan Y, Higgins BT. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Toyama T, Hanaoka T, Yamada K, Suzuki K, Tanaka Y, Morikawa M, Mori K. Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:205. [PMID: 31695747 PMCID: PMC6822413 DOI: 10.1186/s13068-019-1544-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/17/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Euglena gracilis, a unicellular flagellated microalga, is regarded as one of the most promising species as microalgal feedstock for biofuels. Its lipids (mainly wax esters) are suitable for biodiesel and jet fuel. Culture of E. gracilis using wastewater effluent will improve the economics of E. gracilis biofuel production. Enhancement of the productivity of E. gracilis biomass is critical to creating a highly efficient biofuels production system. Certain bacteria have been found to promote microalgal growth by creating a favorable microenvironment. These bacteria have been characterized as microalgae growth-promoting bacteria (MGPB). Co-culture of microalgae with MGPB might offer an effective strategy to enhance microalgal biomass production in wastewater effluent culture systems. However, no MGPB has been identified to enhance the growth of E. gracilis. The objectives of this study were, therefore, to isolate and characterize the MGPB effective for E. gracilis and to demonstrate that the isolated MGPB indeed enhances the production of biomass and lipids by E. gracilis in wastewater effluent culture system. RESULTS A bacterium, Emticicia sp. EG3, which is capable of promoting the growth of microalga E. gracilis, was isolated from an E. gracilis-municipal wastewater effluent culture. Biomass production rate of E. gracilis was enhanced 3.5-fold and 3.1-fold by EG3 in the co-culture system using a medium of heat-sterilized and non-sterilized wastewater effluent, respectively, compared to growth in the same effluent culture but without EG3. Two-step culture system was examined as follows: E. gracilis was cultured with or without EG3 in wastewater effluent in the first step and was further grown in wastewater effluent in the second step. Production yields of biomass and lipids by E. gracilis were enhanced 3.2-fold and 2.9-fold, respectively, in the second step of the system in which E. gracilis was co-cultured with EG3 in the first step. CONCLUSION Emticicia sp. EG3 is the first MGPB for E. gracilis. Growth-promoting bacteria such as EG3 will be promising agents for enhancing E. gracilis biomass/biofuel productivities.
Collapse
Affiliation(s)
- Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| | - Tsubasa Hanaoka
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| | - Koji Yamada
- Euglena Co., Ltd., 5-29-11 Shiba Minato-ku, Tokyo, 108-0014 Japan
- Microalgae Production Control Technology Laboratory, RIKEN, 1-7-22, Suehiro, Tsurumi, Yookohama, Kanagawa 230-0045 Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 5-29-11 Shiba Minato-ku, Tokyo, 108-0014 Japan
- Microalgae Production Control Technology Laboratory, RIKEN, 1-7-22, Suehiro, Tsurumi, Yookohama, Kanagawa 230-0045 Japan
| | - Yasuhiro Tanaka
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo, 060-0810 Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| |
Collapse
|