1
|
Lorrain-Soligon L, Bizon T, Robin F, Jankovic M, Brischoux F. Variations of salinity during reproduction and development affect ontogenetic trajectories in a coastal amphibian. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11735-11748. [PMID: 38225486 DOI: 10.1007/s11356-024-31886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Although coastal ecosystems are naturally submitted to temporal variations of salinity, salinization has been increasing over time threatening coastal biodiversity. Species that exploit such habitats can thus be exposed to brackish water at different life stages. However, the impacts of variations of salinity on wildlife remain poorly understood. This is particularly true for coastal amphibians, due to the strong dependency of early life stages (embryos and larvae) on aquatic environments. In order to investigate the effect of salinity during egg laying and embryonic and larval development of coastal amphibians, we used a full-factorial design to expose reproductive adults, eggs, and larvae of coastal spined toads (Bufo spinosus) to fresh (0 g.l-1) or brackish water (4 g.l-1). At egg laying, we evaluated parental investment in reproduction. During embryonic and larval development, we assessed effects on survival, development, and growth. We highlighted strong effects of environmental salinity on reproduction (reduced egg laying time, marginally reduced egg size, and reduced investment in reproduction). Responses to salinity were highly dependent on the developmental stages of exposure (stronger effects when individuals were exposed during embryonic development). These effects carried over when exposure occurred at egg laying or during embryonic development, highlighting the importance of the environmental conditions during early life on ontogenetic trajectories. We also highlighted partial compensation when individuals were transferred back to freshwater. Whether the magnitude of these responses can allow coastal biodiversity to overcome the observed detrimental effects of salinization remain to be assessed.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France.
| | - Timothé Bizon
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France
| | - Frédéric Robin
- LPO France, Fonderies Royales, 17300, Rochefort, France
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340, Yves, France
| | - Marko Jankovic
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340, Yves, France
| | - François Brischoux
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France
| |
Collapse
|
2
|
Hartmann AM, McGrath-Blaser SE, Colón-Piñeiro Z, Longo AV. Ontogeny drives shifts in skin bacterial communities in facultatively paedomorphic salamanders. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001399. [PMID: 37815535 PMCID: PMC10634365 DOI: 10.1099/mic.0.001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Microbiomes are major determinants of host growth, development and survival. In amphibians, host-associated bacteria in the skin can inhibit pathogen infection, but many processes can influence the structure and composition of the community. Here we quantified the shifts in skin-associated bacteria across developmental stages in the striped newt (Notophthalmus perstriatus), a threatened salamander species with a complex life history and vulnerable to infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis and ranavirus. Our analyses show that pre-metamorphic larval and paedomorphic stages share similar bacterial compositions, and that the changes in the microbiome coincided with physiological restructuring during metamorphosis. Newts undergoing metamorphosis exhibited microbiome compositions that were intermediate between paedomorphic and post-metamorphic stages, further supporting the idea that metamorphosis is a major driver of host-associated microbes in amphibians. We did not find support for infection-related disruption of the microbiome, though infection replicates were small for each respective life stage.
Collapse
Affiliation(s)
- Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | | | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Albecker MA, McCoy MW. Responses to saltwater exposure vary across species, populations and life stages in anuran amphibians. CONSERVATION PHYSIOLOGY 2023; 11:coad062. [PMID: 37588621 PMCID: PMC10425968 DOI: 10.1093/conphys/coad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
To predict the impacts of environmental change on species, we must first understand the factors that limit the present-day ranges of species. Most anuran amphibians cannot survive at elevated salinities, which may drive their distribution in coastal locations. Previous research showed that coastal Hyla cinerea are locally adapted to brackish habitats in North Carolina, USA. Although Hyla squirella and Hyla chrysoscelis both inhabit coastal wetlands nearby, they have not been observed in saline habitats. We take advantage of naturally occurring microgeographic variation in coastal wetland occupancy exhibited by these congeneric tree frog species to explore how salt exposure affects oviposition site choice, hatching success, early tadpole survival, plasma osmolality and tadpole body condition across coastal and inland locations. We observed higher survival among coastal H. cinerea tadpoles than inland H. cinerea, which corroborates previous findings. But contrary to expectations, coastal H. cinerea had lower survival than H. squirella and H. chrysoscelis, indicating that all three species may be able to persist in saline wetlands. We also observed differences in tadpole plasma osmolality across species, locations and salinities, but these differences were not associated with survival rates in salt water. Instead, coastal occupancy may be affected by stage-specific processes like higher probability of total clutch loss as shown by inland H. chrysoscelis or maladaptive egg deposition patterns as shown by inland H. squirella. Although we expected salt water to be the primary filter driving species distributions along a coastal salinity gradient, it is likely that the factors dictating anuran ranges along the coast involve stage-, species- and location-specific processes that are mediated by ecological processes and life history traits.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd., Houston TX 77204
| | - Michael W McCoy
- Florida Atlantic University, Harbor Branch Oceanographic Institute, 3545 Ocean Drive #201, Vero Beach, FL, 32963, USA
| |
Collapse
|
4
|
Gajewski Z, Johnson LR, Medina D, Crainer WW, Nagy CM, Belden LK. Skin bacterial community differences among three species of co-occurring Ranid frogs. PeerJ 2023; 11:e15556. [PMID: 37465150 PMCID: PMC10351513 DOI: 10.7717/peerj.15556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023] Open
Abstract
Skin microbial communities are an essential part of host health and can play a role in mitigating disease. Host and environmental factors can shape and alter these microbial communities and, therefore, we need to understand to what extent these factors influence microbial communities and how this can impact disease dynamics. Microbial communities have been studied in amphibian systems due to skin microbial communities providing some resistance to the amphibian chytrid fungus, Batrachochytrium dendrobatidis. However, we are only starting to understand how host and environmental factors shape these communities for amphibians. In this study, we examined whether amphibian skin bacterial communities differ among host species, host infection status, host developmental stage, and host habitat. We collected skin swabs from tadpoles and adults of three Ranid frog species (Lithobates spp.) at the Mianus River Gorge Preserve in Bedford, New York, USA, and used 16S rRNA gene amplicon sequencing to determine bacterial community composition. Our analysis suggests amphibian skin bacterial communities change across host developmental stages, as has been documented previously. Additionally, we found that skin bacterial communities differed among Ranid species, with skin communities on the host species captured in streams or bogs differing from the communities of the species captured on land. Thus, habitat use of different species may drive differences in host-associated microbial communities for closely-related host species.
Collapse
Affiliation(s)
- Zachary Gajewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Leah R. Johnson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Daniel Medina
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - William W. Crainer
- Department of Animal Sciences, Cornell University, Ithaca, New York, United States
| | | | - Lisa K. Belden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| |
Collapse
|
5
|
Yang F, Liu Z, Zhou J, Guo X, Chen Y. Microbial Species-Area Relationships on the Skins of Amphibian Hosts. Microbiol Spectr 2023; 11:e0177122. [PMID: 36995232 PMCID: PMC10269671 DOI: 10.1128/spectrum.01771-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Unlike species-area relationships (SARs) that have been widely reported for plants and animals on Earth, there is no clear understanding of the SARs for microorganisms. In this study, 358 specimens of 10 amphibian host species collected from the rural Chengdu region of southwest China were selected as island models for evaluating SAR curve shapes and assessing the skin microbiota from different amphibian species. The results showed that skin microbial diversity, measured using Hill's number, presented significant differences between hosts, but the difference was insignificant between habitat-specific classifications of hosts. As for microbial SARs, other than the classical power-law (PL) model describing an expected steady increase in microbial diversity as sampled skin area increases, two additional trends were observed: (i) microbial diversity first rises and gradually decreases after reaching a maximum accrual diversity (MaxAD) and (ii) microbial diversity decreases and starts to rise after reaching the minimum accrual diversity (MinAD). Among the four SAR statistical models compared, it was consistently found that the models that can describe MaxAD were favorably selected in the highest frequency. Models that can describe MinAD and PL model also performed reasonably well. However, PL had the poorest fitting power, implying the necessity of introducing biologically meaningful complex SAR models in microbial diversity research. In conclusion, through multihost analyses, our study provided compelling evidence that microbial SARs are complex and nonlinear. A variety of ecological mechanisms may be used for explaining these, including, but not limited to, community saturation, small-island effects, or sampling heterogeneity. IMPORTANCE In this study, we investigate species-area relationships (SARs) for skin-borne symbiotic microbes of wildlife hosts. Unlike the traditional SARs for plants and animals, symbiotic microbial SARs were complex. We found that both U-shaped and inverted U-shaped SAR models were widely favored for microbial taxa than the well-known power-law model in different host species. These favored models presented interesting statistical features, including minimal or maximal accrual diversity or inflection point. We provide intuitive derivations of these statistical properties. We showed that different habitat-specific amphibian hosts did not present distinct microbial diversity and skin-related SAR patterns. We predicted that approximately 600 to 1,400 cm2 (in two-dimensional [2D] measurement) or approximately 1,200 to 3 500 cm2 (in 3D measurement) are the skin area threshold range that can allow the emergence of minimal or maximal accrual microbial diversity with high chances. Finally, we list a variety of ecological mechanisms that may be used for explaining the observed nonlinear SAR trends.
Collapse
Affiliation(s)
- Fan Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Zhidong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xuecheng Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Doane MP, Johnson CJ, Johri S, Kerr EN, Morris MM, Desantiago R, Turnlund AC, Goodman A, Mora M, Lima LFO, Nosal AP, Dinsdale EA. The Epidermal Microbiome Within an Aggregation of Leopard Sharks (Triakis semifasciata) Has Taxonomic Flexibility with Gene Functional Stability Across Three Time-points. MICROBIAL ECOLOGY 2023; 85:747-764. [PMID: 35129649 PMCID: PMC9957878 DOI: 10.1007/s00248-022-01969-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of the Triakis semifasciata (leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray-Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, including Pseudomonas, Erythrobacter, Alcanivorax, Marinobacter, and Sphingopxis being consistently abundant across time-points, while Limnobacter and Xyella exhibited switching patterns with high relative abundance in 2013, Sphingobium and Sphingomona in 2015, and Altermonas, Leeuwenhoekiella, Gramella, and Maribacter in 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray-Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.
Collapse
Affiliation(s)
- Michael P. Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia Australia
| | - Colton J. Johnson
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Shaili Johri
- Hopkins Marine Station, Stanford University, Pacific Grove, CA USA
| | - Emma N. Kerr
- College of Science and Engineering, Flinders University, Bedford Park, South Australia Australia
| | | | - Ric Desantiago
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Abigail C. Turnlund
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD Australia
| | - Asha Goodman
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Maria Mora
- Department of Biology, San Diego State University, San Diego, CA USA
| | | | - Andrew P. Nosal
- Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA USA
- Scripps Institution of Oceanography, University of California – San Diego, CA La Jolla, USA
| | | |
Collapse
|
7
|
Liu Z, Yang F, Chen Y. Interspecific and intraspecific Taylor's laws for frog skin microbes. Comput Struct Biotechnol J 2022; 21:251-259. [PMID: 36544471 PMCID: PMC9755231 DOI: 10.1016/j.csbj.2022.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Amphibians are known to have an abundance of microorganisms colonizing their skin, and these symbionts often protect the host from disease. There are now many comprehensive studies on amphibian skin microbes, but the interspecific and intraspecific abundance distributions (or abundance heterogeneity) of amphibian skin microbes remain unclear. Furthermore, we have a very limited understanding of how the abundance and heterogeneity of microbial communities relate to the body size (or more specifically, skin surface area) of amphibian hosts. In this study, we evaluated the interspecific and intraspecific abundance distribution patterns of amphibian skin microbes and evaluated whether the symbiotic skin microbes of different anuran species share a fundamental heterogeneity scaling parameter. If scaling invariance exists, we hypothesize that a fundamental heterogeneity scaling value also exists. A total of 358 specimens of 10 amphibian host species were collected, and we used Type-I and III Taylor's power law expansions (TPLE) to assess amphibian skin microbial heterogeneity at the community and mixed-species population levels, respectively. The obtained results showed that, at the community scale, a high aggregation of the microbial abundance distribution on the skin barely changed with host size. In a mixed-species population (i.e., a community context), the abundance distribution pattern of mixed microbial species populations also does not change with host size and always remains highly aggregated. These findings suggest that while amphibian skin microbiomes located in different hosts may have different environmental conditions, they share a fundamental heterogeneity scaling parameter, and thus, scale invariance exists. Finally, we found that microhabitat area provided by the host skin is vital to the stability of the symbiotic microbial community.
Collapse
Affiliation(s)
- Zhidong Liu
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China,Corresponding author.
| |
Collapse
|
8
|
Cui G, Liu Y, Tong S. Hydrogeochemical processes controlling the salinity of surface water and groundwater in an inland saline-alkali wetland in western Jilin, China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.993849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the hydrochemical evolutionary mechanisms of surface water and groundwater in saline-alkali wetlands in arid and semi-arid regions is necessary for assessing how wetland water resource utilization and restoration processes may affect the natural interface between wetland salinity and water. The Momoge National Nature Reserve (MNNR) is an inland wetland in northeastern China that is mainly fed by irrigation water and floods from the Nenjiang River. The purpose of the present study is to describe the spatial distribution characteristics of surface water and groundwater hydrochemistry and salinity in the MNNR and analyze the main processes controlling these parameters. The composition of stable isotopes (δ2H and δ18O) and water chemistry, including the levels of Na, K, Ca, Mg, HCO3, SO4, and Cl, of 156 water samples were analyzed. The results show that the lake water in the MNNR is at a risk of salinization owing to a high degree of evaporation. The analysis of the ion ratio and mineral saturation index showed that the ions in water are primarily derived from aquifer leaching, and the precipitation of Ca2+ and Mg2+ resulted in lower Ca2+ and Mg2+ levels in lake water than in groundwater. Hydrogen and oxygen stable isotope and deuterium excess analyses show that evaporation is the dominant factor controlling the hydrochemistry and salinity of lake water in the MNNR. Long-term effective monitoring of lake water and groundwater must be developed to provide an early warning for the salinization of lake water and a scientific basis for the protection and restoration of wetland ecosystem functions within the MNNR.
Collapse
|
9
|
Besedin D, Turner BJ, Deo P, Lopes MDB, Williams CR. Effect of captivity and water salinity on culture-dependent frog skin microbiota and Batrachochytrium dendrobatidis ( Bd) infection. T ROY SOC SOUTH AUST 2022. [DOI: 10.1080/03721426.2022.2086358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Darislav Besedin
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brandon J. Turner
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Permal Deo
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA Clinical and Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Miguel De Barros Lopes
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA Clinical and Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Craig R. Williams
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Albecker MA, Stuckert AMM, Balakrishnan CN, McCoy MW. Molecular mechanisms of local adaptation for salt-tolerance in a treefrog. Mol Ecol 2021; 30:2065-2086. [PMID: 33655636 DOI: 10.1111/mec.15867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Salinization is a global phenomenon affecting ecosystems and forcing freshwater organisms to deal with increasing levels of ionic stress. However, our understanding of mechanisms that permit salt tolerance in amphibians is limited. This study investigates mechanisms of salt tolerance in locally adapted, coastal populations of a treefrog, Hyla cinerea. Using a common garden experiment, we (i) determine the extent that environment (i.e., embryonic and larval saltwater exposure) or genotype (i.e., coastal vs. inland) affects developmental benchmarks and transcriptome expression, and (ii) identify genes that may underpin differences in saltwater tolerance. Differences in gene expression, survival, and plasma osmolality were most strongly associated with genotype. Population genetic analyses on expressed genes also delineated coastal and inland groups based on genetic similarity. Coastal populations differentially expressed osmoregulatory genes including ion transporters (atp1b1, atp6V1g2, slc26a), cellular adhesion components (cdh26, cldn1, gjb3, ocln), and cytoskeletal components (odc1-a, tgm3). Several of these genes are the same genes expressed by euryhaline fish after exposure to freshwater, which is a novel finding for North American amphibians and suggests that these genes may be associated with local salinity adaptation. Coastal populations also highly expressed glycerol-3-phosphate dehydrogenase 1 (gpd1), which indicates they use glycerol as a compatible osmolyte to reduce water loss - another mechanism of saltwater tolerance previously unknown in frogs. These data signify that Hyla cinerea inhabiting coastal, brackish wetlands have evolved a salt-tolerant ecotype, and highlights novel candidate pathways that can lead to salt tolerance in freshwater organisms facing habitat salinization.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Adam M M Stuckert
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
11
|
Piccinni MZ, Watts JEM, Fourny M, Guille M, Robson SC. The skin microbiome of Xenopus laevis and the effects of husbandry conditions. Anim Microbiome 2021; 3:17. [PMID: 33546771 PMCID: PMC7866774 DOI: 10.1186/s42523-021-00080-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Historically the main source of laboratory Xenopus laevis was the environment. The increase in genetically altered animals and evolving governmental constraints around using wild-caught animals for research has led to the establishment of resource centres that supply animals and reagents worldwide, such as the European Xenopus Resource Centre. In the last decade, centres were encouraged to keep animals in a "low microbial load" or "clean" state, where embryos are surface sterilized before entering the housing system; instead of the conventional, "standard" conditions where frogs and embryos are kept without prior surface treatment. Despite Xenopus laevis having been kept in captivity for almost a century, surprisingly little is known about the frogs as a holobiont and how changing the microbiome may affect resistance to disease. This study examines how the different treatment conditions, "clean" and "standard" husbandry in recirculating housing, affects the skin microbiome of tadpoles and female adults. This is particularly important when considering the potential for poor welfare caused by a change in husbandry method as animals move from resource centres to smaller research colonies. RESULTS We found strong evidence for developmental control of the surface microbiome on Xenopus laevis; adults had extremely similar microbial communities independent of their housing, while both tadpole and environmental microbiome communities were less resilient and showed greater diversity. CONCLUSIONS Our findings suggest that the adult Xenopus laevis microbiome is controlled and selected by the host. This indicates that the surface microbiome of adult Xenopus laevis is stable and defined independently of the environment in which it is housed, suggesting that the use of clean husbandry conditions poses little risk to the skin microbiome when transferring adult frogs to research laboratories. This will have important implications for frog health applicable to Xenopus laevis research centres throughout the world.
Collapse
Affiliation(s)
- Maya Z. Piccinni
- grid.4701.20000 0001 0728 6636School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636European Xenopus Resource Centre, University of Portsmouth, Portsmouth, UK
| | - Joy E. M. Watts
- grid.4701.20000 0001 0728 6636School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
| | - Marie Fourny
- grid.10400.350000 0001 2108 3034University of Rouen-Normandy, Rouen, France
| | - Matt Guille
- grid.4701.20000 0001 0728 6636School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636European Xenopus Resource Centre, University of Portsmouth, Portsmouth, UK
| | - Samuel C. Robson
- grid.4701.20000 0001 0728 6636Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
12
|
Douglas AJ, Hug LA, Katzenback BA. Composition of the North American Wood Frog (Rana sylvatica) Bacterial Skin Microbiome and Seasonal Variation in Community Structure. MICROBIAL ECOLOGY 2021; 81:78-92. [PMID: 32613267 DOI: 10.1007/s00248-020-01550-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
While a number of amphibian skin microbiomes have been characterized, it is unclear how these communities might vary in response to seasonal changes in the environment and the corresponding behaviors that many amphibians exhibit. Given recent studies demonstrating the importance of the skin microbiome in frog innate immune defense against pathogens, investigating how changes in the environment impact the microbial species present will provide a better understanding of conditions that may alter host susceptibility to pathogens in their environment. We sampled the bacterial skin microbiome of North American wood frogs (Rana sylvatica) from two breeding ponds in the spring, along with the bacterial community present in their vernal breeding pools, and frogs from the nearby forest floor in the summer and fall to determine whether community composition differs by sex, vernal pond site, or temporally across season (spring, summer, fall). Taxon relative abundance data reveals a profile of bacterial phyla similar to those previously described on anuran skin, with Proteobacteria, Bacteroidetes, and Actinobacteria dominating the wood frog skin microbiome. Our results indicate that sex had no significant effect on skin microbiota diversity; however, this may be due to our limited female frog sample size. Vernal pool site had a small but significant effect on skin microbiota, but skin-associated communities were more similar to each other than to the communities observed in the frogs' respective pond water. Across seasons, diversity analyses suggest that there are significant differences between the bacterial skin microbiome of frogs from spring and summer/fall groups while the average α-diversity per frog remained consistent. These results illustrate seasonal variation in wood frog skin microbiome structure and highlight the importance of considering temporal trends in an amphibian microbiome, particularly for species whose life history requires recurrent shifts in habitat and behavior.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
13
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
14
|
Albecker MA, McCoy MW. Local adaptation for enhanced salt tolerance reduces non‐adaptive plasticity caused by osmotic stress. Evolution 2019; 73:1941-1957. [DOI: 10.1111/evo.13798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Molly A. Albecker
- Department of BiologyEast Carolina University Greenville North Carolina 27858
| | - Michael W. McCoy
- Department of BiologyEast Carolina University Greenville North Carolina 27858
| |
Collapse
|