1
|
Volovik MV, Batishchev OV. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms. Biomolecules 2024; 14:1118. [PMID: 39334885 PMCID: PMC11430820 DOI: 10.3390/biom14091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity. To overcome these challenges, a well-established structure-function relationship for AMPs is critical. In the present study, we focused on the well-known examples of melittin and magainin to investigate in detail the initial stages of AMP interaction with lipid membranes at low peptide-to-lipid ratio. By combining the patch-clamp technique with the bioelectrochemical method of intramembrane field compensation, we showed that these peptides interact with the membrane in different ways: melittin inserts deeper into the lipid bilayer than magainin. This difference led to diversity in pore formation. While magainin, after a threshold concentration, formed the well-known toroidal pores, allowing the translocation of the peptide through the membrane, melittin probably induced predominantly pure lipidic pores with a very low rate of peptide translocation. Thus, our results shed light on the early stages of peptide-membrane interactions and suggest new insights into the structure-function relationship of AMPs based on the depth of their membrane insertion.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
2
|
Kondrashov OV, Akimov SA. Alteration of Average Thickness of Lipid Bilayer by Membrane-Deforming Inclusions. Biomolecules 2023; 13:1731. [PMID: 38136602 PMCID: PMC10741968 DOI: 10.3390/biom13121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Thickness of lipid bilayer membranes is a key physical parameter determining membrane permeability and stability with respect to formation of through pores. Most membrane inclusions or impurities like amphipathic peptides, transmembrane peptides, lipid inclusions of a different molecular shape, lipid domains, and protein-lipid domains, locally deform the membrane. The detailed structure of the locally deformed region of the membrane is a kind of "fingerprint" for the inclusion type. However, most experimental methods allow determining only averaged parameters of membranes with incorporated inclusions, thus preventing the direct obtaining of the characteristics of the inclusion. Here we developed a model that allows the obtaining of characteristic parameters of three types of membrane inclusions (amphipathic peptides, transmembrane peptides, monolayer lipid patches) from experimentally observable dependencies of the average thickness of lipid bilayer on the surface concentration of the inclusions. In the case of amphipathic peptides, the model provided the peptide parameters that were in qualitative agreement with the available experimental data.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
3
|
Kondrashov OV, Kuzmin PI, Akimov SA. Pore Formation by Amphipathic Peptides in Closed Membranes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Kondrashov OV, Akimov SA. The Possibility of Pore Formation in Lipid Membranes by Several Molecules of Amphipathic Peptides. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Salnikov E, Aisenbrey C, Bechinger B. Lipid saturation and head group composition have a pronounced influence on the membrane insertion equilibrium of amphipathic helical polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183844. [PMID: 34954200 DOI: 10.1016/j.bbamem.2021.183844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
The histidine-rich peptides of the LAH4 family were designed using cationic antimicrobial peptides such as magainin and PGLa as templates. The LAH4 amphipathic helical sequences exhibit a multitude of interesting biological properties such as antimicrobial activity, cell penetration of a large variety of cargo and lentiviral transduction enhancement. The parent peptide associates with lipid bilayers where it changes from an orientation along the membrane interface into a transmembrane configuration in a pH-dependent manner. Here we show that LAH4 adopts a transmembrane configuration in fully saturated DMPC membranes already at pH 3.5, i.e. much below the pKa of the histidines whereas the transition pH in POPC correlates closely with histidine neutralization. In contrast in POPG membranes the in-planar configuration is stabilized by about one pH unit. The differences in pH can be converted into energetic contributions for the in-plane to transmembrane transition equilibrium, where the shift in the transition pH due to lipid saturation corresponds to energies which are otherwise obtained by the exchange of several cationic with hydrophobic residues. A similar dependence on lipid saturation has also been observed when the PGLa and magainin antimicrobial peptides interact within lipid bilayers suggesting that the quantitative evaluation presented in this paper also applies to other membrane polypeptides.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
6
|
Rani L, Arora A, Majhi S, Mishra A, Mallajosyula SS. Experimental and simulation studies reveal mechanism of action of human defensin derivatives. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183824. [PMID: 34838874 DOI: 10.1016/j.bbamem.2021.183824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial peptides (AMPs) are naturally occurring promising candidates which can be used as antibiotics against a wide variety of bacteria. The key component for using them as a potent antibiotic is that their mechanism of action is less prone to bacterial resistance. However, the molecular details of their mechanism of action is not yet fully understood. In this study, we try to shed light on the mode of action of AMPs, possible reason behind it, and their interaction with lipid bilayers through experimental as well as molecular dynamics (MD) simulation studies. The focal of our study was Human beta defensin 3 (hBD-3) which is a naturally occurring AMP. We chose three derivatives of hBD-3, namely CHRG01, KSR, and KLR for the detailed analysis presented in this study. These three peptides are evaluated for their antibacterial potency, secondary structure analysis and mechanism of action. The experimental results reveal that these peptides are active against gram positive as well as gram negative bacteria and kill bacteria by forming membrane pores. The MD simulation results correlate well with the antibacterial activity and shed light into the early membrane insertion dynamics. Moreover, the specific amino acids responsible for membrane disruptions are also identified from the MD simulations. Understanding the molecular level interaction of individual amino acids with the lipid bilayer will greatly help in the design of more efficient antimicrobial peptides.
Collapse
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Ankita Arora
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sasmita Majhi
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Abhijit Mishra
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India.
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
7
|
Kondrashov OV, Akimov SA. Regulation of Antimicrobial Peptide Activity via Tuning Deformation Fields by Membrane-Deforming Inclusions. Int J Mol Sci 2021; 23:ijms23010326. [PMID: 35008752 PMCID: PMC8745196 DOI: 10.3390/ijms23010326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered prospective antibiotics. Some AMPs fight bacteria via cooperative formation of pores in their plasma membranes. Most AMPs at their working concentrations can induce lysis of eukaryotic cells as well. Gramicidin A (gA) is a peptide, the transmembrane dimers of which form cation-selective channels in membranes. It is highly toxic for mammalians as being majorly hydrophobic gA incorporates and induces leakage of both bacterial and eukaryotic cell membranes. Both pore-forming AMPs and gA deform the membrane. Here we suggest a possible way to reduce the working concentrations of AMPs at the expense of application of highly-selective amplifiers of AMP activity in target membranes. The amplifiers should alter the deformation fields in the membrane in a way favoring the membrane-permeabilizing states. We developed the statistical model that allows describing the effect of membrane-deforming inclusions on the equilibrium between AMP monomers and cooperative membrane-permeabilizing structures. On the example of gA monomer-dimer equilibrium, the model predicts that amphipathic peptides and short transmembrane peptides playing the role of the membrane-deforming inclusions, even in low concentration can substantially increase the lifetime and average number of gA channels.
Collapse
|
8
|
Anselmo S, Sancataldo G, Mørck Nielsen H, Foderà V, Vetri V. Peptide-Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13148-13159. [PMID: 34714654 PMCID: PMC8582253 DOI: 10.1021/acs.langmuir.1c02392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions of the multifunctional amphiphilic peptide transportan 10 with model membranes. Our approach, based on the use of suitable fluorescence reporters, exploits the advantages of phasor plot analysis of fluorescence lifetime imaging microscopy measurements to highlight the molecular details of occurring membrane alterations in terms of rigidity and hydration. Simultaneously, it allows following dynamic events in real time without sample manipulation distinguishing, with high spatial resolution, whether the peptide is adsorbed to or inserted in the membrane.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Hanne Mørck Nielsen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| |
Collapse
|
9
|
Alvares DS, Monti MR, Ruggiero Neto J, Wilke N. The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol. BBA ADVANCES 2021; 1:100002. [PMID: 37082019 PMCID: PMC10074923 DOI: 10.1016/j.bbadva.2021.100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.
Collapse
|
10
|
Downing R, Volpe Bossa G, May S. Saddle-curvature instability of lipid bilayer induced by amphipathic peptides: a molecular model. SOFT MATTER 2020; 16:5032-5043. [PMID: 32452495 DOI: 10.1039/d0sm00499e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphipathic peptides that partition into lipid bilayers affect the curvature elastic properties of their host. Some of these peptides are able to shift the Gaussian modulus to positive values, thus triggering an instability with respect to the formation of saddle curvatures. To characterize the generic aspects of the underlying mechanism, we employ a molecular lipid model that accounts for the interfacial tension between the polar and apolar regions of the membrane, for interactions between the lipid headgroups, and for the energy to stretch or compress the hydrocarbon chains. Peptides are modeled as cylinders that partition into the host membrane in a parallel orientation where they diminish the space available to the lipid headgroups and chains. The penetration depth into the membrane is determined by the angular size of the peptide's hydrophilic region. We demonstrate that only peptides with a small angular size of their hydrophilic region have an intrinsic tendency to render the Gaussian modulus more positive, and we identify conditions at which the Gaussian modulus adopts a positive sign upon increasing the peptide concentration. Our model allows us to also incorporate electrostatic interactions between cationic peptides and anionic lipids on the level of the linear Debye-Hückel model. We show that electrostatic interactions tend to shift the Gaussian modulus toward more positive values. Steric and electrostatic lipid-peptide interactions jointly decrease the effective interaction strength in the headgroup region of the host membrane thus suggesting a generic mechanisms of how certain amphipathic peptides are able to induce the formation of saddle curvatures.
Collapse
Affiliation(s)
- Rachel Downing
- Department of Physics, North Dakota State University, Fargo North Dakota 58108-6050, USA
| | - Guilherme Volpe Bossa
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil.
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo North Dakota 58108-6050, USA
| |
Collapse
|
11
|
Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: From model membranes to living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:418-430. [DOI: 10.1016/j.bbamem.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023]
|
12
|
Lipid-Mediated Interactions between the Antimicrobial Peptides Magainin 2 and PGLa in Bilayers. Biophys J 2018; 115:1033-1044. [PMID: 30195937 DOI: 10.1016/j.bpj.2018.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 01/02/2023] Open
Abstract
A synergistic enhancement of activities has been described for the amphipathic cationic antimicrobial peptides magainin 2 and PGLa when tested in antimicrobial assays or in biophysical experiments using model membranes. In the presence of magainin 2, PGLa changes from an in-planar alignment parallel to the membrane surface to a more transmembrane orientation when investigated in membranes made from fully saturated PC or PC/PG, but not when one of the fatty acyl chains is unsaturated. Such lipid-mediated changes in the membrane topology of polypeptide domains could provide an interesting mechanism for the regulation of membrane proteins. Here we investigated the PGLa topology in a wide variety of membranes made of saturated or unsaturated PE, PC, and/or PG using 15N solid-state NMR spectroscopy. In contrast to predictions made by previous models the data show that membrane curvature has only a minor effect on PGLa realignment. Furthermore, using 2H solid-state NMR spectroscopy of deuterated phospholipid fatty acyl chains the order parameters of the lipids were investigated in the presence of PGLa, magainin, or equimolar peptide mixtures. Both peptides cause a pronounced decrease in the order parameters when oriented parallel to the membrane surface, an effect that reverts when PGLa flips into transmembrane alignments. Taken together, these data are suggestive that the magainin-induced disordering of fatty acyl chains provides an important driving force for PGLa realignment.
Collapse
|
13
|
Kondrashov OV, Galimzyanov TR, Pavlov KV, Kotova EA, Antonenko YN, Akimov SA. Membrane Elastic Deformations Modulate Gramicidin A Transbilayer Dimerization and Lateral Clustering. Biophys J 2018; 115:478-493. [PMID: 30049405 PMCID: PMC6084527 DOI: 10.1016/j.bpj.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023] Open
Abstract
Gramicidin A (gA) is a short β-helical peptide known to form conducting channels in lipid membranes because of transbilayer dimerization. The gA conducting dimer, being shorter than the lipid bilayer thickness, deforms the membrane in its vicinity, and the bilayer elastic energy contributes to the gA dimer formation energy. Likewise, membrane incorporation of a gA monomer, which is shorter than the lipid monolayer thickness, creates a void, thereby forcing surrounding lipid molecules to tilt to fill it. The energy of membrane deformation was calculated in the framework of the continuum elasticity theory, taking into account splay, tilt, lateral stretching/compression, Gaussian splay deformations, and external membrane tension. We obtained the interaction energy profiles for two gA monomers located either in the same or in the opposite monolayers. The profiles demonstrated the long-range attraction and short-range repulsion behavior of the monomers resulting from the membrane deformation. Analysis of the profile features revealed conditions under which clusters of gA monomers would not dissipate because of diffusion. The calculated dependence of the dimer formation and decay energy barriers on the membrane elastic properties was in good agreement with the available experimental data and suggested an explanation for a hitherto contentious phenomenon.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Theoretical Physics, Moscow Institute of Physics and Technology, Dolgoprudniy, Moscow Region, Russia
| | - Timur R Galimzyanov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS," Moscow, Russia
| | - Konstantin V Pavlov
- Laboratory of Electrophysiology, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Elena A Kotova
- Department of Photosynthesis and Fluorescence Research Methods, A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Laboratory of Membrane Biophysics, A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS," Moscow, Russia.
| |
Collapse
|
14
|
Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:491-504. [DOI: 10.1016/j.bbamem.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
|
15
|
Smart M, Rajagopal A, Liu WK, Ha BY. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Phys Rev E 2017; 96:042405. [PMID: 29347628 DOI: 10.1103/physreve.96.042405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 12/15/2022]
Abstract
The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg^{2+}). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg^{2+} for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg^{2+}. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.
Collapse
Affiliation(s)
- Matthew Smart
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aruna Rajagopal
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wing-Ki Liu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Akimov SA, Aleksandrova VV, Galimzyanov TR, Bashkirov PV, Batishchev OV. Interaction of amphipathic peptides mediated by elastic membrane deformations. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Björnsdottir H, Dahlstrand Rudin A, Klose FP, Elmwall J, Welin A, Stylianou M, Christenson K, Urban CF, Forsman H, Dahlgren C, Karlsson A, Bylund J. Phenol-Soluble Modulin α Peptide Toxins from Aggressive Staphylococcus aureus Induce Rapid Formation of Neutrophil Extracellular Traps through a Reactive Oxygen Species-Independent Pathway. Front Immunol 2017; 8:257. [PMID: 28337204 PMCID: PMC5343011 DOI: 10.3389/fimmu.2017.00257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Neutrophils have the ability to capture and kill microbes extracellularly through the formation of neutrophil extracellular traps (NETs). These are DNA and protein structures that neutrophils release extracellularly and are believed to function as a defense mechanism against microbes. The classic NET formation process, triggered by, e.g., bacteria, fungi, or by direct stimulation of protein kinase C through phorbol myristate acetate, is an active process that takes several hours and relies on the production of reactive oxygen species (ROS) that are further modified by myeloperoxidase (MPO). We show here that NET-like structures can also be formed by neutrophils after interaction with phenol-soluble modulin α (PSMα) that are cytotoxic membrane-disturbing peptides, secreted from community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The PSMα-induced NETs contained the typical protein markers and were able to capture microbes. The PSMα-induced NET structures were disintegrated upon prolonged exposure to DNase-positive S. aureus but not on exposure to DNase-negative Candida albicans. Opposed to classic NETosis, PSMα-triggered NET formation occurred very rapidly, independently of ROS or MPO, and was also manifest at 4°C. These data indicate that rapid NETs release may result from cytotoxic membrane disturbance by PSMα peptides, a process that may be of importance for CA-MRSA virulence.
Collapse
Affiliation(s)
- Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Felix P Klose
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Jonas Elmwall
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Amanda Welin
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Marios Stylianou
- Antifungal Immunity Group, Department of Clinical Microbiology, Umeå University , Umeå , Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Constantin F Urban
- Antifungal Immunity Group, Department of Clinical Microbiology, Umeå University , Umeå , Sweden
| | - Huamei Forsman
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Claes Dahlgren
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Anna Karlsson
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
18
|
Zemljič Jokhadar Š, Božič B, Kristanc L, Gomišček G. Osmotic Effects Induced by Pore-Forming Agent Nystatin: From Lipid Vesicles to the Cell. PLoS One 2016; 11:e0165098. [PMID: 27788169 PMCID: PMC5082891 DOI: 10.1371/journal.pone.0165098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
The responses of Chinese hamster ovary epithelial cells, caused by the pore-forming agent nystatin, were investigated using brightfield and fluorescence microscopy. Different phenomena, i.e., the detachment of cells, the formation of blebs, the occurrence of “cell-vesicles” and cell ruptures, were observed. These phenomena were compared to those discovered in giant lipid vesicles. A theoretical model, based on the osmotic effects that occur due to the size-discriminating nystatin transmembrane pores in lipid vesicles, was extended with a term that considers the conservation of the electric charge density in order to describe the cell’s behavior. The increase of the cellular volume was predicted and correlated with the observed phenomena.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: spela
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Gomišček
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Côté S, Binette V, Salnikov ES, Bechinger B, Mousseau N. Probing the Huntingtin 1-17 membrane anchor on a phospholipid bilayer by using all-atom simulations. Biophys J 2016; 108:1187-98. [PMID: 25762330 DOI: 10.1016/j.bpj.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/18/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Mislocalization and aggregation of the huntingtin protein are related to Huntington's disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin's activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada.
| | - Vincent Binette
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada
| | - Evgeniy S Salnikov
- Université de Strasbourg/Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, Strasbourg, France
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Nakamura Y, Yukitake K, Nakahara H, Lee S, Shibata O, Lee S. Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2046-52. [PMID: 24796503 DOI: 10.1016/j.bbamem.2014.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
The high costs of artificial pulmonary surfactants, ranging in hundreds per kilogram of body weight, used for treating the respiratory distress syndrome (RDS) premature babies have limited their applications. We have extensively studied soy lecithins and higher alcohols as lipid alternatives to expensive phospholipids such as DPPC and PG. As a substitute for the proteins, we have synthesized the peptide Hel 13-5D3 by introducing D-amino acids into a highly lipid-soluble, basic amphiphilic peptide, Hel 13-5, composed of 18 amino acid residues. Analysis of the surfactant activities of lipid-amphiphilic artificial peptide mixtures using lung-irrigated rat models revealed that a mixture (Murosurf SLPD3) of dehydrogenated soy lecithin, fractionated soy lecithin, palmitic acid (PA), and peptide Hel 13-5D3 (40:40:17.5:2.5, by weight) superior pulmonary surfactant activity than a commercially available pulmonary surfactant (beractant, Surfacten®). Experiments using ovalbumin-sensitized model animals revealed that the lipid-amphiphilic artificial peptide mixtures provided significant control over an increase in the pulmonary resistance induced by premature allergy reaction and reduced the number of acidocytes and neutrophils in lung-irrigated solution. The newly developed low-cost pulmonary surfactant system may be used for treatment of a wide variety of respiratory diseases.
Collapse
Affiliation(s)
| | - Ko Yukitake
- Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Hiromichi Nakahara
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Sooyoung Lee
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University and Emergency & Critical Care Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Osamu Shibata
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan.
| | - Sannamu Lee
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan; Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
21
|
Abstract
The time and length scales accessible by biomolecular simulations continue to increase. This is in part due to improvements in algorithms and computing performance, but is also the result of the emergence of coarse-grained (CG) potentials, which complement and extend the information obtainable from fully detailed models. CG methods have already proven successful for a range of applications that benefit from the ability to rapidly simulate spontaneous self-assembly within a lipid membrane environment, including the insertion and/or oligomerization of a range of "toy models," transmembrane peptides, and single- and multi-domain proteins. While these simplified approaches sacrifice atomistic level detail, it is now straightforward to "reverse map" from CG to atomistic descriptions, providing a strategy to assemble membrane proteins within a lipid environment, prior to all-atom simulation. Moreover, recent developments have been made in "dual resolution" techniques, allowing different molecules in the system to be modeled with atomistic or CG resolution simultaneously.
Collapse
Affiliation(s)
- Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | | |
Collapse
|
22
|
Use of X-ray scattering to aid the design and delivery of membrane-active drugs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:915-29. [DOI: 10.1007/s00249-012-0821-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/30/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
|
23
|
Kristanc L, Svetina S, Gomišček G. Effects of the pore-forming agent nystatin on giant phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:636-44. [DOI: 10.1016/j.bbamem.2011.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/09/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
24
|
Frolov VA, Shnyrova AV, Zimmerberg J. Lipid polymorphisms and membrane shape. Cold Spring Harb Perspect Biol 2011; 3:a004747. [PMID: 21646378 DOI: 10.1101/cshperspect.a004747] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Morphological plasticity of biological membrane is critical for cellular life, as cells need to quickly rearrange their membranes. Yet, these rearrangements are constrained in two ways. First, membrane transformations may not lead to undesirable mixing of, or leakage from, the participating cellular compartments. Second, membrane systems should be metastable at large length scales, ensuring the correct function of the particular organelle and its turnover during cellular division. Lipids, through their ability to exist with many shapes (polymorphism), provide an adequate construction material for cellular membranes. They can self-assemble into shells that are very flexible, albeit hardly stretchable, which allows for their far-reaching morphological and topological behaviors. In this article, we will discuss the importance of lipid polymorphisms in the shaping of membranes and its role in controlling cellular membrane morphology.
Collapse
Affiliation(s)
- Vadim A Frolov
- Unidad de Biofisica (Centro Mixto CSIC-UPV/EHU), Leioa 48940, Spain
| | | | | |
Collapse
|
25
|
Abstract
Dynamin, best studied for its role in clathrin-mediated endocytosis, is the prototypical member of a family of multidomain GTPases involved in fission and remodeling of multiple organelles. Recent studies have shown that dynamin alone can catalyze fission of membrane tubules and vesicle formation from planar lipid templates. Thus, dynamin appears to be a self-sufficient fission machine. Here we review the biochemical activities and structural features of dynamin required for fission activity. As all changes in membrane topology require energetically unfavorable rearrangements of the lipid bilayer, we discuss the interplay between dynamin and its lipid substrates that are critical to defining a nonleaky pathway to membrane fission. We propose a two-stage model for dynamin-catalyzed fission. In stage one, dynamin's mechanochemical activities induce localized curvature stress and position its lipid-interacting pleckstrin homology domains to create a catalytic center that, in stage two, guides lipid remodeling through hemifission intermediates to drive membrane fission.
Collapse
Affiliation(s)
- Sandra L Schmid
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
26
|
Destabilization exerted by peptides derived from the membrane-proximal external region of HIV-1 gp41 in lipid vesicles supporting fluid phase coexistence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1797-805. [PMID: 21316335 DOI: 10.1016/j.bbamem.2011.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus (HIV) envelope is enriched in cholesterol and sphingomyelin, two lipids that sustain the formation of laterally segregated liquid-ordered fluid domains in model systems. Several evidences indicate that the high lipid order existing at the envelope may play a role in HIV pathogenesis. A putative mechanism might involve the modulation of the membrane-perturbing function of the gp41 membrane-proximal external region (MPER). To test such hypothesis, we investigate here the effect of lipid phase coexistence on the membrane-restructuring properties of NpreTM and CpreTM, two peptides based on the amino- and carboxy-terminal MPER sequences, respectively. Fluid phase coexistence elicited the fusogenic activity of NpreTM at high membrane doses and stimulated "graded" leakage at low doses. By comparison, the effect on CpreTM was restricted to an enhancement of "all-or-none" leakage that was consistent with the promotion of its surface aggregation. Confocal microscopy of single vesicles revealed the preference of both peptides for liquid-disordered domains. Accordingly, we speculate that confinement into envelope fluid nanodomains might boost the distinct capacities of HIV MPER hydrophobic modules for inducing membrane defects during fusion.
Collapse
|
27
|
Khelashvili G, Harries D, Weinstein H. Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption. Biophys J 2009; 97:1626-35. [PMID: 19751667 DOI: 10.1016/j.bpj.2009.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/13/2022] Open
Abstract
We use a self-consistent mean-field theory, designed to investigate membrane reshaping and lipid demixing upon interaction with proteins, to explore BAR domains interacting with large patches of lipid membranes of heterogeneous compositions. The computational model includes contributions to the system free energy from electrostatic interactions and elastic energies of the membrane, as well as salt and lipid mixing entropies. The results from our simulation of a single adsorbing Amphiphysin BAR dimer indicate that it is capable of stabilizing a significantly curved membrane. However, we predict that such deformations will occur only for membrane patches that have the inherent propensity for high curvature, reflected in the tendency to create local distortions that closely match the curvature of the BAR dimer itself. Such favorable preconditioning for BAR-membrane interaction may be the result of perturbations such as local lipid demixing induced by the interaction, or of a prior insertion of the BAR domain's amphiphatic N-helix. From our simulations it appears that local segregation of charged lipids under the influence of the BAR dimer cannot produce high enough asymmetry between bilayer leaflets to induce significant bending. In the absence of additional energy contributions that favor membrane asymmetry, the membrane will remain nearly flat upon single BAR dimer adsorption, relative to the undulation expected from thermal fluctuations. Thus, we conclude that the N-helix insertions have a critical mechanistic role in the local perturbation and curving of the membrane, which is then stabilized by the electrostatic interaction with the BAR dimer. We discuss how these results can be used to estimate the tendency of BARs to bend membranes in terms of a spatially nonisotropic spontaneous curvature.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA.
| | | | | |
Collapse
|
28
|
Olaru A, Gheorghiu M, David S, Wohland T, Gheorghiu E. Assessment of the Multiphase Interaction between a Membrane Disrupting Peptide and a Lipid Membrane. J Phys Chem B 2009; 113:14369-80. [DOI: 10.1021/jp905170u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreea Olaru
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Sorin David
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Thorsten Wohland
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Eugen Gheorghiu
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
29
|
Afonin S, Grage SL, Ieronimo M, Wadhwani P, Ulrich AS. Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F NMR spectroscopy. J Am Chem Soc 2009; 130:16512-4. [PMID: 19049452 DOI: 10.1021/ja803156d] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sergii Afonin
- Karlsruhe Institute of Technology, Institute of Biological Interfaces, P.O. Box 3640, 76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
30
|
Wei Y, Latour RA. Benchmark experimental data set and assessment of adsorption free energy for peptide-surface interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5637-46. [PMID: 19432493 PMCID: PMC2756418 DOI: 10.1021/la8042186] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
With the increasing interest in protein adsorption in fields ranging from bionanotechnology to biomedical engineering, there is a growing need to understand protein-surface interactions at a fundamental level, such as the interaction between individual amino acid residues of a protein and functional groups presented by a surface. However, relatively little data are available that experimentally provide a quantitative, comparative measure of these types of interactions. To address this deficiency, the objective of this study was to generate a database of experimentally measured standard state adsorption free energy (DeltaGoads) values for a wide variety of amino acid residue-surface interactions using a host-guest peptide and alkanethiol self-assembled monolayers (SAMs) with polymer-like functionality as the model system. The host-guest amino acid sequence was synthesized in the form of TGTG-X-GTGT, where G and T are glycine and threonine amino acid residues and X represents a variable residue. In this paper, we report DeltaGoads values for the adsorption of 12 different types of the host-guest peptides on a set of nine different SAM surfaces, for a total of 108 peptide-surface systems. The DeltaGoads values for these 108 peptide-surface combinations show clear trends in adsorption behavior that are dependent on both peptide composition and surface chemistry. These data provide a benchmark experimental data set from which fundamental interactions that govern peptide and protein adsorption behavior can be better understood and compared.
Collapse
|
31
|
Illya G, Deserno M. Coarse-grained simulation studies of peptide-induced pore formation. Biophys J 2008; 95:4163-73. [PMID: 18641080 PMCID: PMC2567957 DOI: 10.1529/biophysj.108.131300] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022] Open
Abstract
We investigate the interactions between lipid bilayers and amphiphilic peptides using a solvent-free coarse-grained simulation technique. In our model, each lipid is represented by one hydrophilic and three hydrophobic beads. The amphiphilic peptide is modeled as a hydrophobic-hydrophilic cylinder with hydrophilic caps. We find that with increasing peptide-lipid attraction the preferred state of the peptide changes from desorbed, to adsorbed, to inserted. A single peptide with weak attraction binds on the bilayer surface, while one with strong attraction spontaneously inserts into the bilayer. We show how several peptides, which individually bind only to the bilayer surface, cooperatively insert. Furthermore, hydrophilic strips along the peptide cylinder induce the formation of multipeptide pores, whose size and morphology depend on the peptides' overall hydrophilicity, the distribution of hydrophilic residues, and the peptide-peptide interactions. Strongly hydrophilic peptides insert less readily, but prove to be more destructive to bilayer integrity.
Collapse
Affiliation(s)
- Gregoria Illya
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | | |
Collapse
|
32
|
Abstract
Using x-ray diffraction, solid-state 2H-NMR, differential scanning calorimetry, and dilatometry, we have observed a perturbation of saturated acyl chain phosphatidylglycerol bilayers by the antimicrobial peptide peptidyl-glycylleucine-carboxyamide (PGLa) that is dependent on the length of the hydrocarbon chain. In the gel phase, PGLa induces a quasi-interdigitated phase, previously reported also for other peptides, which is most pronounced for C18 phosphatidylglycerol. In the fluid phase, we found an increase of the membrane thickness and NMR order parameter for C14 and C16 phosphatidylglycerol bilayers, though not for C18. The data is best understood in terms of a close hydrophobic match between the C18 bilayer core and the peptide length when PGLa is inserted with its helical axis normal to the bilayer surface. The C16 acyl chains appear to stretch to accommodate PGLa, whereas tilting within the bilayer seems to be energetically favorable for the peptide when inserted into bilayers of C14 phosphatidylglycerol. In contrast to the commonly accepted membrane thinning effect of antimicrobial peptides, the data demonstrate that pore formation does not necessarily relate to changes in the overall bilayer structure.
Collapse
|
33
|
Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc Natl Acad Sci U S A 2008; 105:15340-5. [PMID: 18829441 DOI: 10.1073/pnas.0804746105] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pH low-insertion peptide (pHLIP) serves as a model system for peptide insertion and folding across a lipid bilayer. It has three general states: (I) soluble in water or (II) bound to the surface of a lipid bilayer as an unstructured monomer, and (III) inserted across the bilayer as a monomeric alpha-helix. We used fluorescence spectroscopy and isothermal titration calorimetry to study the interactions of pHLIP with a palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer and to calculate the transition energies between states. We found that the Gibbs free energy of binding to a POPC surface at low pHLIP concentration (state I-state II transition) at 37 degrees C is approximately -7 kcal/mol near neutral pH and that the free energy of insertion and folding across a lipid bilayer at low pH (state II-state III transition) is nearly -2 kcal/mol. We discuss a number of related thermodynamic parameters from our measurements. Besides its fundamental interest as a model system for the study of membrane protein folding, pHLIP has utility as an agent to target diseased tissues and translocate molecules through the membrane into the cytoplasm of cells in environments with elevated levels of extracellular acidity, as in cancer and inflammation. The results give the amount of energy that might be used to move cargo molecules across a membrane.
Collapse
|
34
|
Abstract
We investigate the mode of action of Cateslytin, an antimicrobial peptide, on zwitterionic biomembranes by performing numerical simulations and electrophysiological measurements on membrane vesicles. Using this natural beta-sheet antimicrobial peptide secreted during stress as a model we show that a single peptide is able to form a stable membrane pore of 1 nm diameter of 0.25 nS conductance found both from calculation and electrical measurements. The resulting structure does not resemble the barrel-stave or carpet models earlier predicted, but is very close to that found in the simulation of alpha-helical peptides. Based on the simulation of a mutated peptide and the effects of small external electric fields, we conclude that electrostatic forces play a crucial role in the process of pore formation.
Collapse
|
35
|
Softening of POPC membranes by magainin. Biophys Chem 2008; 137:7-12. [DOI: 10.1016/j.bpc.2008.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 11/22/2022]
|
36
|
Zemel A, Ben-Shaul A, May S. Modulation of the Spontaneous Curvature and Bending Rigidity of Lipid Membranes by Interfacially Adsorbed Amphipathic Peptides. J Phys Chem B 2008; 112:6988-96. [DOI: 10.1021/jp711107y] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Assaf Zemel
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel,
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566
| | - Avinoam Ben-Shaul
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel,
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566
| | - Sylvio May
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel,
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566
| |
Collapse
|
37
|
Hydrophobic inactivation of influenza viruses confers preservation of viral structure with enhanced immunogenicity. J Virol 2008; 82:4612-9. [PMID: 18305038 DOI: 10.1128/jvi.02233-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of inactivated influenza virus for the development of vaccines with broad heterosubtypic protection requires selective inactivation techniques that eliminate viral infectivity while preserving structural integrity. Here we tested if a hydrophobic inactivation approach reported for retroviruses could be applied to the influenza virus. By this approach, the transmembrane domains of viral envelope proteins are selectively targeted by the hydrophobic photoactivatable compound 1,5-iodonaphthyl-azide (INA). This probe partitions into the lipid bilayer of the viral envelope and upon far UV irradiation reacts selectively with membrane-embedded domains of proteins and lipids while the protein domains that localize outside the bilayer remain unaffected. INA treatment of influenza virus blocked infection in a dose-dependent manner without disrupting the virion or affecting neuraminidase activity. Moreover, the virus maintained the full activity in inducing pH-dependent lipid mixing, but pH-dependent redistribution of viral envelope proteins into the target cell membrane was completely blocked. These results indicate that INA selectively blocks fusion of the virus with the target cell membrane at the pore formation and expansion step. Using a murine model of influenza virus infection, INA-inactivated influenza virus induced potent anti-influenza virus serum antibody and T-cell responses, similar to live virus immunization, and protected against heterosubtypic challenge. INA treatment of influenza A virus produced a virus that is noninfectious, intact, and fully maintains the functional activity associated with the ectodomains of its two major envelope proteins, neuraminidase and hemagglutinin. When used as a vaccine given intranasally (i.n.), INA-inactivated influenza virus induced immune responses similar to live virus infection.
Collapse
|
38
|
Chah S, Zare RN. Surface plasmon resonance study of vesicle rupture by virus-mimetic attack. Phys Chem Chem Phys 2008; 10:3203-8. [DOI: 10.1039/b802632g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Pabst G, Danner S, Podgornik R, Katsaras J. Entropy-driven softening of fluid lipid bilayers by alamethicin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11705-11. [PMID: 17939689 DOI: 10.1021/la701586c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using dilatometry and small-angle X-ray diffraction, we have studied under bulk conditions the structural changes and elastic response of dioleoyl phosphatidylcholine bilayers to alamethicin. With increasing peptide concentration, we found a progressive thinning of the membrane. However, in contrast to previously published reports, this thinning exhibits exponential behavior. Furthermore, an increase in alamethicin content resulted in an increased lateral area per lipid and a swelling of the multibilayers which can be attributed to a decrease in the bilayer's bending rigidity by approximately 50%. At the same time, hydration and van der Waals forces remained unaffected by the presence of the peptide. Interestingly, all elastic and structural parameters followed the same exponential form found for the membrane thickness, implying a common underlying mechanism for all of these structural parameters. Our results can be understood by introducing an additional entropy term into the free-energy description of peptide incorporation, a term previously not considered. As a result, we have been able to reconcile recent controversies regarding the effect of peptides on membrane thinning.
Collapse
Affiliation(s)
- Georg Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria.
| | | | | | | |
Collapse
|
40
|
Gorfe AA, Babakhani A, McCammon JA. H-ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 2007; 129:12280-6. [PMID: 17880077 PMCID: PMC2530826 DOI: 10.1021/ja073949v] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras GTPases become functionally active when anchored to membranes by inserting their lipid modified side chains. Their role in cell division, development, and cancer has made them targets of extensive research efforts, yet the mechanism of membrane insertion and the structure of the resulting complex remain elusive. Recently, the structure of the full-length H-ras protein in a DMPC bilayer has been computationally characterized. Here, the atomic interactions between the H-ras membrane anchor and the DMPC bilayer are investigated in detail. We find that the palmitoylated cysteines and Met182 have dual contributions to membrane affinity: hydrogen bonding by their amides and van der Waals interaction by their hydrophobic side chains. The polar side chains help maintain the orientation of the anchor. Although the overall structure of the bilayer is similar to that of a pure DMPC, there are localized perturbations. These perturbations depend on the insertion depth and backbone localization of the anchor, which in turn is modulated by the catalytic domain and the linker. The pattern of anchor amide-DMPC phosphate/carbonyl hydrogen bonds and the flexibility of Palm184 are important in discriminating between different modes of ras-DMPC interactions. The results provide structural arguments in support of the proposed participation of ras in the organization of membrane nanoclusters.
Collapse
Affiliation(s)
- Alemayehu A. Gorfe
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093-0365
- Correspondence: Tel. 858-822-0255; Fax. 858-534-4974;
| | - Arneh Babakhani
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093-0365
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093-0365
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA, 92093-0365
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093-0365
| |
Collapse
|
41
|
Abstract
Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily bound to the membrane, and above a certain concentration, the peptide was observed to cooperatively induce the formation of a nanometer-sized, toroidally shaped pore in the bilayer. In sharp contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly parallel orientation with respect to the membrane.
Collapse
Affiliation(s)
- Hari Leontiadou
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
42
|
Zhang Q, Ma Y. Interaction between a rodlike inclusion and a supported bilayer membrane. J Chem Phys 2007; 125:164710. [PMID: 17092123 DOI: 10.1063/1.2359436] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interactions between a rodlike inclusion and a supported copolymer bilayer membrane are investigated by using the self-consistent field theory. For different system parameters, physical observables, such as the interaction free energy, entropy, and translocation energy barrier, are obtained. Particular emphasis is put on the closely energetic and entropic analyses of the interaction. It shows that the interfacial energy provides a qualitative trend and dominates the basic shape of the interaction free energy curve; the combination of chemical potential energy and total entropy contribution is responsible for the translocation energy barrier and the weak attraction in the vicinity of upper monolayer surface. We also specify the nature, height, and shape of the energy barrier to translocation. Particularly, the height is roughly proportional to the rod radius.
Collapse
Affiliation(s)
- Qiyi Zhang
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.
| | | |
Collapse
|
43
|
Shental-Bechor D, Haliloglu T, Ben-Tal N. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method. Biophys J 2007; 93:1858-71. [PMID: 17496025 PMCID: PMC1959530 DOI: 10.1529/biophysj.106.103812] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a computational model of the interaction between hydrophobic cations, such as the antimicrobial peptide, Magainin2, and membranes that include anionic lipids. The peptide's amino acids were represented as two interaction sites: one corresponds to the backbone alpha-carbon and the other to the side chain. The membrane was represented as a hydrophobic profile, and its anionic nature was represented by a surface of smeared charges. Thus, the Coulombic interactions between the peptide and the membrane were calculated using the Gouy-Chapman theory that describes the electrostatic potential in the aqueous phase near the membrane. Peptide conformations and locations near the membrane, and changes in the membrane width, were sampled at random, using the Metropolis criterion, taking into account the underlying energetics. Simulations of the interactions of heptalysine and the hydrophobic-cationic peptide, Magainin2, with acidic membranes were used to calibrate the model. The calibrated model reproduced structural data and the membrane-association free energies that were measured also for other basic and hydrophobic-cationic peptides. Interestingly, amphipathic peptides, such as Magainin2, were found to adopt two main membrane-associated states. In the first, the peptide resided mostly outside the polar headgroups region. In the second, which was energetically more favorable, the peptide assumed an amphipathic-helix conformation, where its hydrophobic face was immersed in the hydrocarbon region of the membrane and the charged residues were in contact with the surface of smeared charges. This dual behavior provides a molecular interpretation of the available experimental data.
Collapse
Affiliation(s)
- Dalit Shental-Bechor
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
44
|
Boucher PA, Joós B, Zuckermann MJ, Fournier L. Pore formation in a lipid bilayer under a tension ramp: modeling the distribution of rupture tensions. Biophys J 2007; 92:4344-55. [PMID: 17400693 PMCID: PMC1877783 DOI: 10.1529/biophysj.106.092023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rupture of fluid membrane vesicles with a steady ramp of micropipette suction has been shown to produce a distribution of breakage tensions, with a mean that rises rapidly with tension rate. Starting from a lattice model that incorporates the essential features of the lipid bilayers held together with hydrophobic forces, and developing it to handle varying tension rates, we reproduce the main features of the experimental results. In essence, we show that the rupture kinetics are driven by the nucleation and growth of pores, with two limiting kinetics-growth-limited and nucleation-limited. The model has been extended to address the role of peptides in solution that can adsorb and insert themselves into the bilayer. At concentrations below those required to spontaneously rupture the membrane, the effect of the peptides is to lower the rupture tensions systematically for all tension rates.
Collapse
|
45
|
Abstract
The membrane-mediated interaction between two parallel, cylindrical inclusions is investigated by using the self-consistent field theory (SCFT). The rodlike inclusions are located within the interior of the bilayer and are enveloped by two monolayers. They may exhibit one of the two basic types of behaviors involving pinching two monolayers together and swelling them outward. For different parameters, we calculate the density profile of the deformation membrane, the associated interaction free energy, as well as the conformational entropy of polymer chains. The similarity of the two types of interaction potentials is the qualitative characteristics. An energy barrier separates an attractive from a repulsive region; the repulsive region is preceded by a weak attraction at a large distance. The difference between them, which is due to the different contact environments around the rods, lies in the appearance of a small barrier at a short distance in the pinching structure. Particular emphasis is put on the closely energetic and entropic analyses of the interaction potential. We show that the chemical potential energy has provided a qualitative trend and roughly dominated the basic shape of the interaction potential; the amphiphile entropy in the swelling structure and the solvent entropy in the pinching structure, combined with the corresponding chemical potential energy, are responsible for the repulsive barrier at an intermediate distance and for the weak attraction at a large distance, respectively. The influence of inclusion hydrophobicity on the interaction potential is taken into account. In particular, the pinching and swelling structures can appear and can transform into each other in a system at intermediate hydrophobicity.
Collapse
Affiliation(s)
- Qiyi Zhang
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | | |
Collapse
|
46
|
Frink LJD, Frischknecht AL. Computational investigations of pore forming peptide assemblies in lipid bilayers. PHYSICAL REVIEW LETTERS 2006; 97:208701. [PMID: 17155725 DOI: 10.1103/physrevlett.97.208701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Indexed: 05/12/2023]
Abstract
This Letter presents the first application of a three-dimensional numerical molecular theory based modeling approach to study the structure and energetics of assemblies of peptides embedded in lipid bilayers. Coarse-grained models were used for both the peptides and lipids. Both barrel-stave and toroidal pore morphologies for the lipids near the peptide assemblies are found, but at different assembly sizes. The free energy of the assembly is found to have a global free energy minimum for a solution with a membrane-spanning toroidal pore. A pairwise approximation to this free energy is found to underpredict the free energy minimum associated with the membrane-spanning pores.
Collapse
|
47
|
Klajnert B, Janiszewska J, Urbanczyk-Lipkowska Z, Bryszewska M, Epand RM. DSC studies on interactions between low molecular mass peptide dendrimers and model lipid membranes. Int J Pharm 2006; 327:145-52. [PMID: 16930888 DOI: 10.1016/j.ijpharm.2006.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
It has recently been shown that a newly synthesized peptide dendrimers possess antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria as well as against fungal pathogens (Candida albicans) [Klajnert, B., Janiszewska, J., Urbanczyk-Lipkowska, Z., Bryszewska, M., Shcharbin, D., Labieniec, M., 2006. Biological properties of low molecular mass peptide dendrimers. Int. J. Pharm. 309, 208-217]. To extend our knowledge about their impact on biological systems, interactions between a group of low molecular mass lysine based dendrimers and model lipid bilayers were examined by differential scanning calorimetry (DSC). Conformational stability of dendrimers in 5-85 degrees C temperature range was confirmed by circular dichroism measurements (CD). The dendrimer structure has been shown to play an important role in interactions with the membranes. A two-step mechanism of dendrimer-bilayer interactions was proposed. The first step involves electrostatic attractions between dendrimers and polar lipid heads, while the second one is a result of hydrophobic interactions between acyl chains and arms of dendrimers. While one dendrimer did not interact with the membrane, another with long hydrophobic arms significantly perturbed the membrane. Nevertheless, for all tested dendrimers the main transition in DSC scans was retained that indicates that these compounds at the tested concentrations did not cause the loss of membrane integrity.
Collapse
Affiliation(s)
- B Klajnert
- Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | | | | | | | | |
Collapse
|
48
|
Biscari P, Terentjev EM. Nematic membranes: shape instabilities of closed achiral vesicles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:051706. [PMID: 16802953 DOI: 10.1103/physreve.73.051706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 09/16/2005] [Indexed: 05/10/2023]
Abstract
We consider the coupling between the local curvature tensor of a membrane and the local two-dimensional nematic order parameter, deriving it from a quasi-microscopic argument. This coupling makes the nematic director aligned along the lowest curvature eigenvector in a local metric. Local bending of a membrane may then generate nematic ordering. Alternatively, emerging nematic order leads to shape instabilities of closed vesicles. The theory is applied to a spherical isotropic vesicle, which turns into a prolate shape with two +1 disclinations on its poles as the nematic order sets in the membrane, described within the Landau-de Gennes continuum model.
Collapse
Affiliation(s)
- Paolo Biscari
- Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | | |
Collapse
|
49
|
Sperotto MM, May S, Baumgaertner A. Modelling of proteins in membranes. Chem Phys Lipids 2006; 141:2-29. [PMID: 16620797 DOI: 10.1016/j.chemphyslip.2006.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins.
Collapse
|
50
|
Duclohier H. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:401-9. [PMID: 16477458 DOI: 10.1007/s00249-006-0047-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/17/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly alpha-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid-peptide pore lining instead of the more classical barrel-stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.
Collapse
Affiliation(s)
- Hervé Duclohier
- Institut de Physiologie et de Biologie Cellulaires (Pôle Biologie Santé), UMR 6187 CNRS-Université de Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers, France.
| |
Collapse
|