1
|
Fitz Axen AJ, Kim MS, Klopfenstein NB, Ashiglar S, Hanna JW, Bennett P, Stewart JE. Fire-associated microbial shifts in soils of western conifer forests with Armillaria root disease. Appl Environ Microbiol 2024:e0131224. [PMID: 39495026 DOI: 10.1128/aem.01312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Fires in coniferous forests throughout the northern United States alter ecosystem processes and ecological communities, including the diversity and composition of microbial communities living in the soil. In addition to its influence on ecosystem processes and functions, the soil microbiome can interact with soilborne pathogens to facilitate or suppress plant disease development. Altering the microbiome composition to promote taxa that inhibit pathogenic activity has been suggested as a management strategy for forest diseases, including Armillaria root disease caused by Armillaria solidipes, which causes growth loss and mortality of conifers. These forest ecosystems are experiencing increased wildfire burn severity that could influence A. solidipes activity and interactions of the soil microbiome with Armillaria root disease. In this research, we examine changes to the soil microbiome following three levels of burn severity in a coniferous forest in northern Idaho, United States, where Armillaria root disease is prevalent. We further determine how these changes correspond to the soil microbiomes associated with the pathogen A. solidipes, and a putatively beneficial species, A. altimontana. At 15-months post-fire, we found significant differences in richness and diversity between bacterial communities associated with unburned and burned areas, yet no significant changes to these metrics were found in fungal communities following fire. However, both bacterial and fungal communities showed compositional changes associated with burn severity, including microbial taxa with altered relative abundance. Further, significant differences in the relative abundance of certain microbial taxa in communities associated with the three burn severity levels overlapped with taxa associated with various Armillaria spp. Following severe burn, we observed a decreased relative abundance of beneficial ectomycorrhizal fungi associated with the microbial communities of A. altimontana, which may contribute to the antagonistic activity of this soil microbial community. Additionally, A. solidipes and associated microbial taxa were found to dominate following high-severity burns, suggesting that severe fires provide suitable environmental conditions for these species. Overall, our results suggest that shifts in the soil microbiome and an associated increase in the activity of A. solidipes following high-severity burns in similar conifer forests may result in priority areas for monitoring and proactive management of Armillaria root disease. IMPORTANCE With its influence on ecosystem processes and functions, the soil microbiome can interact with soilborne pathogens to facilitate or suppress plant disease development. These forest ecosystems are experiencing increased wildfire frequency and burn severity that could influence the fungal root pathogen, Armillaria solidipes, and interactions with the soil microbiome. We examined changes to the soil microbiome following three levels of burn severity, and examined how these changes correspond with A. solidipes, and a putatively beneficial species, A. altimontana. Following severe burn, there was a decreased relative abundance of ectomycorrhizal fungi associated A. altimontana. A. solidipes and associated microbial taxa dominated following high-severity burns, suggesting that severe fires provide suitable environmental conditions for these species. Our results suggest that shifts in the soil microbiome and an associated increase in the activity of A. solidipes following high-severity burns in conifer forests may result in priority areas for monitoring and proactive management of Armillaria root disease.
Collapse
Affiliation(s)
- Ada J Fitz Axen
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Mee-Sook Kim
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Ned B Klopfenstein
- U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| | - Sara Ashiglar
- U.S. Department of Agriculture, Forest Service, Nez Perce-Clearwater National Forests, Potlach, Idaho, USA
| | - John W Hanna
- U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| | - Patrick Bennett
- U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Ding S, Liang Y, Wang M, Hu R, Song Z, Xu X, Zheng L, Shen Z, Chen C. Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134110. [PMID: 38522194 DOI: 10.1016/j.jhazmat.2024.134110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Novel combination strategies of nanomaterials (NMs) and plant growth-promoting bacteria (PGPB) may facilitate soil remediation and plant growth. However, the efficiency of the NM-PGPB combination and interactions among NMs, PGPB, and plants are still largely unknown. We used multiwalled carbon nanotubes (MWCNTs) and zero-valent iron (nZVI) combined with Bacillus sp. PGP5 to enhance the phytoremediation efficiency of Solanum nigrum on heavy metal (HM)-contaminated soil. The NM-PGPB combination showed the best promoting effect on plant growth, which also had synergistic effects on the bioaccumulation of HMs in S. nigrum. The MWCNT-PGP5 combination increased the Cd, Pb, and Zn removal efficiency of S. nigrum by 62.03%, 69.44%, and 61.31%, respectively. The underlining causes of improved plant growth and phytoremediation by NMs-PGPB combination were further elucidated. NM application promoted PGPB survival in soil. Compared with each single application, the combined application minimized disturbance to plant transcription levels and rhizosphere microbial community, resulting in the best performance on soil remediation and plant growth. The NM-PGPB-induced changes in the microbial community and root gene expression were necessary for plant growth promotion. This work reveals the "less is more" advantage of the NM-PGPB combination in soil remediation, providing a new strategy for soil management.
Collapse
Affiliation(s)
- Shifeng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinping Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingshuo Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoning Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Liu JJ, Yang XQ, Li ZY, Miao JY, Li SB, Zhang WP, Lin YC, Lin LB. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 14:1309038. [PMID: 38264031 PMCID: PMC10804856 DOI: 10.3389/fpls.2023.1309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Xiao-Qi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Zong-Yang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Jia-Yun Miao
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Shi-Bo Li
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Wen-Ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| |
Collapse
|
4
|
Kim MS, Hanna JW, McDonald GI, Klopfenstein NB. Armillaria altimontana in North America: Biology and Ecology. J Fungi (Basel) 2023; 9:904. [PMID: 37755012 PMCID: PMC10532946 DOI: 10.3390/jof9090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Armillaria altimontana is a fungus (Basidiomycota, Agaricomycetes, Agaricales, and Physalacriaceae) that is generally considered as a weak/opportunistic pathogen or saprophyte on many tree hosts. It widely occurs across the northwestern USA to southern British Columbia, Canada, but relatively little is known about its ecological role in the diverse forest ecosystems where it occurs. This review summarizes the biology and ecology of A. altimontana, including its identification, life cycle, distribution, host associations, and bioclimatic models under climate change.
Collapse
Affiliation(s)
- Mee-Sook Kim
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331, USA
| | - John W. Hanna
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID 83843, USA; (J.W.H.)
| | - Geral I. McDonald
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID 83843, USA; (J.W.H.)
| | - Ned B. Klopfenstein
- Rocky Mountain Research Station, USDA Forest Service, Moscow, ID 83843, USA; (J.W.H.)
| |
Collapse
|
5
|
Wingfield BD, Berger DK, Coetzee MPA, Duong TA, Martin A, Pham NQ, van den Berg N, Wilken PM, Arun-Chinnappa KS, Barnes I, Buthelezi S, Dahanayaka BA, Durán A, Engelbrecht J, Feurtey A, Fourie A, Fourie G, Hartley J, Kabwe ENK, Maphosa M, Narh Mensah DL, Nsibo DL, Potgieter L, Poudel B, Stukenbrock EH, Thomas C, Vaghefi N, Welgemoed T, Wingfield MJ. IMA genome‑F17 : Draft genome sequences of an Armillaria species from Zimbabwe, Ceratocystis colombiana, Elsinoë necatrix, Rosellinia necatrix, two genomes of Sclerotinia minor, short‑read genome assemblies and annotations of four Pyrenophora teres isolates from barley grass, and a long-read genome assembly of Cercospora zeina. IMA Fungus 2022; 13:19. [PMID: 36411457 PMCID: PMC9677705 DOI: 10.1186/s43008-022-00104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brenda D. Wingfield
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Martin P. A. Coetzee
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Anke Martin
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Nam Q. Pham
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Noelani van den Berg
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kiruba Shankari Arun-Chinnappa
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,PerkinElmer Pty Ltd., Level 2, Building 5, Brandon Business Park, 530‑540, Springvale Road, Glen Waverley, VIC 3150 Australia
| | - Irene Barnes
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sikelela Buthelezi
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau 28300 Indonesia
| | - Juanita Engelbrecht
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alice Feurtey
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Arista Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Gerda Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jesse Hartley
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Eugene N. K. Kabwe
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Mkhululi Maphosa
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Deborah L. Narh Mensah
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa ,grid.423756.10000 0004 1764 1672CSIR, Food Research Institute, Accra, Ghana
| | - David L. Nsibo
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Lizel Potgieter
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Barsha Poudel
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Eva H. Stukenbrock
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Chanel Thomas
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Niloofar Vaghefi
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,grid.1008.90000 0001 2179 088XSchool of Agriculture and Food, University of Melbourne, Parkville, VIC 3010 Australia
| | - Tanya Welgemoed
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|