1
|
Agbulu V, Zaman R, Ishangulyyeva G, Cahill JF, Erbilgin N. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi. MICROBIAL ECOLOGY 2022; 84:834-843. [PMID: 34674014 DOI: 10.1007/s00248-021-01894-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Successful host plant colonization by tree-killing bark beetle-symbiotic fungal complexes depends on host suitability, which is largely determined by host defense metabolites such as monoterpenes. Studies have shown the ability of specific blends of host monoterpenes to influence bark beetles or their fungal symbionts, but how biologically relevant blends of host monoterpenes influence bark beetle-symbiotic fungal interaction is unknown. We tested how interactions between two host species (lodgepole pine or jack pine) and two fungal symbionts of mountain pine beetle (Grosmannia clavigera or Ophiostoma montium) affect the performance of adult female beetles in vitro. Beetles treated with the propagules of G. clavigera or O. montium or not treated (natural fungal load) were introduced into media amended with a blend of the entire monoterpene profile of either host species and beetle performance was compared. Overall, host blends altered beetle performance depending on the fungal species used in the beetle amendment. When beetles were amended with G. clavigera, their performance was superior over beetles amended with O. montium in either host blend. Furthermore, G. clavigera-amended beetles performed better in media amended with host blends than without a host blend; in contrast, O. montium-amended beetles performed better in media without a host blend than with a host blend. Overall, this study showed that host defense metabolites affect host suitability to bark beetles through influencing their fungal symbionts and that different species of fungal symbionts respond differentlly to host defense metabolites.
Collapse
Affiliation(s)
- Vanessa Agbulu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rashaduz Zaman
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | | | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - N Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Liu Y, Zhou Q, Wang Z, Wang H, Zheng G, Zhao J, Lu Q. Pathophysiology and transcriptomic analysis of Picea koraiensis inoculated by bark beetle-vectored fungus Ophiostoma bicolor. FRONTIERS IN PLANT SCIENCE 2022; 13:944336. [PMID: 35928703 PMCID: PMC9345248 DOI: 10.3389/fpls.2022.944336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ophiostomatoid fungi exhibit a complex relationship with bark beetles; exhausting of host tree defenses is traditionally regarded as one of the key benefits provided to beetle vectors. Ophiostoma bicolor is one of the dominant species of the mycobiota associated with Ips genus bark beetles which infect the spruce trees across the Eurasian continent. Host spruce trees resist fungal invasion through structural and inducible defenses, but the underlying mechanisms at the molecular level, particularly with respect to the interaction between bark beetle-associated fungi and host trees, remain unclear. The aim of this study was to observe the pathological physiology and molecular changes in Picea koraiensis seedlings after artificial inoculation with O. bicolor strains (TS, BH, QH, MX, and LWQ). This study showed that O. bicolor was a weakly virulent pathogen of spruce, and that the virulent of the five O. bicolor strains showed differentiation. All O. bicolor strains could induce monoterpenoid release. A positive correlation between fungal virulence and release of monoterpenoids was observed. Furthermore, the release rate of monoterpenoids peaked at 4 days post-inoculation (dpi) and then decreased from 4 to 90 dpi. Transcriptomic analysis at 4 dpi showed that many plant-pathogen interaction processes and mitogen-activated protein kinase (MAPK) metabolic processes were activated. The expression of monoterpenoid precursor synthesis genes and diterpenoid synthesis genes was upregulated, indicating that gene expression regulated the release rate of monoterpenoids at 4 dpi. The enriched pathways may reveal the immune response mechanism of spruce to ophiostomatoid fungi. The dominant O. bicolor possibly induces the host defense rather than defense depletion, which is likely the pattern conducted by the pioneers of beetle-associated mycobiota, such as Endoconidiophora spp.. Overall, these results facilitate a better understanding of the interaction mechanism between the dominant association of beetles and the host at the molecular level.
Collapse
Affiliation(s)
- Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Qinzheng Zhou
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Huiming Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Guiheng Zheng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
3
|
Erbilgin N, Zanganeh L, Klutsch JG, Chen SH, Zhao S, Ishangulyyeva G, Burr SJ, Gaylord M, Hofstetter R, Keefover-Ring K, Raffa KF, Kolb T. Combined drought and bark beetle attacks deplete non-structural carbohydrates and promote death of mature pine trees. PLANT, CELL & ENVIRONMENT 2021; 44:3636-3651. [PMID: 34612515 DOI: 10.1111/pce.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.
Collapse
Affiliation(s)
- Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Leila Zanganeh
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Department of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Department of Forestry, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - Shih-Hsuan Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Shiyang Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J Burr
- Forest Health Protection, USDA Forest Service, Milwaukee, Wisconsin, USA
| | - Monica Gaylord
- Forest Health Protection, USDA Forest Service, Flagstaff, Arizona, USA
| | - Richard Hofstetter
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas Kolb
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Tanin SM, Kandasamy D, Krokene P. Fungal Interactions and Host Tree Preferences in the Spruce Bark Beetle Ips typographus. Front Microbiol 2021; 12:695167. [PMID: 34177876 PMCID: PMC8220818 DOI: 10.3389/fmicb.2021.695167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The spruce bark beetle Ips typographus is the most damaging pest in European spruce forests and has caused great ecological and economic disturbances in recent years. Although native to Eurasia, I. typographus has been intercepted more than 200 times in North America and could establish there as an exotic pest if it can find suitable host trees. Using in vitro bioassays, we compared the preference of I. typographus for its coevolved historical host Norway spruce (Picea abies) and two non-coevolved (naïve) North American hosts: black spruce (Picea mariana) and white spruce (Picea glauca). Additionally, we tested how I. typographus responded to its own fungal associates (conspecific fungi) and to fungi vectored by the North American spruce beetle Dendroctonus rufipennis (allospecific fungi). All tested fungi were grown on both historical and naïve host bark media. In a four-choice Petri dish bioassay, I. typographus readily tunneled into bark medium from each of the three spruce species and showed no preference for the historical host over the naïve hosts. Additionally, the beetles showed a clear preference for bark media colonized by fungi and made longer tunnels in fungus-colonized media compared to fungus-free media. The preference for fungus-colonized media did not depend on whether the medium was colonized by conspecific or allospecific fungi. Furthermore, olfactometer bioassays demonstrated that beetles were strongly attracted toward volatiles emitted by both con- and allospecific fungi. Collectively, these results suggest that I. typographus could thrive in evolutionary naïve spruce hosts if it becomes established in North America. Also, I. typographus could probably form and maintain new associations with local allospecific fungi that might increase beetle fitness in naïve host trees.
Collapse
Affiliation(s)
- Sifat Munim Tanin
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Chair of Forest Entomology and Protection, University of Freiburg, Freiburg, Germany
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Liu Y, Anastacio GR, Ishangulyyeva G, Rodriguez-Ramos JC, Erbilgin N. Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources. MICROBIAL ECOLOGY 2021; 81:1106-1110. [PMID: 33404818 DOI: 10.1007/s00248-020-01661-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Interactions between mutualistic bark beetles and ophiostomatoid fungi have received considerable attention in recent years. Studies have shown how volatile organic compounds emitted from mutualist fungi affect the behaviors of several bark beetle species. However, we currently lack sufficient knowledge regarding whether bark beetle pheromones can influence mutualist fungi. Here, we measured growth and biomass of two mutualistic fungi of the mountain pine beetle in response to headspace of a beetle pheromone (trans-verbenol), a blend of host tree volatiles, the combination of both, or control (no volatile source) in vitro experiments consisting of a nitrogen-based medium. The surface area and ergosterol content of the mycelia were used as surrogates for fungal growth and biomass respectively. We found that both growth and biomass of Grosmannia clavigera and Ophiostoma montium were greater in medium exposed to any type of volatile sources than the control. While growth and ergosterol content of G. clavigera were highest in the combination treatment, there were no differences in growth or biomass among the types of volatiles introduced for O. montium. These results suggest that both mutualistic fungi can utilize both bark beetle pheromone and host tree volatiles as nutrient sources. Overall, these results support the on-going studies on the role of volatile organic compounds mediating mutualistic bark beetle-fungi interactions.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- School of Ecol & Environ Sci, East China Normal Univ, Shanghai, China
| | - Gean Rodrigues Anastacio
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- College of Agriculture, Department of Biology, University of São Paulo, São Paulo, Brazil
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | | | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
6
|
Wang F, Cale JA, Hussain A, Erbilgin N. Exposure to Fungal Volatiles Can Influence Volatile Emissions From Other Ophiostomatoid Fungi. Front Microbiol 2020; 11:567462. [PMID: 33042073 PMCID: PMC7527408 DOI: 10.3389/fmicb.2020.567462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Fungal volatile organic compounds (FVOCs) can act as intra- and inter-kingdom communication signals that influence the growth and behaviors of organisms involved in antagonistic or mutualistic relationships with fungi. There is growing evidence suggesting that FVOCs can mediate interactions between organisms within and across different ecological niches. Bark beetles have established mutualistic relationships with ophiostomatoid fungi which can serve as a food source and condition host plant tissues for developing beetle larvae. While the profiles (both composition and concentrations) of volatile emission from ophiostomatoid fungi can be influenced by abiotic factors, whether emissions from a given fungal species can be influenced by those from another is still unknown. Here, we analyzed FVOCs emitted from the two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma ips, associated with mountain pine beetle and pine engraver beetle, respectively, when each fungus was growing alone or in a shared headspace. We used two isolates of each fungus species. Overall, we detected a total of eight volatiles in both G. clavigera alone or in combination with O. ips including acetoin, ethyl acetate, cis-grandisol, isoamyl alcohol, isobutanol, 2-methyl-1-butanol, phenethyl acetate, and phenethyl alcohol. The profiles of volatiles emitted differed between the two fungal species but not between the two isolates of the same fungus. Six compounds were common between the species, whereas two compounds were detected only when G. clavigera was present. Moreover, the majority of volatiles were detected less frequently and at lower concentrations when the two fungi were grown together in a shared headspace. These results are likely due to reduced volatile emissions from O. ips in the presence of G. clavigera. However, changes in the profiles of fungal volatiles did not correspond with the observed changes in the growth of either species. Overall, these results suggest that the similarities in fungal volatiles among different species of fungi may reflect a common ecological niche and that the differences may correspond to species-specific adaptation to their respective host beetles or genetic factors.
Collapse
|
7
|
Guevara-Rozo S, Hussain A, Cale JA, Klutsch JG, Rajabzadeh R, Erbilgin N. Nitrogen and Ergosterol Concentrations Varied in Live Jack Pine Phloem Following Inoculations With Fungal Associates of Mountain Pine Beetle. Front Microbiol 2020; 11:1703. [PMID: 32793164 PMCID: PMC7390957 DOI: 10.3389/fmicb.2020.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023] Open
Abstract
Bark beetles form symbiotic associations with multiple species of fungi that supplement their metabolic needs. However, the relative contributions of each symbiont to the nutrition of bark beetles have been largely unexplored. Thus, we evaluated the ability of three fungal symbionts of mountain pine beetle to concentrate nitrogen and produce ergosterol while infecting phloem of a novel host jack pine. Ergosterol was used as proxy to determine the fungal biomass (hyphal density) in the current study. We inoculated 80 trees in two forest stands with one of the three fungal species or a non-fungal (control) agar. Six weeks later, we collected phloem from the necrotic lesions induced by the fungi, uninfected tissues adjacent to lesions, and non-inoculated control trees. We found that nutritional contributions varied with fungal species. Nitrogen in lesions was higher in trees inoculated with Ophiostoma montium or control trees, relative to Grosmannia clavigera or Leptographium longiclavatum. Furthermore, concentrations of ergosterol were higher in O. montium lesions compared to other tissues or treatments. These results suggest that O. montium differs from G. clavigera and L. longiclavatum in terms of acquiring nitrogen from host tissues and producing ergosterol.
Collapse
Affiliation(s)
- Sydne Guevara-Rozo
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Altaf Hussain
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Jonathan A Cale
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | | | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|