1
|
Wang S, Yan Y, Zhang J, Yang J, Chai F, Li S. Enhancing removal performance of ortho xylene by adding polydimethylsiloxane into two-stage biofilter. BIORESOURCE TECHNOLOGY 2024; 414:131625. [PMID: 39414165 DOI: 10.1016/j.biortech.2024.131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
A two-stage biofilter was built, augmented with polydimethylsiloxane (PDMS), to enhance the degradation of ortho xylene (o-xylene), and evaluate the feasibility of different PDMS concentrations for improving the removal effect. The results showed that PDMS concentration of 0.50 % significantly enhanced the purification efficiency and mineralization rate of o-xylene to 85(±1)% and 81 %, respectively. Simultaneously, the surface tension of the circulating liquid was reduced by 31.91 mN/m. Furthermore, the polysaccharide concentration of biofilters were increased by 6.90 mg/g and 7.38 mg/g, respectively, while the protein concentration was enhanced by 7.98 mg/g and 9.29 mg/g, respectively. It is worth noting that Sphingomonas and Sphingobium emerged as the dominant bacterial genera after intensification. Fusarium and Cladosporium became the predominant fungal genera in BTF1 and BTF2, respectively. Therefore, the two-stage biofilter containing bacteria and fungi combined with the addition of PDMS can effectively improve the degradation effect.
Collapse
Affiliation(s)
- Shu Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxi Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Zhang
- Minquan County Water Conservancy Bureau, Minquan County People's Government, Shangqiu 476000, China
| | - Jiao Yang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Fengguang Chai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Li C, Zhong M, Guo E, Xu H, Wen C, Zhu S, Li Q, Zhu D, Luo X. Response of bacterial and fungal communities in natural biofilms to bioavailable heavy metals in a mining-affected river. WATER RESEARCH 2024; 267:122470. [PMID: 39305524 DOI: 10.1016/j.watres.2024.122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
Biofilms, known as "microbial skin" in rivers, respond to rapid and sensitive environmental changes. However, the ecological response mechanisms of bacterial and fungal communities in river biofilms toward heavy metal pollution (HMP) remains poorly understood. This study focused on the key driving factors of bacterial and fungal community diversity and composition and their ecological response mechanisms within periphytic biofilms of Asia's largest Pb-Zn mining area. The diversity, dominant bacterial taxa, and bacteria structure in biofilms were influenced by biologically available heavy metal (HM) fractions, with Ni-F3 (17.96 %) and Pb-F4 (16.27 %) as the main factors affecting the bacterial community structure. Fungal community structure and α-diversity were more susceptible to physicochemical parameters (pH and nutrient elements). Partial least squares path modeling revealed that environmental factors influencing bacterial and fungal communities in biofilms were ranked as water quality > metal fractions > total metals. Dispersal limitation was the most critical ecological process in bacterial (56.9 %) and fungal (73.4 %) assembly. The proportion of heterogeneous selection by bacteria (39.5 %) was higher than that of fungus (26.2 %), which increased with increasing HMP. Bacterial communities had a higher migration rate (0.48) and ecological drift proportion (3.6 %), making them more prone to escape environmental stress. Fungal communities exhibited more keystone species, larger niche width (23.24 ± 13.04 vs. 9.72 ± 5.48), higher organization level, and a more stable co-occurrence network than bacterial communities, which enabled them to better adapt to high environmental pollution levels. These findings expanded the understanding of the spatiotemporal dynamics of microbial communities within biofilms in HM-polluted watersheds and provided new insights into the ecological responses of microbial communities to HMP.
Collapse
Affiliation(s)
- Chunyan Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Mei Zhong
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Ende Guo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Hansen Xu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Shiqi Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Qi Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Dan Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Jiang Q, Zhao T, Kong Z, Kong B, Chen J, Zhao B, Li Y, Cui X, Yin Z, Lu X, Zhang D. Diversity of Fungal Community and Its Constraints in the Yifeng Lithium Mines, Eastern China. Curr Microbiol 2024; 81:288. [PMID: 39078511 DOI: 10.1007/s00284-024-03817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
It is well accepted that biodiversity and ecosystem functions are strongly shaped by environmental conditions; however, relatively little is known about how they depend on the mineralogical assemblage of local environments, especially in mines. This study aims to reveal the diversity characteristics of the fungal community in the surface of granite lithium ores and their weathering products sampled from the Yifeng lithium mines in Jiangxi Province, eastern China. According to the analysis of internal transcribed spacer1 (ITS1) high-throughput sequencing, significant differences in fungal community diversity on the surface of lithium ores and their weathering products have been revealed. The operational taxonomic unit (OTU) of the ore surface and its weathering products ranged from 280 to 624, which may depend on the mineral composition as well as the degree of weathering. The community composition of each sample was significantly different at the phylum level, especially between the weathering products in Ascomycota and Basidiomycota. Although Ascomycota and Basidiomycota were the dominant fungal communities in all samples, each sample has its own distinctive fungi. The trophic modes of the fungi were more complex than that of the bacteria. 10 different fungal trophic modes and 25 dominant functional fungal groups were disclosed, and the saprophytic community was found to be the dominant group. These fungi could accelerate the decomposition of environmental organic matter in the environment by producing hydrolases and oxidases. Chytridiomycota with the function of producing and regulating secondary metabolites were the representative fungi in all samples. Our findings would provide theoretical basis and research clues for understanding the relationship between weathering of granite lithium and fungal communities.
Collapse
Affiliation(s)
- Qiaoyun Jiang
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Ting Zhao
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zixuan Kong
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Bingqing Kong
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Junyao Chen
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Bin Zhao
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Yumei Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Xiangjie Cui
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhe Yin
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Xiancai Lu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Dongmei Zhang
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
4
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Li L, Wang H, Hu J, Fang Y, Zhou F, Yu J, Chi R, Xiao C. Comparison of microbial communities in unleached and leached ionic rare earth mines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17511-17523. [PMID: 38342835 DOI: 10.1007/s11356-024-32221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
The leaching of ionic rare earth elements has caused serious environmental pollution and ecological damage. Microorganisms play a crucial role in soil ecosystems and are one of the most important components of these systems. However, there are fewer studies related to the changes that occur in microbial community structure and diversity before and after leaching in ionic rare earth mines. In this study, Illumina high-throughput sequencing was used to examine the diversity and composition of soil microorganisms on the summit, hillside, and foot valley surfaces of unleached and leached mines after in situ leaching. The results showed that microbial diversity and abundance in the surface soil of the unleached mine were higher than those in the leached mine, and leaching had a significant impact on the microbial community of mining soil. pH was the main factor affecting the microbial community. Proteobacteria, Actinobacteriota, and Chloroflexi were phyla that showed high abundance in the soil. Network analysis showed that microbial interactions can improve microbial adaptation and stability in harsh environments. PICRUSt2 predictions indicate functional changes and linkages in soil microbial communities.
Collapse
Affiliation(s)
- Lingyan Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haitao Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yun Fang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
6
|
Liu J, Li C, Ma W, Wu Z, Liu W, Wu W. Exploitation alters microbial community and its co-occurrence patterns in ionic rare earth mining sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165532. [PMID: 37454857 DOI: 10.1016/j.scitotenv.2023.165532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The exploitation of ion-adsorption rare earth elements (REEs) deposits results in serious ecological and environmental problems, which has attracted much attention. However, the influences of exploitation on the prokaryotic communities and their complex interactions remain poorly understood. In the present study, bacterial and archaeal communities, as well as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), in and around REEs mining area were investigated through high throughput sequencing and quantitative polymerase chain reaction (qPCR). Our results indicated that mining soil was characterized by poor soil structure, nutrient deficiency, and high concentrations of residual REEs. Oligotrophic bacteria (e.g., Chloroflexi and Acidobacteriota) were dominant in unexploited soil and mining soil, while copiotrophic bacteria (Proteobacteria and Actinobacteriota) were more abundant in surrounding soil. Nutrient was the key factor affecting microbial variation and abundance in mining soil. The bacterial community was more sensitive to REEs, while the archaeal communities were relatively stable. As the key members for ammonia oxidation, AOA outnumbered AOB in all the soil types, and the former was significantly influenced by pH, nutrients, and TREEs in mining soil. The microbial co-occurrence network analysis demonstrated that exploitation significantly influenced topological properties, decreased the complexity, and resulted in a much unstable network, leading to a more fragile microbial ecosystem in mining areas. Notably, the abundance of keystone taxa decreased after exploitation, and oligotrophic groups (Chloroflexi) replaced copiotrophic groups (Proteobacteria and Actinobacteriota) as the key to rebuilt a co-occurrence network, suggesting potentially important roles in maintaining network stability. The current results are of great significance to the ecological risk assessment of REEs exploitation.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341099, China.
| | - Chun Li
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wendan Ma
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zengxue Wu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
7
|
Yang D, Lin X, Wei Y, Li Z, Zhang H, Liang T, Yang S, Tan H. Can endophytic microbial compositions in cane roots be shaped by different propagation methods. PLoS One 2023; 18:e0290167. [PMID: 37582116 PMCID: PMC10427008 DOI: 10.1371/journal.pone.0290167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
In practical production, cane stems with buds are generally used as seed for propagation. However, long-terms cane stems only easily lead to some problems such as disease sensitivity, quality loss, etc. Recently, cane seedings, which are produced by tissue culture were used in sugarcane production, but few studies on cane health related to tissue culture seedings. Therefore, to evaluate the immunity and health of sugarcanes growing from different reproduction modes, the endophytic microbial compositions in cane roots between stem and tissue culture seedlings were analyzed using high-throughput techniques. The results showed that the endophytic microbial compositions in cane roots were significant differences between stem and tissue culture seedlings. At the genus level, Pantoea, Bacillus, Streptomyces, Lechevalieria, Pseudomonas, Nocardioides, unclassified_f__Comamonadaceae enriched as the dominant endophytic bacterial genera, and Rhizoctonia, Sarocladium, Scytalidium, Wongia, Fusarium, unclassified_f__Phaeosphaer, unclassified_c__Sordariom, unclassified_f__Stachybot, Poaceascoma, Microdochium, Arnium, Echria, Mycena and Exophiala enriched as the dominant endophytic fungal genera in cane roots growing from the tissue culture seedlings. In contrast, Mycobacterium, Massilia, Ralstonia, unclassified_f__Pseudonocardiacea, norank_f__Micropepsaceae, Leptothrix and Bryobacter were the dominant endophytic bacterial genera, and unclassified_k__Fungi, unclassified_f__Marasmiaceae, Talaromyces, unclassified_c__Sordariomycetes and Trichocladium were the dominant endophytic fungal genera in cane roots growing from stem seedlings. Additionally, the numbers of bacterial and fungal operational taxonomic units (OTUs) in cane roots growing from tissue culture seedlings were significantly higher than those of stem seedlings. It indicates that not only the endophytic microbial compositions in cane roots can be shaped by different propagation methods, but also the stress resistance of sugarcanes can be improved by the tissue culture propagation method.
Collapse
Affiliation(s)
- Da Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Xinru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Yufei Wei
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Zujian Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Haodong Zhang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Tian Liang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Hongwei Tan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
8
|
Shu W, Li F, Zhang Q, Li Z, Qiao Y, Audet J, Chen G. Pollution caused by mining reshaped the structure and function of bacterial communities in China's largest ion-adsorption rare earth mine watershed. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131221. [PMID: 36934702 DOI: 10.1016/j.jhazmat.2023.131221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Ion-adsorption rare earth mining results in the production of high levels of nitrogen, multiple metals, and strong acidic mine drainage (AMD), the impacts of which on microbial assembly and ecological functions remain unclear. To address this knowledge gap, we collected river sediments from the watershed of China's largest ion-adsorption rare earth mine and analyzed the bacterial community's structure, function, and assembly mechanisms. Results showed that bacterial community assembly was weakly affected by spatial dispersion, and dispersal limitation and homogeneous selection were the dominant ecological processes, with the latter increasing with pollution gradients. Bacterial alpha diversity decreased with pollution, which was mainly influenced by lead (Pb), pH, rare earth elements (REEs), and electrical conductivity (EC). However, bacteria developed survival strategies (i.e., enhanced acid tolerance and interspecific competition) to adapt to extreme environments, sustaining species diversity and community stability. Community structure and function showed a consistent response to the polluted environment (r = 0.662, P = 0.001). Enhanced environmental selection reshaped key microbial-mediated biogeochemical processes in the mining area, in particular weakening the potential for microbial denitrification. These findings provide new insights into the ecological response of microbes to compound pollution and offer theoretical support for proposing effective remediation and management strategies for polluted areas.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China; Sino-Danish Centre for Education and Research, 101408 Beijing, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| |
Collapse
|
9
|
Tao Y, Shen L, Han S, Li Z, Cui Y, Lin Y, Qu J, Zhang Y. Metagenomic study of carbon metabolism in black soil microbial communities under lead-lanthanum stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130666. [PMID: 36580779 DOI: 10.1016/j.jhazmat.2022.130666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pollution of soil environments with heavy metals (HMs) and rare earth elements (REEs) cannot be ignored. We aimed to determine the effects of lead combined with lanthanum (Pb-La) on microbial community structure, carbon metabolism, and differences in carbon source utilization in black soils using EcoPlates™ and a macrogenomic approach. We found that Pb and La contents and the microbial community structure together influence and shape the response of soil carbon metabolism to Pb-La. Compared with controls, microorganisms under pollution stress preferentially use phenolic and carboxylic acids as growth carbon sources. Under Pb-La stress, the relative abundance of Proteobacteria significantly increased, thereby selectively displacing heavy metal-sensitive phyla, such as Chloroflexi, Acidobacteria, and Thaumarchaeota. Altered functional potential of the microbial carbon cycle manifested as differences in carbon metabolism, methane metabolism, and carbon fixation pathways. Furthermore, an appropriate concentration of La can reduce the environmental toxicity of Pb, whereas a high concentration of La has synergistic toxicity with Pb. These findings have important implications for understanding the impact of HM-REE contamination in microbial communities and the functions associated with carbon metabolism in black soils.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lu Shen
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yulong Lin
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
Li B, Liu X, Zhu D, Su H, Guo K, Sun G, Li X, Sun L. Crop diversity promotes the recovery of fungal communities in saline-alkali areas of the Western Songnen Plain. Front Microbiol 2023; 14:1091117. [PMID: 36819047 PMCID: PMC9930164 DOI: 10.3389/fmicb.2023.1091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Phytoremediation is an effective strategy for saline land restoration. In the Western Songnen Plain, northeast China, soil fungal community recovery for saline phytoremediation has not been well documented among different cropping patterns. In this study, we tested how rotation, mixture, and monoculture cropping patterns impact fungal communities in saline-alkali soils to assess the variability between cropping patterns. Methods The fungal communities of the soils of the different cropping types were determined using Illumina Miseq sequencing. Results Mixture and rotation promoted an increase in operational taxonomic unit (OTU) richness, and OTU richness in the mixture system decreased with increasing soil depth. A principal coordinate analysis (PCoA) showed that cropping patterns and soil depths influenced the structure of fungal communities, which may be due to the impact of soil chemistry. This was reflected by soil total nitrogen (TN) and electrical conductivity (EC) being the key factors driving OTU richness, while soil available potassium (AK) and total phosphorus (TP) were significantly correlated with the relative abundance of fungal dominant genus. The relative abundance of Leptosphaerulina, Alternaria, Myrothecium, Gibberella, and Tetracladium varied significantly between cropping patterns, and Leptosphaerulina was significantly associated with soil chemistry. Soil depth caused significant differences in the relative abundance of Fusarium in rotation and mixture soils, with Fusarium more commonly active at 0-15 cm deep soil. Null-model analysis revealed that the fungal community assembly of the mixture soils in 0-15 cm deep soil was dominated by deterministic processes, unlike the other two cropping patterns. Furthermore, fungal symbiotic networks were more complex in rotation and mixture than in monoculture soils, reflected in more nodes, more module hubs, and connectors. The fungal networks in rotation and mixture soils were more stable than in monoculture soils, and mixture networks were obviously more connected than rotations. FUNGuild showed that the relative proportion of saprotroph in rotation and mixture was significantly higher than that in monocultures. The highest proportion of pathotroph and symbiotroph was exhibited in rotation and mixture soils, respectively. Discussion Overall, mixture is superior to crop rotation and monocultures in restoring fungal communities of the saline-alkali soils of the Western Songnen Plain, northeast China.
Collapse
Affiliation(s)
- Bin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Dan Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Heng Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China,School of Forestry, Northeast Forestry University, Harbin, China,*Correspondence: Xin Li, ✉
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China,Lei Sun, ✉
| |
Collapse
|