1
|
Lee M, Park SH, Joo KM, Kwon JY, Lee KH, Kang K. Drosophila HCN mediates gustatory homeostasis by preserving sensillar transepithelial potential in sweet environments. eLife 2024; 13:RP96602. [PMID: 39073076 PMCID: PMC11286260 DOI: 10.7554/elife.96602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.
Collapse
Affiliation(s)
- MinHyuk Lee
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical CenterSuwonRepublic of Korea
- Department of Biological Sciences, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Se Hoon Park
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical CenterSuwonRepublic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Kyung-Hoon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical CenterSuwonRepublic of Korea
| | - KyeongJin Kang
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
2
|
Raiser G, Galizia CG, Szyszka P. Olfactory receptor neurons are sensitive to stimulus onset asynchrony: implications for odor source discrimination. Chem Senses 2024; 49:bjae030. [PMID: 39133054 PMCID: PMC11408607 DOI: 10.1093/chemse/bjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/13/2024] Open
Abstract
In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.
Collapse
Affiliation(s)
- Georg Raiser
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- International Max-Planck Research School for Organismal Biology, Konstanz, Germany
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Paul Szyszka
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Tiraboschi E, Leonardelli L, Segata G, Haase A. Parallel Processing of Olfactory and Mechanosensory Information in the Honey Bee Antennal Lobe. Front Physiol 2021; 12:790453. [PMID: 34950059 PMCID: PMC8691435 DOI: 10.3389/fphys.2021.790453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
In insects, neuronal responses to clean air have so far been reported only episodically in moths. Here we present results obtained by fast two-photon calcium imaging in the honey bee Apis mellifera, indicating a substantial involvement of the antennal lobe, the first olfactory neuropil, in the processing of mechanical stimuli. Clean air pulses generate a complex pattern of glomerular activation that provides a code for stimulus intensity and dynamics with a similar level of stereotypy as observed for the olfactory code. Overlapping the air pulses with odor stimuli reveals a superposition of mechanosensory and odor response codes with high contrast. On the mechanosensitive signal, modulations were observed in the same frequency regime as the oscillatory motion of the antennae, suggesting a possible way to detect odorless airflow directions. The transduction of mechanosensory information via the insect antennae has so far been attributed primarily to Johnston's organ in the pedicel of the antenna. The possibility that the antennal lobe activation by clean air originates from Johnston's organ could be ruled out, as the signal is suppressed by covering the surfaces of the otherwise freely moving and bending antennae, which should leave Johnston's organ unaffected. The tuning curves of individual glomeruli indicate increased sensitivity at low-frequency mechanical oscillations as produced by the abdominal motion in waggle dance communication, suggesting a further potential function of this mechanosensory code. The discovery that the olfactory system can sense both odors and mechanical stimuli has recently been made also in mammals. The results presented here give hope that studies on insects can make a fundamental contribution to the cross-taxa understanding of this dual function, as only a few thousand neurons are involved in their brains, all of which are accessible by in vivo optical imaging.
Collapse
Affiliation(s)
- Ettore Tiraboschi
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Luana Leonardelli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.,Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
| | | | - Albrecht Haase
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
4
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies. PLoS Comput Biol 2021; 17:e1009583. [PMID: 34898600 PMCID: PMC8668107 DOI: 10.1371/journal.pcbi.1009583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
When flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic ("ephaptic") interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla. We find that NSIs improve mixture ratio detection and plume structure sensing and do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. The best performance is achieved when both mechanisms work in synergy. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.
Collapse
Affiliation(s)
- Mario Pannunzi
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
5
|
Ng R, Wu ST, Su CY. Neuronal Compartmentalization: A Means to Integrate Sensory Input at the Earliest Stage of Information Processing? Bioessays 2020; 42:e2000026. [PMID: 32613656 PMCID: PMC7864560 DOI: 10.1002/bies.202000026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Indexed: 01/08/2023]
Abstract
In numerous peripheral sense organs, external stimuli are detected by primary sensory neurons compartmentalized within specialized structures composed of cuticular or epithelial tissue. Beyond reflecting developmental constraints, such compartmentalization also provides opportunities for grouped neurons to functionally interact. Here, the authors review and illustrate the prevalence of these structural units, describe characteristics of compartmentalized neurons, and consider possible interactions between these cells. This article discusses instances of neuronal crosstalk, examples of which are observed in the vertebrate tastebuds and multiple types of arthropod chemosensory hairs. Particular attention is paid to insect olfaction, which presents especially well-characterized mechanisms of functional, cross-neuronal interactions. These examples highlight the potential impact of peripheral processing, which likely contributes more to signal integration than previously considered. In surveying a wide variety of structural units, it is hoped that this article will stimulate future research that determines whether grouped neurons in other sensory systems can also communicate to impact information processing.
Collapse
Affiliation(s)
| | | | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies.. [DOI: 10.1101/2020.07.23.217216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractWhen flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic (“ephaptic”) interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla.We found that NSIs improve mixture ratio detection and plume structure sensing and they do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.Author summaryMyelin is important to isolate neurons and avoid disruptive electrical interference between them; it can be found in almost any neural assembly. However, there are a few exceptions to this rule and it remains unclear why. One particularly interesting case is the electrical interaction between olfactory sensory neurons co-housed in the sensilla of insects. Here, we created a computational model of the early stages of the Drosophila olfactory system and observed that the electrical interference between olfactory receptor neurons can be a useful trait that can help flies, and other insects, to navigate the complex plumes of odorants in their natural environment.With the model we were able to shed new light on the trade-off of adopting this mechanism: We found that the non-synaptic interactions (NSIs) improve both the identification of the concentration ratio in mixtures of odorants and the discrimination of odorant mixtures emanating from a single source from odorants emitted from separate sources – both highly advantageous. However, they also decrease the dynamic range of the olfactory sensory neurons – a clear disadvantage.
Collapse
|
7
|
Ishikawa Y, Fujiwara M, Wong J, Ura A, Kamikouchi A. Stereotyped Combination of Hearing and Wind/Gravity-Sensing Neurons in the Johnston's Organ of Drosophila. Front Physiol 2020; 10:1552. [PMID: 31969834 PMCID: PMC6960095 DOI: 10.3389/fphys.2019.01552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
The antennal ear of the fruit fly, called the Johnston's organ (JO), detects a wide variety of mechanosensory stimuli, including sound, wind, and gravity. Like many sensory cells in insect, JO neurons are compartmentalized in a sensory unit (i.e., scolopidium). To understand how different subgroups of JO neurons are organized in each scolopidial compartment, we visualized individual JO neurons by labeling various subgroups of JO neurons in different combinations. We found that vibration-sensitive (or deflection-sensitive) neurons rarely grouped together in a single scolopidial compartment. This finding suggests that JO neurons are grouped in stereotypical combinations each with a distinct response property in a scolopidium.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Mao Fujiwara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Junlin Wong
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Akari Ura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Zhang Y, Tsang TK, Bushong EA, Chu LA, Chiang AS, Ellisman MH, Reingruber J, Su CY. Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons. Nat Commun 2019; 10:1560. [PMID: 30952860 PMCID: PMC6451019 DOI: 10.1038/s41467-019-09346-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/04/2019] [Indexed: 11/09/2022] Open
Abstract
In the Drosophila antenna, different subtypes of olfactory receptor neurons (ORNs) housed in the same sensory hair (sensillum) can inhibit each other non-synaptically. However, the mechanisms underlying this underexplored form of lateral inhibition remain unclear. Here we use recordings from pairs of sensilla impaled by the same tungsten electrode to demonstrate that direct electrical ("ephaptic") interactions mediate lateral inhibition between ORNs. Intriguingly, within individual sensilla, we find that ephaptic lateral inhibition is asymmetric such that one ORN exerts greater influence onto its neighbor. Serial block-face scanning electron microscopy of genetically identified ORNs and circuit modeling indicate that asymmetric lateral inhibition reflects a surprisingly simple mechanism: the physically larger ORN in a pair corresponds to the dominant neuron in ephaptic interactions. Thus, morphometric differences between compartmentalized ORNs account for highly specialized inhibitory interactions that govern information processing at the earliest stages of olfactory coding.
Collapse
Affiliation(s)
- Ye Zhang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tin Ki Tsang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jürgen Reingruber
- Institut of Biology, École Normale Supérieure (IBENS), 46 rue d'Ulm, 75005, Paris, France.,INSERM U1024, 75005, Paris, France
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Martin F, Alcorta E. Measuring activity in olfactory receptor neurons in Drosophila: Focus on spike amplitude. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:23-41. [PMID: 27614176 DOI: 10.1016/j.jinsphys.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency. Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements. In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected. These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.
Collapse
Affiliation(s)
- Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
10
|
Galizia CG. Olfactory coding in the insect brain: data and conjectures. Eur J Neurosci 2014; 39:1784-95. [PMID: 24698302 PMCID: PMC4237541 DOI: 10.1111/ejn.12558] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Much progress has been made recently in understanding how olfactory coding works in insect brains. Here, I propose a wiring diagram for the major steps from the first processing network (the antennal lobe) to behavioral readout. I argue that the sequence of lateral inhibition in the antennal lobe, non-linear synapses, threshold-regulating gated spring network, selective lateral inhibitory networks across glomeruli, and feedforward inhibition to the lateral protocerebrum cover most of the experimental results from different research groups and model species. I propose that the main difference between mushroom bodies and the lateral protocerebrum is not about learned vs. innate behavior. Rather, mushroom bodies perform odor identification, whereas the lateral protocerebrum performs odor evaluation (both learned and innate). I discuss the concepts of labeled line and combinatorial coding and postulate that, under restrictive experimental conditions, these networks lead to an apparent existence of 'labeled line' coding for special odors. Modulatory networks are proposed as switches between different evaluating systems in the lateral protocerebrum. A review of experimental data and theoretical conjectures both contribute to this synthesis, creating new hypotheses for future research.
Collapse
|
11
|
Binyameen M, Jankuvová J, Blaženec M, Jakuš R, Song L, Schlyter F, Andersson MN. Co-localization of insect olfactory sensory cells improves the discrimination of closely separated odour sources. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Muhammad Binyameen
- Chemical Ecology; Department of Plant Protection Biology; Swedish University of Agricultural Sciences; P.O. Box 102 SE-230 53 Alnarp Sweden
| | - Júlia Jankuvová
- Institute of Forest Ecology; Slovak Academy of Sciences; Štúrova 2 960 53 Zvolen Slovakia
| | - Miroslav Blaženec
- Institute of Forest Ecology; Slovak Academy of Sciences; Štúrova 2 960 53 Zvolen Slovakia
- Department of Forest Protection and Entomology; Faculty of Forestry and Wood Sciences; Czech University of Life Sciences; Kamýcká 1176 165 21 Praha 6 - Suchdol Czech Republic
| | - Rastislav Jakuš
- Institute of Forest Ecology; Slovak Academy of Sciences; Štúrova 2 960 53 Zvolen Slovakia
- Department of Forest Protection and Entomology; Faculty of Forestry and Wood Sciences; Czech University of Life Sciences; Kamýcká 1176 165 21 Praha 6 - Suchdol Czech Republic
| | - Liwen Song
- Jilin Provincial Academy of Forestry Sciences; 3528 Linhe Street Changchun Jilin Province 130033 China
| | - Fredrik Schlyter
- Chemical Ecology; Department of Plant Protection Biology; Swedish University of Agricultural Sciences; P.O. Box 102 SE-230 53 Alnarp Sweden
| | - Martin N. Andersson
- Chemical Ecology; Department of Plant Protection Biology; Swedish University of Agricultural Sciences; P.O. Box 102 SE-230 53 Alnarp Sweden
| |
Collapse
|
12
|
|
13
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
14
|
Rospars JP. Interactions of odorants with olfactory receptors and other preprocessing mechanisms: how complex and difficult to predict? Chem Senses 2013; 38:283-7. [PMID: 23386560 DOI: 10.1093/chemse/bjt004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this issue of Chemical Senses, Münch et al. present a thorough analysis of how mixtures of odorants interact with olfactory receptors (ORs) borne by olfactory receptor neurons (ORNs). Using fruit fly ORNs expressing the receptor OR22a, they provide a clear example of mixture interaction and confirm that the response of an ORN to a binary mixture can be sometimes predicted quantitatively knowing the ORN responses to its components as shown previously in rat ORNs. The prediction is based on a nonlinear model that assumes a classical 2-step activation of the OR and competition of the 2 odorants in the mixture for the same binding site. Can this success be generalized to all odorant-receptor pairs? This would be an encouraging perspective, especially for the fragrance and flavor industries, as it would permit the prediction of all mixtures. To address this question, I outline its conceptual framework and discuss the variety of mixture interactions found so far. In accordance with the effects described in the study of other receptors, several kinds of mixture interactions have been found that are not easily predictable. The relative importance of the predictable and less predictable effects thus appears as a major issue for future developments.
Collapse
Affiliation(s)
- Jean-Pierre Rospars
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication & Unité Mathématiques et Informatique Appliquées, INRA, F-78000 Versailles, France.
| |
Collapse
|
15
|
Münch D, Schmeichel B, Silbering AF, Galizia CG. Weaker ligands can dominate an odor blend due to syntopic interactions. Chem Senses 2013; 38:293-304. [PMID: 23315042 PMCID: PMC3629874 DOI: 10.1093/chemse/bjs138] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most odors in natural environments are mixtures of several compounds. Perceptually, these can blend into a new "perfume," or some components may dominate as elements of the mixture. In order to understand such mixture interactions, it is necessary to study the events at the olfactory periphery, down to the level of single-odorant receptor cells. Does a strong ligand present at a low concentration outweigh the effect of weak ligands present at high concentrations? We used the fruit fly receptor dOr22a and a banana-like odor mixture as a model system. We show that an intermediate ligand at an intermediate concentration alone elicits the neuron's blend response, despite the presence of both weaker ligands at higher concentration, and of better ligands at lower concentration in the mixture. Because all of these components, when given alone, elicited significant responses, this reveals specific mixture processing already at the periphery. By measuring complete dose-response curves we show that these mixture effects can be fully explained by a model of syntopic interaction at a single-receptor binding site. Our data have important implications for how odor mixtures are processed in general, and what preprocessing occurs before the information reaches the brain.
Collapse
Affiliation(s)
- Daniel Münch
- Neurobiology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
16
|
|
17
|
Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 2012; 492:66-71. [PMID: 23172146 PMCID: PMC3518700 DOI: 10.1038/nature11712] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 10/25/2012] [Indexed: 01/21/2023]
Abstract
Diverse sensory organs, including mammalian taste buds and insect chemosensory sensilla, show a striking compartmentalization of receptor cells. However, the functional impact of this organization remains unclear. Here we show that compartmentalized Drosophila olfactory receptor neurons (ORNs) communicate with each other directly. The sustained response of one ORN is inhibited by the transient activation of a neighboring ORN. Mechanistically, such lateral inhibition does not depend on synapses and is likely mediated by ephaptic coupling. Moreover, lateral inhibition in the periphery can modulate olfactory behavior. Together, the results show that integration of olfactory information can occur via lateral interactions between ORNs. Inhibition of a sustained response by a transient response may provide a means of encoding salience. Finally, a CO2-sensitive ORN in the malaria mosquito Anopheles can also be inhibited by excitation of an adjacent ORN, suggesting a broad occurrence of lateral inhibition in insects and possible applications in insect control.
Collapse
|
18
|
Zhang S, Zhang Z, Kong X, Wang H. Sexual dimorphism in antennal morphology and sensilla ultrastructure ofDendrolimus tabulaeformisTsai et Liu (Lepidoptera: Lasiocampidae). Microsc Res Tech 2012; 76:50-7. [DOI: 10.1002/jemt.22134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/16/2012] [Indexed: 11/07/2022]
|
19
|
Zhang S, Zhang Z, Kong X, Wang H, Zhou G, Yu J. External morphology ofTrichogramma dendrolimimatsumura (hymenoptera: Trichogrammatidae) organ and ultrastructure of the sensilla. Microsc Res Tech 2012; 75:1513-21. [DOI: 10.1002/jemt.22094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022]
|
20
|
Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J Neurosci 2011; 31:13357-75. [PMID: 21940430 DOI: 10.1523/jneurosci.2360-11.2011] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.
Collapse
|
21
|
Grémiaux A, Nowotny T, Martinez D, Lucas P, Rospars JP. Modelling the signal delivered by a population of first-order neurons in a moth olfactory system. Brain Res 2011; 1434:123-35. [PMID: 22030408 DOI: 10.1016/j.brainres.2011.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
A statistical model of the population of first-order olfactory receptor neurons (ORNs) is proposed and analysed. It describes the relationship between stimulus intensity (odour concentration) and coding variables such as rate and latency of the population of several thousand sex-pheromone sensitive ORNs in male moths. Although these neurons likely express the same olfactory receptor, they exhibit, at any concentration, a relatively large heterogeneity of responses in both peak firing frequency and latency of the first action potential fired after stimulus onset. The stochastic model is defined by a multivariate distribution of six model parameters that describe the dependence of the peak firing rate and the latency on the stimulus dose. These six parameters and their mutual linear correlations were estimated from experiments in single ORNs and included in the multidimensional model distribution. The model is utilized to reconstruct the peak firing rate and latency of the message sent to the brain by the whole ORN population at different stimulus intensities and to establish their main qualitative and quantitative properties. Finally, these properties are shown to be in agreement with those found previously in a vertebrate ORN population. This article is part of a Special Issue entitled: Neural Coding.
Collapse
|
22
|
Dynamical modeling of the moth pheromone-sensitive olfactory receptor neuron within its sensillar environment. PLoS One 2011; 6:e17422. [PMID: 21399691 PMCID: PMC3047557 DOI: 10.1371/journal.pone.0017422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/01/2011] [Indexed: 11/19/2022] Open
Abstract
In insects, olfactory receptor neurons (ORNs), surrounded with auxiliary cells and protected by a cuticular wall, form small discrete sensory organs--the sensilla. The moth pheromone-sensitive sensillum is a well studied example of hair-like sensillum that is favorable to both experimental and modeling investigations. The model presented takes into account both the molecular processes of ORNs, i.e. the biochemical reactions and ionic currents giving rise to the receptor potential, and the cellular organization and compartmentalization of the organ represented by an electrical circuit. The number of isopotential compartments needed to describe the long dendrite bearing pheromone receptors was determined. The transduction parameters that must be modified when the number of compartments is increased were identified. This model reproduces the amplitude and time course of the experimentally recorded receptor potential. A first complete version of the model was analyzed in response to pheromone pulses of various strengths. It provided a quantitative description of the spatial and temporal evolution of the pheromone-dependent conductances, currents and potentials along the outer dendrite and served to determine the contribution of the various steps in the cascade to its global sensitivity. A second simplified version of the model, utilizing a single depolarizing conductance and leak conductances for repolarizing the ORN, was derived from the first version. It served to analyze the effects on the sensory properties of varying the electrical parameters and the size of the main sensillum parts. The consequences of the results obtained on the still uncertain mechanisms of olfactory transduction in moth ORNs--involvement or not of G-proteins, role of chloride and potassium currents--are discussed as well as the optimality of the sensillum organization, the dependence of biochemical parameters on the neuron spatial extension and the respective contributions of the biochemical and electrical parameters to the overall neuron response.
Collapse
|
23
|
Andersson MN, Larsson MC, Blazenec M, Jakus R, Zhang QH, Schlyter F. Peripheral modulation of pheromone response by inhibitory host compound in a beetle. ACTA ACUST UNITED AC 2011; 213:3332-9. [PMID: 20833926 DOI: 10.1242/jeb.044396] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified several compounds, by gas chromatographic-electroantennographic detection (GC-EAD), that were antennally active in the bark beetle Ips typographus and also abundant in beetle-attacked spruce trees. One of them, 1,8-cineole (Ci), strongly inhibited the attraction to pheromone in the field. Single-sensillum recordings (SSRs) previously showed olfactory receptor neurons (ORNs) on I. typographus antennae selectively responding to Ci. All Ci neurons were found within sensilla co-inhabited by a pheromone neuron responding to cis-verbenol (cV); however, in other sensilla, the cV neuron was paired with a neuron not responding to any test odorant. We hypothesized that the colocalization of ORNs had a functional and ecological relevance. We show by SSR that Ci inhibited spontaneous activity of the cV neuron only in sensilla in which the Ci neuron was also present. Using mixtures of cV and Ci, we further show that responses to low doses (1-10 ng) of cV were significantly reduced when the colocalized Ci neuron simultaneously responded to high doses (1-10 μg) of Ci. This indicated that the response of the Ci neuron, rather than ligand-receptor interactions in the cV neuron, caused the inhibition. Moreover, cV neurons paired with Ci neurons were more sensitive to cV alone than the ones paired with the non-responding ORN. Our observations question the traditional view that ORNs within a sensillum function as independent units. The colocalization of ORNs might sharpen adaptive responses to blends of semiochemicals with different ecological significance in the olfactory landscape.
Collapse
Affiliation(s)
- Martin N Andersson
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Hillier NK, Vickers NJ. Mixture interactions in moth olfactory physiology: examining the effects of odorant mixture, concentration, distal stimulation, and antennal nerve transection on sensillar responses. Chem Senses 2010; 36:93-108. [PMID: 20937614 DOI: 10.1093/chemse/bjq102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The insect olfactory system is challenged to decipher valid signals from among an assortment of chemical cues present in the airborne environment. In the moth, Heliothis virescens, males rely upon detection and discrimination of a unique blend of components in the female sex pheromone to locate mates. The effect of variable odor mixtures was used to examine physiological responses from neurons within sensilla on the moth antenna sensitive to female sex pheromone components. Increasing concentrations of heliothine sex pheromone components applied in concert with the cognate stimulus for each neuronal type resulted in mixture suppression of activity, except for one odorant combination where mixture enhancement was apparent. Olfactory receptor neuron (ORN) responses were compared between moths with intact and transected antennal nerves to determine whether specific instances of suppression might be influenced by central mechanisms. Type A sensilla showed little variation in response between transected and intact preparations; however, recordings from type B sensilla with transected antennal nerves exhibited reduced mixture suppression. Testing by parallel stimulation of distal antennal segments while recording and stimulating proximal segments dismissed the possibility of interneuronal or ephaptic effects upon sensillar responses. The results indicate that increasing concentrations of "noncognate" odorants in an odor mixture or antennal nerve transection can produce variation in the intensity and temporal dynamics of physiological recordings from H. virescens ORNs.
Collapse
Affiliation(s)
- N K Hillier
- Department of Biology, Acadia University, Wolfville, Nova Scotia B4P2R6, Canada.
| | | |
Collapse
|
25
|
Smartt CT, Erickson JS. Expression of a novel member of the odorant-binding protein gene family in Culex nigripalpus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:1376-1381. [PMID: 19960683 DOI: 10.1603/033.046.0617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We previously showed that gene expression in the midgut of female Culex nigripalpus Theobald (Diptera: Culicidae) was altered after ingestion of a bloodmeal and some of the expressed cDNAs showed stage-, sex-, and tissue-specific expression. One of these expressed cDNAs, CN G11B, is here shown to be similar to members of a gene family that encodes odorant-binding proteins. CN G11B.1 is a cDNA fragment of 721 bp, is incomplete at the 5'-end, and contains a canonical polyadenylic acid tail signal sequence in the 103-bp 3'-untranslated region. Translation of CN G11B.1 provides a putative protein product of 207 amino acids. GenBank tblastx, VectorBase, and Pfam database searches showed identity to hypothetical proteins from Culex pipiens quinquefasciatus Say (86%) and Aedes aegypti (L.) (55%). These proteins have structural motifs similar to those found in the gene family that includes odorant-binding proteins. CN G11B.1 putative protein has two of the six cysteines that are highly conserved in most invertebrate odorant-binding proteins. CN G11B.1 expression increased in thoraces (6-12 h) and in abdomens (3-48 h) of blood fed female Cx. nigripalpus but was not detected in RNA from heads, indicating a possible role in both chemoreception and blood feeding.
Collapse
Affiliation(s)
- Chelsea T Smartt
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, Vero Beach, Florida, 200 9th St. S.E., Vero Beach, FL 32962, USA.
| | | |
Collapse
|
26
|
Mellon D. Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. THE BIOLOGICAL BULLETIN 2007; 213:1-11. [PMID: 17679714 DOI: 10.2307/25066612] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Aquatic environments are by their nature dynamic and dominated by fluid movements driven by lunar tides, temperature and salinity density gradients, wind-driven currents, and currents generated by the earth's rotation. Accordingly, animals within the aquatic realm must be able to sense and respond to both large-scale (advection) and small-scale (eddy turbulence) fluid dynamics, for chemical signals critically important for their survival are embedded within such movements. Aquatic crustaceans possess many types of near-field fluid-flow detectors and two general classes of chemoreceptors on their body appendages: high-threshold, near-field receptors that may be somewhat equated with the sense of taste, and low-threshold far-field receptors that can be considered as olfactory. This review briefly summarizes the distribution of hydrodynamic and high-threshold chemoreceptors in aquatic crustaceans and the physiological characteristics of olfactory receptors in lobsters; it also examines recent physiological evidence for the central nervous integration of inputs from olfactory receptors and hydrodynamic detectors, two dissimilar senses that must be combined within the brain for survival. Marine crustaceans have provided valuable insights about mechanisms of primary olfactory sensory physiology; their additional sensitivity to hydrodynamic stimulation makes them a potentially useful model for examining how these two critical sensory inputs are combined within the brain to enhance foraging behavior. Multimodal sensory processing is critically important to all animals, and the principles and concepts derived from these crustacean studies may provide generalities about neuronal processing across taxa.
Collapse
Affiliation(s)
- deForest Mellon
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA.
| |
Collapse
|
27
|
Kelber C, Rössler W, Kleineidam CJ. Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. J Comp Neurol 2006; 496:395-405. [PMID: 16566001 DOI: 10.1002/cne.20930] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The poreplate sensilla of honeybees are equipped with multiple olfactory receptor neurons (ORNs), which innervate glomeruli of the antennal lobe (AL). We investigated the axonal projection pattern in glomeruli of the AL (glomerular pattern), formed by the multiple ORNs of individual poreplate sensilla. We used the different glomerular patterns to draw conclusions about the equipment of poreplate sensilla with different ORN types. ORNs of single poreplate sensilla were stained and analyzed by laser-scanning confocal microscopy and 3D software (AMIRA). In 13 specimens we found between 7 and 23 ORNs. This is in accordance with data found in the literature (5-35 ORNs) suggesting that all ORNs of the single poreplate sensilla were stained. The ORNs innervate the AL via all four sensory tracts (T1-T4), and glomeruli of the anterior part of the AL are more often innervated. Each ORN innervates a single glomerulus (uniglomerular), and all ORNs of one poreplate sensillum project to different glomeruli. Visual inspection and individual identification of glomeruli, based on the honeybee digital AL atlas, were used to evaluate mapping of glomeruli by a rigid transformation of the experimental ALs onto a reference AL. ORNs belonging to individual poreplate sensilla form variable glomerular patterns, and we did not find a common organization of glomerular patterns. We conclude that poreplate sensilla are equipped with different ORN types but that the same ORN types can be found in different poreplate sensilla. The equipment of poreplate sensilla with ORNs is overlapping. The mapping of glomeruli by rigid transformation is revealed to be a powerful tool for comparative neuroanatomy.
Collapse
Affiliation(s)
- Christina Kelber
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Germany
| | | | | |
Collapse
|
28
|
Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 2006; 15:1535-47. [PMID: 16139208 DOI: 10.1016/j.cub.2005.07.034] [Citation(s) in RCA: 696] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/07/2005] [Accepted: 07/08/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Olfactory receptor neurons (ORNs) convey chemical information into the brain, producing internal representations of odors detected in the periphery. A comprehensive understanding of the molecular and neural mechanisms of odor detection and processing requires complete maps of odorant receptor (Or) expression and ORN connectivity, preferably at single-cell resolution. RESULTS We have constructed near-complete maps of Or expression and ORN targeting in the Drosophila olfactory system. These maps confirm the general validity of the "one neuron--one receptor" and "one glomerulus--one receptor" principles and reveal several additional features of olfactory organization. ORNs in distinct sensilla types project to distinct regions of the antennal lobe, but neighbor relations are not preserved. ORNs grouped in the same sensilla do not express similar receptors, but similar receptors tend to map to closely appositioned glomeruli in the antennal lobe. This organization may serve to ensure that odor representations are dispersed in the periphery but clustered centrally. Integrated with electrophysiological data, these maps also predict glomerular representations of specific odorants. Representations of aliphatic and aromatic compounds are spatially segregated, with those of aliphatic compounds arranged topographically according to carbon chain length. CONCLUSIONS These Or expression and ORN connectivity maps provide further insight into the molecular, anatomical, and functional organization of the Drosophila olfactory system. Our maps also provide an essential resource for investigating how internal odor representations are generated and how they are further processed and transmitted to higher brain centers.
Collapse
Affiliation(s)
- Africa Couto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3-5 A-1030 Vienna, Austria
| | | | | |
Collapse
|
29
|
Abstract
Insect odor and taste receptors are highly sensitive detectors of food, mates, and oviposition sites. Following the identification of the first insect odor and taste receptors in Drosophila melanogaster, these receptors were identified in a number of other insects, including the malaria vector mosquito Anopheles gambiae; the silk moth, Bombyx mori; and the tobacco budworm, Heliothis virescens. The chemical specificities of many of the D. melanogaster receptors, as well as a few of the A. gambiae and B. mori receptors, have now been determined either by analysis of deletion mutants or by ectopic expression in in vivo or heterologous expression systems. Here we discuss recent advances in our understanding of the molecular and cellular basis of odor and taste coding in insects.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
30
|
Li ZX, Pickett JA, Field LM, Zhou JJ. Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 58:175-189. [PMID: 15717318 DOI: 10.1002/arch.20047] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Host preference and blood feeding are restricted to female mosquitoes. Olfaction plays a major role in host-seeking behaviour, which is likely to be associated with a subset of mosquito olfactory genes. Proteins involved in olfaction include the odorant receptors (ORs) and the odorant-binding proteins (OBPs). OBPs are thought to function as a carrier within insect antennae for transporting odours to the olfactory receptors. Here we report the annotation of 32 genes encoding putative OBPs in the malaria mosquito Anopheles gambiae and their tissue-specific expression in two mosquito species of the Anopheles complex; a highly anthropophilic species An. gambiae sensu stricto and an opportunistic, but more zoophilic species, An. arabiensis. RT-PCR shows that some of the genes are expressed mainly in head tissue and a subset of these show highest expression in female heads. One of the genes (agCP1588) which has not been identified as an OBP, has a high similarity (40%) to the Drosophila pheromone-binding protein 4 (PBPRP4) and is only expressed in heads of both An. gambiae and An. arabiensis, and at higher levels in female heads. Two genes (agCP3071 and agCP15554) are expressed only in female heads and agC15554 also shows higher expression levels in An. gambiae. The expression profiles of the genes in the two members of the Anopheles complex provides the first step towards further molecular analysis of the mosquito olfactory apparatus.
Collapse
Affiliation(s)
- Zheng-Xi Li
- Biological Chemistry Division, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | | | | | | |
Collapse
|