1
|
Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life (Basel) 2020; 10:life10080144. [PMID: 32784399 PMCID: PMC7459996 DOI: 10.3390/life10080144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins’ family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer’s, Type II Diabetes Mellitus, Parkinson’s, and Creutzfeldt–Jakob’s diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Collapse
|
2
|
Symmetry-breaking transitions in the early steps of protein self-assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:175-191. [PMID: 32123956 DOI: 10.1007/s00249-020-01424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
Protein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a heterogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer's disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating distribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1-40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations.
Collapse
|
3
|
Kozak JJ, Gray HB, Garza-López RA. Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 2018; 179:135-145. [PMID: 29222970 PMCID: PMC7222854 DOI: 10.1016/j.jinorgbio.2017.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 11/21/2022]
Abstract
We study the thermal unfolding of amicyanin by quantifying the resiliency of the native state to structural perturbations. Three signatures characterizing stages of unfolding are identified. The first signature, lateral extension of the polypeptide chain, is calculated directly from the reported crystallographic data. Two other signatures, the radial displacement of each residue from Cu(II) and the angular spread in the chain as the protein unfolds, are calculated using crystallographic data in concert with a geometrical model we introduced previously (J.J. Kozak, H. B. Gray, R. A. Garza-López, J. Inorg. Biochem. 155(2016) 44-55). Particular attention is paid to the resiliency of the two beta sheets in amicyanin. The resiliency of residues in the near neighborhood of the Cu center to destabilization provides information on the persistence of the entatic state. Similarly, examining the resiliency of residues intercalated between structured regions (beta sheets, the alpha helix) provides a basis for identifying a "hydrophobic core." A principal focus of our study is to compare results obtained using our geometrical model with the experimental results (C. La Rosa, D. Milardi, D. M. Grasso, M. P. Verbeet, G. W. Canters, L. Sportelli, R. Guzzi, Eur. Biophy. J.30(8),(2002) 559-570) on the denaturation of amicyanin, and we show that our results support a classical model proposed by these authors.
Collapse
Affiliation(s)
- John J Kozak
- DePaul University, 243 South Wabash Ave., Chicago, IL 60604-6116, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Roberto A Garza-López
- Department of Chemistry, Seaver Chemistry Laboratory, Pomona College, Claremont, CA 91711, United States.
| |
Collapse
|
4
|
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. FEBS J 2015; 282:4480-96. [PMID: 26365095 DOI: 10.1111/febs.13503] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
5
|
Resveratrol interferes with the aggregation of membrane-bound human-IAPP: A molecular dynamics study. Eur J Med Chem 2015; 92:876-81. [DOI: 10.1016/j.ejmech.2015.01.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
|
6
|
Dow BA, Sukumar N, Matos JO, Choi M, Schulte A, Tatulian SA, Davidson VL. The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site. Arch Biochem Biophys 2014; 550-551:20-7. [PMID: 24704124 DOI: 10.1016/j.abb.2014.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
The cupredoxin amicyanin possesses a single tryptophan residue, Trp45. Its fluorescence is quenched when copper is bound even though it is separated by 10.1Å. Mutation of Trp45 to Ala, Phe, Leu and Lys resulted in undetectable protein expression. A W45Y amicyanin variant was isolated. The W45Y mutation did not alter the spectroscopic properties or intrinsic redox potential of amicyanin, but increased the pKa value for the pH-dependent redox potential by 0.5 units. This is due to a hydrogen-bond involving the His95 copper ligand which is present in reduced W45Y amicyanin but not in native amicyanin. The W45Y mutation significantly decreased the thermal stability of amicyanin, as determined by changes in the visible absorbance of oxidized amicyanin and in the circular dichroism spectra for oxidized, reduced and apo forms of amicyanin. Comparison of the crystal structures suggests that the decreased stability of W45Y amicyanin may be attributed to the loss of a strong interior hydrogen bond between Trp45 and Tyr90 in native amicyanin which links two of the β-sheets that comprise the overall structure of amicyanin. Thus, Trp45 is critical for stabilizing the structure of amicyanin but it does not influence the electronic properties of the copper which quenches its fluorescence.
Collapse
Affiliation(s)
- Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Narayanasami Sukumar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439, United States.
| | - Jason O Matos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States; Department of Physics, University of Central Florida, Orlando, FL 32816, United States
| | - Moonsung Choi
- Seoul National University of Science and Technology, College of Energy and Biotechnology, Department of Optometry, Seoul 139-743, Republic of Korea
| | - Alfons Schulte
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
7
|
Dynamics and unfolding pathway of chimeric azurin variants: insights from molecular dynamics simulation. J Biol Inorg Chem 2013; 18:739-49. [DOI: 10.1007/s00775-013-1017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
|
8
|
Palmieri M, Malgieri G, Russo L, Baglivo I, Esposito S, Netti F, Del Gatto A, de Paola I, Zaccaro L, Pedone PV, Isernia C, Milardi D, Fattorusso R. Structural Zn(II) Implies a Switch from Fully Cooperative to Partly Downhill Folding in Highly Homologous Proteins. J Am Chem Soc 2013; 135:5220-8. [DOI: 10.1021/ja4009562] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maddalena Palmieri
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Luigi Russo
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Fortuna Netti
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Annarita Del Gatto
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Ivan de Paola
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Carla Isernia
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging-CNR (Catania), Viale A. Doria 6, 95125
Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| |
Collapse
|
9
|
Guzzi R, Sportelli L, Yanagisawa S, Li C, Kostrz D, Dennison C. The influence of active site loop mutations on the thermal stability of azurin from Pseudomonas aeruginosa. Arch Biochem Biophys 2012; 521:18-23. [PMID: 22446157 DOI: 10.1016/j.abb.2012.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
The copper site and overall structures of azurin (AZ) variants in which the amicyanin (AMI) and plastocyanin (PC) metal binding loops have been introduced, AZAMI and AZPC, respectively, are similar to that of AZ, whereas the loop conformations resemble those in the native proteins. To assess the influence of these loop mutations on stability, the thermal unfolding of AZAMI and AZPC has been investigated by differential scanning calorimetry, absorption and fluorescence spectroscopy. The calorimetric profiles of both variants exhibit a complex shape consisting of two endothermic peaks and an exothermic peak. The temperature of the maximum heat of absorption for the single endothermic peak is 82.7°C for AZ, whereas for AZAMI and AZPC the most intense endothermic peaks are at 74.9 and 68.1°C comparable to values for AMI and PC, respectively. Denaturation investigated using the temperature dependence of the absorbance at ∼600nm and Trp emission, also demonstrates decreased stability for both loop mutants. The thermal transition between the native and the denaturated states is irreversible, scan rate dependent and consistent with the two-state irreversible model. The structure of the active-site loop has a dramatic effect on the kinetic stability and the unfolding pathway of cupredoxins.
Collapse
Affiliation(s)
- Rita Guzzi
- Molecular Biophysics Laboratory and CNISM Unit, Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Arena G, Fattorusso R, Grasso G, Grasso GI, Isernia C, Malgieri G, Milardi D, Rizzarelli E. Zinc(II) Complexes of Ubiquitin: Speciation, Affinity and Binding Features. Chemistry 2011; 17:11596-603. [DOI: 10.1002/chem.201101364] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 01/25/2023]
|
11
|
Manetto GD, Grasso DM, Milardi D, Pappalardo M, Guzzi R, Sportelli L, Verbeet MP, Canters GW, La Rosa C. The role played by the alpha-helix in the unfolding pathway and stability of azurin: switching between hierarchic and nonhierarchic folding. Chembiochem 2008; 8:1941-9. [PMID: 17868155 DOI: 10.1002/cbic.200700214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role played by the alpha-helix in determining the structure, the stability and the unfolding mechanism of azurin was addressed by studying a helix-depleted azurin variant produced by site-directed mutagenesis. The protein structure was investigated by CD, 1D (1)H NMR, fluorescence spectroscopy measurements and MD simulations, whilst EPR, UV-visible and cyclic voltammetry experiments were carried out to investigate the geometry and the properties of the Cu(II) site. The effects of the alpha-helix depletion on the thermal stability and the unfolding pathway of the protein were determined by DSC, UV/visible and fluorescence measurements at increasing temperature. The results show that, in the absence of the alpha-helix segment, the overall protein structure is maintained, and that only the Cu site is slightly modified. In contrast, the protein stability is diminished by about 60% with respect to the wild-type azurin. Moreover, the unfolding pathway of the mutant azurin involves the presence of detectable intermediates. In comparison with previous studies concerning other small beta-sheet cupredoxins, the results as a whole support the hypothesis that the presence of the alpha-helix can switch the folding of azurin from a hierarchic to a nonhierarchic mechanism in which the highly conserved beta-sheet core provides a scaffold for cooperative folding of the wild-type protein.
Collapse
Affiliation(s)
- Gaetano D Manetto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 (CT), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bao L, Chatterjee S, Lohmer S, Schomburg D. An irreversible and kinetically controlled process: thermal induced denaturation of L-2-hydroxyisocaproate dehydrogenase from Lactobacillus confusus. Protein J 2007; 26:143-51. [PMID: 17205397 DOI: 10.1007/s10930-006-9055-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The thermal denaturation of Lactobacillus confusus L-2-Hydroxyisocaproate Dehydrogenase (L-HicDH) has been studied by Differential Scanning Calorimetry (DSC). The stability of this enzyme has been investigated at different pH conditions. The results of this study indicate that the thermal denaturation of this enzyme is irreversible and the T(m) is dependent on the scan-rate, which suggests that the denaturation process of L-HicDH is kinetically determined. The heat capacity function of L-HicDH shows a single peak with the T(m) values between 52.14 degrees C and 55.89 degrees C at pH 7.0 at different scan rates. These results indicate that the whole L-HicDH could unfold as a single cooperative unit, and intersubunit interactions of this homotetrameric enzyme must play a significant role in the stabilization of the whole enzyme. The rate constant of the unfolding is analyzed as a first order kinetic constant with the Arrhenius equation, and the activation energy has been calculated. The variation of the activation energy values obtained with different methods does not support the validity of the one-step irreversible model. The denaturation pathway was described by a three-state model, N --> U --> F, in which the dissociation of the tetramer takes place as an irreversible step before the irreversible unfolding of the monomers. The calorimetric enthalpy associated with the irreversible dissociation and the calorimetric enthalpy associated with the unfolding of the monomer were obtained from the best fitting procedure. Thermal unfolding of L-HicDH was also studied using Circular Dichroism (CD) spectroscopy. Both methods yielded comparable values.
Collapse
Affiliation(s)
- Lide Bao
- Institute for Biochemistry, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany.
| | | | | | | |
Collapse
|
13
|
Stirpe A, Sportelli L, Guzzi R. A comparative investigation of the thermal unfolding of pseudoazurin in the Cu(II)-holo and apo form. Biopolymers 2007; 83:487-97. [PMID: 16881076 DOI: 10.1002/bip.20579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contribution of the copper ion to the stability and to the unfolding pathway of pseudoazurin was investigated by a comparative analysis of the thermal unfolding of the Cu(II)-holo and apo form of the protein. The unfolding has been followed by calorimetry, fluorescence, optical density, and electron paramagnetic resonance (EPR) spectroscopy. The thermal transition of Cu(II)-holo pseudoazurin is irreversible and occurs between 60.0 and 67.3 degrees C, depending on the scan rate and technique used. The denaturation pathway of Cu(II)-holo pseudoazurin can be described by the Lumry-Eyring model: N --> U --> [corrected] F; the protein reversibly goes from the native (N) to the unfolded (U) state, and then irreversibly to the final (F) state. The simulation of the experimental calorimetric profiles, according to this model, allowed us to determine the thermodynamic and kinetic parameters of the two steps. The DeltaG value calculated for the Cu(II)-holo pseudoazurin is 39.2 kJ.mol(-1) at 25 degrees C. The sequence of events in the denaturation process of Cu(II)-holo pseudoazurin emergence starts with the disruption of the copper site and the hydrophobic core destabilization followed by the global protein unfolding. According to the EPR findings, the native type-1 copper ion shows type-2 copper features after the denaturation. The removal of the copper ion (apo form) significantly reduces the stability of the protein as evidenced by a DeltaG value of 16.5 kJ.mol(-1) at 25 degrees C. Moreover, the apo Paz unfolding occurs at 41.8 degrees C and is compatible with a two-state reversible process N --> [corrected] U.
Collapse
Affiliation(s)
- Andrea Stirpe
- Dipartimento di Fisica e Unità CNISM, Laboratorio di Biofisica Molecolare, Università della Calabria, Ponte P. Bucci - Cubo 30C, I-87036, Arcavacata di Rende (CS), Italy
| | | | | |
Collapse
|
14
|
Ma JK, Bishop GR, Davidson VL. The ligand geometry of copper determines the stability of amicyanin. Arch Biochem Biophys 2005; 444:27-33. [PMID: 16289023 DOI: 10.1016/j.abb.2005.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/17/2022]
Abstract
Solution differential scanning calorimetry (DSC) of oxidized amicyanin, a Type I copper protein, at pH 7.5 reveals two thermal transitions. The major transition at 67.7 degrees C corresponds to the disruption of the Cys(92) thiolate to Cu(II) charge transfer as evidenced by a corresponding temperature-dependent loss of amicyanin visible absorbance. A minor transition at 75.5 degrees C describes the further irreversible protein unfolding. Reduced amicyanin exhibits a pH-dependent change of the copper ligand geometry. At pH 8.5 where the Type I tetrahedral geometry is maintained, DSC reveals two thermal transitions with T(m) values similar to that of oxidized amicyanin. At pH 6.2 where the Cu(I) coordination is trigonal planar, reduced amicyanin exhibits a single thermal transition with a lower T(m) of 64.0 degrees C. Apoamicyanin, from which copper has been removed, also exhibits a single thermal transition but with a much lower T(m) of 51.8 degrees C. Thus, the thermal stability of amicyanin is dictated both by the presence or absence of copper and its ligand geometry, but not its redox state. The physiological relevance of these data is discussed.
Collapse
Affiliation(s)
- John K Ma
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
15
|
Stirpe A, Guzzi R, Wijma H, Verbeet MP, Canters GW, Sportelli L. Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1752:47-55. [PMID: 16085470 DOI: 10.1016/j.bbapap.2005.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Nitrite reductase (NiR) is a multicopper protein, with a trimeric structure containing two types of copper site: type 1 is present in each subunit whereas type 2 is localized at the subunits interface. The paper reports on the thermal behaviour of wild type NiR from Alcaligenes faecalis S-6. The temperature-induced changes of the copper centres are characterized by optical spectroscopy and electron paramagnetic resonance spectroscopy, and by establishing the thermal stability by differential scanning calorimetry. The calorimetric profile of the enzyme shows a single endothermic peak with maximum heat absorption at T(m) approximately 100 degrees C, revealing an exceptional thermal stability. The thermal transition is irreversible and the scan rate dependence of the calorimetric trace indicates that the denaturation of NiR is kinetically controlled. The divergence of the activation energy values determined by different methods is used as a criterion for the inapplicability of the one-step irreversible model. The best fit of the DSC profiles is obtained when the classical Lumry-Eyring model, N<-->U-->F, is considered. The simulation results indicate that the irreversible step prevails on the reversible one. Moreover, it is found that the conformational changes within the type-1 copper environments precede the denaturation of the whole protein. No evidence of protein dissociation within the temperature range investigated was observed.
Collapse
Affiliation(s)
- Andrea Stirpe
- Dipartimento di Fisica e Unità INFM, Laboratorio di Biofisica Molecolare, Università della Calabria, Ponte P. Bucci-Cubo 31C, I-87036, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | |
Collapse
|
16
|
Guzzi R, Andolfi L, Cannistraro S, Verbeet MP, Canters GW, Sportelli L. Thermal stability of wild type and disulfide bridge containing mutant of poplar plastocyanin. Biophys Chem 2004; 112:35-43. [PMID: 15501574 DOI: 10.1016/j.bpc.2004.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/28/2004] [Accepted: 07/02/2004] [Indexed: 11/24/2022]
Abstract
A comparative study of the thermal stability of wild type poplar plastocyanin and of a mutant form containing a disulfide bridge between residues 21 and 25 was performed using differential scanning calorimetry and optical spectroscopic techniques. For wild type plastocyanin the transition temperature, determined from the calorimetric profiles, is 62.7 degrees C at the scan rate of 60 degrees C/h, whereas for the mutant it is reduced to 58.0 degrees C. In both cases, the endothermic peak is followed by an exothermic one at higher temperatures. The unfolding process monitored by optical absorption at 596 nm also reveals a reduced thermal stability of the mutated plastocyanin compared to the wild type protein, with transition temperatures of 54.8 and 58.0 degrees C, respectively. For both proteins, the denaturation process was found to be irreversible and dependent on the scan rate preventing the thermodynamic analysis of the unfolding process. In parallel, small conformational changes between wild type and mutant plastocyanin emerge from fluorescence spectroscopy measurements. Here, a difference in the interaction of the two proteins between the microenvironment surrounding the fluorophores and the solvent was proposed. The destabilization observed in the disulfide containing mutant of plastocyanin suggests that the double mutation, Ile21Cys and Glu25Cys, introduces strain into the protein which offsets the stabilizing effect expected from the formation of a covalent crosslink.
Collapse
Affiliation(s)
- Rita Guzzi
- Dipartimento di Fisica and Unità INFM, Laboratorio di Biofisica Molecolare, Università della Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Weijers M, Barneveld PA, Cohen Stuart MA, Visschers RW. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics. Protein Sci 2004; 12:2693-703. [PMID: 14627731 PMCID: PMC2366979 DOI: 10.1110/ps.03242803] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly pure ovalbumin, the decrease in nondenatured native protein showed first-order dependence. The activation energy obtained with different techniques varied between 430 and 490 kJ*mole(-1). First-order behavior was studied in detail using differential scanning calorimetry. The calorimetric traces were irreversible and highly scan rate-dependent. The shape of the thermograms as well as the scan rate dependence can be explained by assuming that the thermal denaturation takes place according to a simplified kinetic process where N is the native state, D is denatured (or another final state) and k a first-order kinetic constant that changes with temperature, according to the Arrhenius equation. A kinetic model for the temperature-induced denaturation and aggregation of ovalbumin is presented. Commercially obtained ovalbumin was found to contain an intermediate-stable fraction (IS) of about 20% that was unable to form aggregates. The denaturation of this fraction did not satisfy first-order kinetics.
Collapse
Affiliation(s)
- Mireille Weijers
- Wageningen Centre for Food Sciences, Diedenweg 20, 6700 AN Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Sandberg A, Harrison DJ, Karlsson BG. Thermal denaturation of spinach plastocyanin: effect of copper site oxidation state and molecular oxygen. Biochemistry 2003; 42:10301-10. [PMID: 12939160 DOI: 10.1021/bi034371e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thermal denaturation of the cupredoxin plastocyanin (PC) from spinach has been studied with the aim of improving the understanding of factors involved in the conformational stability of antiparallel beta-sheet proteins. Studies using differential scanning calorimetry have been complemented with nuclear magnetic resonance spectroscopy, absorbance spectroscopy, dynamic light scattering, and mass spectrometry in elucidation of the effect of the copper-site oxidation state on the irreversible thermal denaturation process. Our results indicate that copper-catalyzed oxidation of the metal-ligating cysteine is the sole factor resulting in thermal irreversibility. However, this can be prevented in reduced protein by the removal of molecular oxygen. Application of a two-state equilibrium transition model to the folding process thus allowed the extraction of thermodynamic parameters for the reduced protein (Delta(trs)H = 494 kJ mol(-1), DeltaH(vH) = 343 kJ mol(-1), and T(m) = 71 degrees C). However, anaerobically denatured oxidized protein and all aerobically denatured species undergo covalent modification as a result of the copper-catalyzed oxidation of the metal-ligating cysteine residue resulting in the formation of both oxidized monomers and disulfide-linked dimers. On the basis of these results, a general mechanism for the irreversible thermal denaturation of cupredoxins is proposed. The results presented here also indicate that PC, as opposed to the previously characterized homologous protein azurin, unfolds via at least one significantly populated intermediate state (DeltaH(vH)/Delta(trs)H = 0.7) despite the almost identical native state topologies of these proteins. These findings will aid the characterization of the stability of PC and other cupredoxins and possibly of all cysteine-ligating metal-binding proteins.
Collapse
Affiliation(s)
- Anders Sandberg
- Department of Chemistry, University of Göteborg, Box 462, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|