1
|
Wang B, Hu K, Li C, Zhang Y, Hu C, Liu Z, Ding J, Chen L, Zhang W, Fang J, Zhang H. Geographic distribution of bacterial communities of inland waters in China. ENVIRONMENTAL RESEARCH 2024; 249:118337. [PMID: 38325783 DOI: 10.1016/j.envres.2024.118337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Microorganisms are integral to freshwater ecological functions and, reciprocally, their activity and diversity are shaped by the ecosystem state. Yet, the diversity of bacterial community and its driving factors at a large scale remain elusive. To bridge this knowledge gap, we delved into an analysis of 16S RNA gene sequences extracted from 929 water samples across China. Our analyses revealed that inland water bacterial communities showed a weak latitudinal diversity gradient. We found 530 bacterial genera with high relative abundance of hgcI clade. Among them, 29 core bacterial genera were identified, that is strongly linked to mean annual temperature and nutrient loadings. We also detected a non-linear response of bacterial network complexity to the increasing of human pressure. Mantel analysis suggested that MAT, HPI and P loading were the major factors driving bacterial communities in inland waters. The map of taxa abundance showed that the abundant CL500-29 marine group in eastern and southern China indicated high eutrophication risk. Our findings enhance our understanding of the diversity and large-scale biogeographic pattern of bacterial communities of inland waters and have important implications for microbial ecology.
Collapse
Affiliation(s)
- Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Kaiming Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chuqiao Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Lin Chen
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Wei Zhang
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Jing Fang
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Qi L, Li R, Wu Y, Ibeanusi V, Chen G. Spatial distribution and assembly processes of bacterial communities in northern Florida freshwater springs. ENVIRONMENTAL RESEARCH 2023; 235:116584. [PMID: 37454793 DOI: 10.1016/j.envres.2023.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Freshwater microorganisms are an essential component of the global biogeochemical cycle and a significant contributory factor in water quality. Unraveling the mechanisms controlling microbial community spatial distribution is crucial for the assessment of water quality and health of aquatic ecosystems. This research provided a comprehensive analysis of microbial communities in Florida freshwater springs. The 16S rRNA gene sequencing and bioinformatics analyses revealed the bacterial compositional heterogeneity as well as numerous unique ASVs and biomarkers in different springs. Statistical analysis showed both geographic distance and environmental variables contributed to regional bacterial community variation, while nitrate was the dominant environmental stressor that shaped the bacterial communities. The phylogenetic bin-based null model characterized both deterministic and stochastic factors contributing to community assembly in Florida springs, with the majority of bins dominated by ecological drift. Mapping of predicted pathways to the MetaCyc database revealed the inconsistency between microbial taxonomic and functional profiles, implying the functional redundancy pattern. Collectively, our work sheds insights into the microbial spatial distribution, community assembly, and function traits in one of the world's most productive aquifers. Therefore, this work provides a unique view of the health of Florida's artesian springs and offers new perspectives for freshwater quality assessment and sustainable management.
Collapse
Affiliation(s)
- Lin Qi
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| | - Runwei Li
- Department of Civil Engineering, College of Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yudi Wu
- College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor Ibeanusi
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
3
|
Vipindas PV, Jabir T, Venkatachalam S, Yang EJ, Jain A, Krishnan KP. Vertical segregation and phylogenetic characterization of archaea and archaeal ammonia monooxygenase gene in the water column of the western Arctic Ocean. Extremophiles 2023; 27:24. [PMID: 37668803 DOI: 10.1007/s00792-023-01310-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Archaea constitute a substantial fraction of marine microbial biomass and play critical roles in the biogeochemistry of oceans. However, studies on their distribution and ecology in the Arctic Ocean are relatively scarce. Here, we studied the distributions of archaea and archaeal ammonia monooxygenase (amoA) gene in the western Arctic Ocean, using the amplicon sequencing approach from the sea surface to deep waters up to 3040 m depth. A total of five archaeal phyla, Nitrososphaerota, "Euryarchaeota", "Halobacteriota," "Nanoarchaeota", and Candidatus Thermoplasmatota, were detected. We observed a clear, depth-dependent vertical segregation among archaeal communities. Ca. Thermoplasmatota (66.8%) was the most dominant phylum in the surface waters. At the same time, Nitrososphaerota (55.9%) was dominant in the deep waters. Most of the amoA gene OTUs (99%) belonged to the Nitrosopumilales and were further clustered into five subclades ("NP-Alpha", "NP-Delta", "NP-Epsilon", "NP-Gamma", and "NP-Theta"). "NP-Epsilon" was the most dominant clade throughout the water column and "NP_Alpha" showed higher abundance only in the deeper water. Salinity and inorganic nutrient concentrations were the major factors that determined the vertical segregation of archaea. We anticipate that the observed differences in the vertical distribution of archaea might contribute to the compartmentalization of dark carbon fixation and nitrification in deeper water and organic matter degradation in surface waters of the Arctic Ocean.
Collapse
Affiliation(s)
- Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India.
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| | - Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| | - Eun Jin Yang
- Division of Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Anand Jain
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| |
Collapse
|