1
|
Mioduchowska M, Pawłowska J, Mazanowski K, Weydmann-Zwolicka A. Contrasting Marine Microbial Communities of the Fram Strait with the First Confirmed Record of Cyanobacteria Prochlorococcus marinus in the Arctic Region. BIOLOGY 2023; 12:1246. [PMID: 37759645 PMCID: PMC10525857 DOI: 10.3390/biology12091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The seawater microbiome is crucial in marine ecosystems because of its role in food chains and biogeochemical cycles; thus, we studied the composition of the pelagic marine microbiome collected in the upper 50 m on the opposite sides of Fram Strait: Spitsbergen and Greenland shelves. We found out that it differed significantly, with salinity being the main environmental variable responsible for these differences. The Spitsbergen shelf was dominated by Atlantic Waters, with a rather homogenous water column in terms of salinity and temperature down to 300 m; hence, the marine microbial community was also homogenous at all sampled depths (0, 25, 50 m). On the contrary, stations on the Greenland shelf were exposed to different water masses of both Arctic and Atlantic origin, which resulted in a more diverse microbial community there. Unexpectedly, for the very first time, we identified cyanobacterium Prochlorococcus marinus in Arctic waters (Spitsbergen shelf, 75-77° N). Till now, the distribution of this cyanobacteria in oceans has been described only between 40° N and 40° S. Considering the accelerated rate of climate warming in the Arctic, our results indicated that the seawater microbiome can be viewed as an amplifier of global change and that the Atlantification is in progress.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
- Laboratory of Plankton Biology, Department of Marine Biology and Biotechnology, University of Gdansk, 81-378 Gdynia, Poland;
| | - Joanna Pawłowska
- Department of Paleoceanography, Institute of Oceanology Polish Academy of Sciences, 81-712 Sopot, Poland;
| | - Karol Mazanowski
- Laboratory of Plankton Biology, Department of Marine Biology and Biotechnology, University of Gdansk, 81-378 Gdynia, Poland;
| | - Agata Weydmann-Zwolicka
- Laboratory of Plankton Biology, Department of Marine Biology and Biotechnology, University of Gdansk, 81-378 Gdynia, Poland;
| |
Collapse
|
2
|
Jing X, Gong Y, Xu T, Davison PA, MacGregor-Chatwin C, Hunter CN, Xu L, Meng Y, Ji Y, Ma B, Xu J, Huang WE. Revealing CO 2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics. BIODESIGN RESEARCH 2022; 2022:9782712. [PMID: 37850122 PMCID: PMC10521720 DOI: 10.34133/2022/9782712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul A. Davison
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Craig MacGregor-Chatwin
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, ShandongChina
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Single-Cell Biotechnology, Ltd, Qingdao, ShandongChina
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK
| |
Collapse
|
3
|
Phylogeny and Metabolic Potential of the Candidate Phylum SAR324. BIOLOGY 2022; 11:biology11040599. [PMID: 35453798 PMCID: PMC9031357 DOI: 10.3390/biology11040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary SAR324, newly proposed as its own candidate phylum, is a diverse and globally abundant bacterial group living in a wide range of environments, from deep-sea hydrothermal vents and brine pools to the epipelagic regions of the global oceans and terrestrial aquifers. The different SAR324 clades harbor a diverse array of genes and pathways well adapted to their respective environments. This metabolic flexibility explains the ubiquitous presence and the importance of SAR324 in global biogeochemical cycles. Abstract The bacterial SAR324 cluster is ubiquitous and abundant in the ocean, especially around hydrothermal vents and in the deep sea, where it can account for up to 30% of the whole bacterial community. According to a new taxonomy generated using multiple universal protein-coding genes (instead of the previously used 16S rRNA single gene marker), the former Deltaproteobacteria cluster SAR324 has been classified since 2018 as its own phylum. Yet, very little is known about its phylogeny and metabolic potential. We downloaded all publicly available SAR324 genomes (65) from all natural environments and reconstructed 18 new genomes using publicly available oceanic metagenomic data and unpublished data from the waters underneath the Ross Ice Shelf. We calculated a global SAR324 phylogenetic tree and identified six clusters (namely 1A, 1B, 2A, 2B, 2C and 2D) within this clade. Genome annotation and metatranscriptome read mapping showed that SAR324 clades possess a flexible array of genes suited for survival in various environments. Clades 2A and 2C are mostly present in the surface mesopelagic layers of global oceans, while clade 2D dominates in deeper regions. Our results show that SAR324 has a very versatile and broad metabolic potential, including many heterotrophic, but also autotrophic pathways. While one surface water associated clade (2A) seems to use proteorhodopsin to gain energy from solar radiation, some deep-sea genomes from clade 2D contain the complete Calvin–Benson–Bassham cycle gene repertoire to fix carbon. This, in addition to a variety of other genes and pathways for both oxic (e.g., dimethylsulfoniopropionate degradation) and anoxic (e.g., dissimilatory sulfate reduction, anaerobic benzoate degradation) conditions, can help explain the ubiquitous presence of SAR324 in aquatic habitats.
Collapse
|
4
|
Cardozo-Mino MG, Fadeev E, Salman-Carvalho V, Boetius A. Spatial Distribution of Arctic Bacterioplankton Abundance Is Linked to Distinct Water Masses and Summertime Phytoplankton Bloom Dynamics (Fram Strait, 79°N). Front Microbiol 2021; 12:658803. [PMID: 34040593 PMCID: PMC8143376 DOI: 10.3389/fmicb.2021.658803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
The Arctic is impacted by climate warming faster than any other oceanic region on Earth. Assessing the baseline of microbial communities in this rapidly changing ecosystem is vital for understanding the implications of ocean warming and sea ice retreat on ecosystem functioning. Using CARD-FISH and semi-automated counting, we quantified 14 ecologically relevant taxonomic groups of bacterioplankton (Bacteria and Archaea) from surface (0-30 m) down to deep waters (2,500 m) in summer ice-covered and ice-free regions of the Fram Strait, the main gateway for Atlantic inflow into the Arctic Ocean. Cell abundances of the bacterioplankton communities in surface waters varied from 105 cells mL-1 in ice-covered regions to 106 cells mL-1 in the ice-free regions. Observations suggest that these were overall driven by variations in phytoplankton bloom conditions across the Strait. The bacterial groups Bacteroidetes and Gammaproteobacteria showed several-fold higher cell abundances under late phytoplankton bloom conditions of the ice-free regions. Other taxonomic groups, such as the Rhodobacteraceae, revealed a distinct association of cell abundances with the surface Atlantic waters. With increasing depth (>500 m), the total cell abundances of the bacterioplankton communities decreased by up to two orders of magnitude, while largely unknown taxonomic groups (e.g., SAR324 and SAR202 clades) maintained constant cell abundances throughout the entire water column (ca. 103 cells mL-1). This suggests that these enigmatic groups may occupy a specific ecological niche in the entire water column. Our results provide the first quantitative spatial variations assessment of bacterioplankton in the summer ice-covered and ice-free Arctic water column, and suggest that further shift toward ice-free Arctic summers with longer phytoplankton blooms can lead to major changes in the associated standing stock of the bacterioplankton communities.
Collapse
Affiliation(s)
- Magda G. Cardozo-Mino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Eduard Fadeev
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Verena Salman-Carvalho
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
5
|
Manna V, Malfatti F, Banchi E, Cerino F, De Pascale F, Franzo A, Schiavon R, Vezzi A, Del Negro P, Celussi M. Prokaryotic Response to Phytodetritus-Derived Organic Material in Epi- and Mesopelagic Antarctic Waters. Front Microbiol 2020; 11:1242. [PMID: 32582131 PMCID: PMC7296054 DOI: 10.3389/fmicb.2020.01242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Particulate organic matter (POM) export represents the underlying principle of the biological carbon pump, driving the carbon flux from the sunlit to the dark ocean. The efficiency of this process is tightly linked to the prokaryotic community, as >70% of POM respiration is carried out by particle-associated prokaryotes. In the Ross Sea, one of the most productive areas of the Southern Ocean, up to 50% of the surface primary production is exported to the mesopelagic ocean as POM. Recent evidence suggests that a significant fraction of the POM in this area is composed of intact phytoplankton cells. During austral summer 2017, we set up bottle enrichment experiments in which we amended free-living surface and deep prokaryotic communities with organic matter pools generated from native microplankton, mimicking the particle export that may derive from mild (1 μg of Chlorophyll a L-1) and intense (10 μg of Chlorophyll a L-1) phytoplankton bloom. Over a course of 4 days, we followed free-living and particle-attached prokaryotes' abundance, the degradation rates of polysaccharides, proteins and lipids, heterotrophic production as well as inorganic carbon utilization and prokaryotic community structure dynamics. Our results showed that several rare or undetected taxa in the initial community became dominant during the time course of the incubations and that different phytodetritus-derived organic matter sources induced specific changes in microbial communities, selecting for peculiar degradation and utilization processes spectra. Moreover, the features of the supplied detritus (in terms of microplankton taxa composition) determined different colonization dynamics and organic matter processing modes. Our study provides insights into the mechanisms underlying the prokaryotic utilization of phytodetritus, a significant pool of organic matter in the dark ocean.
Collapse
Affiliation(s)
- Vincenzo Manna
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Francesca Malfatti
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Elisa Banchi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Federica Cerino
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Fabio De Pascale
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Annalisa Franzo
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Riccardo Schiavon
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Alessandro Vezzi
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Paola Del Negro
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Mauro Celussi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| |
Collapse
|