1
|
Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line. Sci Rep 2019; 9:12709. [PMID: 31481718 PMCID: PMC6722142 DOI: 10.1038/s41598-019-49019-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population.
Collapse
|
2
|
Zhang S, Reinhard BM. Characterizing Large-Scale Receptor Clustering on the Single Cell Level: A Comparative Plasmon Coupling and Fluorescence Superresolution Microscopy Study. J Phys Chem B 2019; 123:5494-5505. [PMID: 31244098 DOI: 10.1021/acs.jpcb.9b05176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spatial clustering of cell membrane receptors has been indicated to play a regulatory role in signal initiation, and the distribution of receptors on the cell surface may represent a potential biomarker. To realize its potential for diagnostic purposes, scalable assays capable of mapping spatial receptor heterogeneity with high throughput are needed. In this work, we use gold nanoparticle (NP) labels with an average diameter of 72.17 ± 2.16 nm as bright markers for large-scale epidermal growth factor receptor (EGFR) clustering in hyperspectral plasmon coupling microscopy and compare the obtained clustering maps with those obtained through fluorescence superresolution microscopy (direct stochastic optical reconstruction microscopy, dSTORM). Our dSTORM experiments reveal average EGFR cluster sizes of 172 ± 99 and 150 ± 90 nm for MDA-MB-468 and HeLa, respectively. The cluster sizes decrease after EGFR activation. Hyperspectral imaging of the NP labels shows that differences in the EGFR cluster sizes are accompanied by differences in the average separations between electromagnetically coupled NPs. Because of the distance dependence of plasmon coupling, changes in the average interparticle separation result in significant spectral shifts. For the experimental conditions investigated in this work, hyperspectral plasmon coupling microscopy of NP labels identified the same trends in large-scale EGFR clustering as dSTORM, but the NP imaging approach provided the information in a fraction of the time. Both dSTORM and hyperspectral plasmon coupling microscopy confirm the cortical actin network as one structural component that determines the average size of EGFR clusters.
Collapse
Affiliation(s)
- Sandy Zhang
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
3
|
Zhang Q, Shi Y, Xu H, Zhou L, Gao J, Jiang J, Cai M, Shan Y. Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy. RSC Adv 2018; 8:21793-21797. [PMID: 35541738 PMCID: PMC9081852 DOI: 10.1039/c8ra03215g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Cetuximab is a monoclonal antibody that binds to the epidermal growth factor receptor, which is important in the growth of many cancers. However, the biophysical characteristics of cetuximab as an anti-cancer drug remain elusive. In this study, we adopted atomic force microscopy to measure the mechanical properties of cancer cells following cetuximab treatment and the biomechanical properties of cetuximab and epidermal growth factor receptor interactions. Atomic force microscopy can be implemented as a platform for further investigations that target the cellular stiffness and affinity of ligand–receptor as a therapeutic choice. Atomic force microscopy can be implemented as a platform for further investigations that target the cellular stiffness and affinity of ligand–receptor as a therapeutic choice.![]()
Collapse
Affiliation(s)
- Qingrong Zhang
- School of Chemistry and Life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- China
| | - Yan Shi
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Haijiao Xu
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
- University of Chinese Academy of Sciences
| | - Lulu Zhou
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
- University of Chinese Academy of Sciences
| | - Jing Gao
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Junguang Jiang
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Mingjun Cai
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Yuping Shan
- School of Chemistry and Life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- China
| |
Collapse
|
4
|
Gopal AA, Rappaz B, Rouger V, Martyn IB, Dahlberg PD, Meland RJ, Beamish IV, Kennedy TE, Wiseman PW. Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS. Biophys J 2017; 110:623-634. [PMID: 26840727 DOI: 10.1016/j.bpj.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
Netrins are secreted proteins that direct cell migration and adhesion during development. Netrin-1 binds its receptors deleted in colorectal cancer (DCC) and the UNC5 homologs (UNC5A-D) to activate downstream signaling that ultimately directs cytoskeletal reorganization. To investigate how netrin-1 regulates the dynamic distribution of DCC and UNC5 homologs, we applied fluorescence confocal and total internal reflection fluorescence microscopy, and sliding window temporal image cross correlation spectroscopy, to measure time profiles of the plasma membrane distribution, aggregation state, and interaction fractions of fluorescently tagged netrin receptors expressed in HEK293T cells. Our measurements reveal changes in receptor aggregation that are consistent with netrin-1-induced recruitment of DCC-enhanced green fluorescent protein (EGFP) from intracellular vesicles to the plasma membrane. Netrin-1 also induced colocalization of coexpressed full-length DCC-EGFP with DCC-T-mCherry, a putative DCC dominant negative that replaces the DCC intracellular domain with mCherry, consistent with netrin-1-induced receptor oligomerization, but with no change in aggregation state with time, providing evidence that signaling via the DCC intracellular domain triggers DCC recruitment to the plasma membrane. UNC5B expressed alone was also recruited by netrin-1 to the plasma membrane. Coexpressed DCC and UNC5 homologs are proposed to form a heteromeric netrin-receptor complex to mediate a chemorepellent response. Application of temporal image cross correlation spectroscopy to image series of cells coexpressing UNC5B-mCherry and DCC-EGFP revealed a netrin-1-induced increase in colocalization, with both receptors recruited to the plasma membrane from preexisting clusters, consistent with vesicular recruitment and receptor heterooligomerization. Plasma membrane recruitment of DCC or UNC5B was blocked by application of the netrin-1 VI-V peptide, which fails to activate chemoattraction, or by pharmacological block of Src family kinase signaling, consistent with receptor recruitment requiring netrin-1-activated signaling. Our findings reveal a mechanism activated by netrin-1 that recruits DCC and UNC5B to the plasma membrane.
Collapse
Affiliation(s)
- Angelica A Gopal
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Benjamin Rappaz
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Rouger
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Iain B Martyn
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter D Dahlberg
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel J Meland
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ian V Beamish
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Digiacomo L, Digman MA, Gratton E, Caracciolo G. Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomater 2016; 42:189-198. [PMID: 27449340 PMCID: PMC5483853 DOI: 10.1016/j.actbio.2016.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Fluorescence microscopy and spectroscopy techniques are commonly used to investigate complex and interacting biological systems (e.g. proteins and nanoparticles in living cells), since these techniques can explore intracellular dynamics with high time resolution at the nanoscale. Here we extended one of the Image Correlation Spectroscopy (ICS) methods, i.e. the image Mean Square Displacement, in order to study 2-dimensional diffusive and flow motion in confined systems, whose driving speed is uniformly distributed in a variable angular range. Although these conditions are not deeply investigated in the current literature, they can be commonly found in the intracellular trafficking of nanocarriers, which diffuse in the cytoplasm and/or may move along the cytoskeleton in different directions. The proposed approach could reveal the underlying system's symmetry using methods derived from fluorescence correlation concepts and could recover dynamic and geometric features which are commonly done by single particle analyses. Furthermore, it improves the characterization of low-speed flow motions, when compared to SpatioTemporal Image Correlation Spectroscopy (STICS). Although we present a specific example (lipoplexes in living cells), the emphasis is in the discussion of the method, its basic assumptions and its validation on numeric simulations. STATEMENT OF SIGNIFICANCE Recent advances in nanoparticle-based drug and gene delivery systems have pointed out the interactions at cellular and subcellular levels as key-factors for the efficiency of the adopted biomaterials. Such biochemical and biophysical interactions drive and affect the intracellular dynamics, that is commonly characterized by means of fluorescence microscopy and spectroscopy techniques. Here we present a novel Image Correlation Spectroscopy (ICS) method as a promising tool to capture the intracellular behavior of nanoparticles with high resolution and low background's sensitivity. This study overcomes some of the approximations adopted so far, by decoupling the flow terms of the investigated dynamics and thus recovering ensemble's information from specific single particle behaviors. Finally, relevant implications for nanoparticle-based drug delivery are shown.
Collapse
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA 92697, USA
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
6
|
Abu-Arish A, Pandzic E, Goepp J, Matthes E, Hanrahan JW, Wiseman PW. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells. Biophys J 2016; 109:85-94. [PMID: 26153705 DOI: 10.1016/j.bpj.2015.04.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 01/01/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function.
Collapse
Affiliation(s)
| | - Elvis Pandzic
- Physics, McGill University, Montreal, Quebec, Canada
| | - Julie Goepp
- Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | - Paul W Wiseman
- Chemistry & Physics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Krager KJ, Koland JG. Metabolically Biotinylated Reporters for Electron Microscopic Imaging of Cytoplasmic Membrane Microdomains. Methods Mol Biol 2015; 1376:87-96. [PMID: 26552677 DOI: 10.1007/978-1-4939-3170-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The protein and lipid substituents of cytoplasmic membranes are not in general homogeneously distributed across the membrane surface. Many membrane proteins, including ion channels, receptors, and other signaling molecules, exhibit a profound submicroscopic spatial organization, in some cases clustering in submicron membrane subdomains having a protein and lipid composition distinct from that of the bulk membrane. In the case of membrane-associated signaling molecules, mounting evidence indicates that their nanoscale organization, for example the colocalization of differing signaling molecules in the same membrane microdomains versus their segregation into distinct microdomain species, can significantly impact signal transduction. Biochemical membrane fractionation approaches have been used to characterize membrane subdomains of unique protein and lipid composition, including cholesterol-rich lipid raft structures. However, the intrinsically perturbing nature of fractionation methods makes the interpretation of such characterization subject to question, and indeed the existence and significance of lipid rafts remain controversial. Electron microscopic (EM) imaging of immunogold-labeled proteins in plasma membrane sheets has emerged as a powerful method for visualizing the nanoscale organization and colocalization of membrane proteins, which is not as perturbing of membrane structure as are biochemical approaches. For the purpose of imaging putative lipid raft structures, we recently developed a streamlined EM membrane sheet imaging procedure that employs a unique genetically encoded and metabolically biotinylated reporter that is targeted to membrane inner leaflet lipid rafts. We describe here the principles of this procedure and its application in the imaging of plasma membrane inner leaflet lipid rafts.
Collapse
Affiliation(s)
- Kimberly J Krager
- Department of Pharmacology, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.,Division of Radiation Health, University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, 72205, USA
| | - John G Koland
- Department of Pharmacology, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Qiu H, Duan WM, Shu J, Cheng HX, Wang WP, Huang XE, Chen HL. B3GNT2, a polylactosamine synthase, regulates glycosylation of EGFR in H7721 human hepatocellular carcinoma cells. Asian Pac J Cancer Prev 2015; 15:10875-8. [PMID: 25605193 DOI: 10.7314/apjcp.2014.15.24.10875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is an important surface receptor with N-glycans in its extracellular domain, whose glycosylation is essential for its function, especially in tumor cells. Here, we demonstrated that polylactosamine is markedly increased in H7721 hepatocellular carcinoma cells after treatment with EGF, while it apparently declined after exposure to all-trans retinoic acid (ATRA). In the study of the enzymatic mechanism of this phenomenon, we explored changes in the expression of poly-N-acetyllactosamine (PLN) branching glycosyltransferases using RT-PCR. Among the four glycosyltransferases with altered expression, GnT-V was most elevated by EGF, while GnT-V and B3GNT2 were most declined by ATRA. Next, we conducted co-immunoprecipitation experiments to test whether B3GNT2 and EGFR associate with each other. We observed that EGFR is a B3GNT2-targeting protein in H7721 cells. Taken together, these findings indicated that the altered expression of B3GNT2 will remodel the PLN stucture of EGFR in H7721 cells, which may modify downstream signal transduction.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Biochemistry and Molecular Biology, Medical School of Soochow University, Suzhou, China E-mail : ;
| | | | | | | | | | | | | |
Collapse
|
9
|
Valley CC, Arndt-Jovin DJ, Karedla N, Steinkamp MP, Chizhik AI, Hlavacek WS, Wilson BS, Lidke KA, Lidke DS. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer. Mol Biol Cell 2015; 26:4087-99. [PMID: 26337388 PMCID: PMC4710239 DOI: 10.1091/mbc.e15-05-0269] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor kinase mutations drive oncogenesis, but the molecular mechanism of pathological signal initiation is poorly understood. Using high-resolution microscopy methods, the authors reveal that these kinase mutations induce structural changes in the receptor ectodomain that lead to enhanced, ligand-independent dimerization. Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.
Collapse
Affiliation(s)
- Christopher C Valley
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Donna J Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Narain Karedla
- III. Institute of Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Mara P Steinkamp
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Alexey I Chizhik
- III. Institute of Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Bridget S Wilson
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
10
|
Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 2014; 3:2626. [PMID: 24022088 PMCID: PMC3769654 DOI: 10.1038/srep02626] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/21/2013] [Indexed: 11/15/2022] Open
Abstract
Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32–56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.
Collapse
|
11
|
Pryor MM, Low-Nam ST, Halász AM, Lidke DS, Wilson BS, Edwards JS. Dynamic transition states of ErbB1 phosphorylation predicted by spatial stochastic modeling. Biophys J 2014; 105:1533-43. [PMID: 24048005 DOI: 10.1016/j.bpj.2013.07.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022] Open
Abstract
ErbB1 overexpression is strongly linked to carcinogenesis, motivating better understanding of erbB1 dimerization and activation. Recent single-particle-tracking data have provided improved measures of dimer lifetimes and strong evidence that transient receptor coconfinement promotes repeated interactions between erbB1 monomers. Here, spatial stochastic simulations explore the potential impact of these parameters on erbB1 phosphorylation kinetics. This rule-based mathematical model incorporates structural evidence for conformational flux of the erbB1 extracellular domains, as well as asymmetrical orientation of erbB1 cytoplasmic kinase domains during dimerization. The asymmetric dimer model considers the theoretical consequences of restricted transactivation of erbB1 receptors within a dimer, where the N-lobe of one monomer docks with the C-lobe of the second monomer and triggers its catalytic activity. The dynamic nature of the erbB1 phosphorylation state is shown by monitoring activation states of individual monomers as they diffuse, bind, and rebind after ligand addition. The model reveals the complex interplay between interacting liganded and nonliganded species and the influence of their distribution and abundance within features of the membrane landscape.
Collapse
Affiliation(s)
- Meghan McCabe Pryor
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico
| | | | | | | | | | | |
Collapse
|
12
|
Bag N, Wohland T. Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging. Annu Rev Phys Chem 2013; 65:225-48. [PMID: 24328446 DOI: 10.1146/annurev-physchem-040513-103641] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels.
Collapse
Affiliation(s)
- Nirmalya Bag
- Departments of Biological Sciences and Chemistry, and NUS Center for Bio-Imaging Sciences (CBIS), National University of Singapore, 117557 Singapore; ,
| | | |
Collapse
|
13
|
Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 2013; 8:e74200. [PMID: 24066121 PMCID: PMC3774629 DOI: 10.1371/journal.pone.0074200] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/26/2013] [Indexed: 12/28/2022] Open
Abstract
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Collapse
|
14
|
Kozer N, Barua D, Orchard S, Nice EC, Burgess AW, Hlavacek WS, Clayton AH. Exploring higher-order EGFR oligomerisation and phosphorylation--a combined experimental and theoretical approach. MOLECULAR BIOSYSTEMS 2013; 9:1849-63. [PMID: 23629589 PMCID: PMC3698845 DOI: 10.1039/c3mb70073a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epidermal growth factor receptor (EGFR) kinase is generally considered to be activated by either ligand-induced dimerisation or a ligand-induced conformational change within pre-formed dimers. Ligand-induced higher-order EGFR oligomerisation or clustering has been reported but it is not clear how EGFR oligomers, as distinct from EGFR dimers, influence signaling outputs. To address this question, we combined measures of receptor clustering (microscopy; image correlation spectroscopy) and phosphorylation (Western blots) with modelling of mass-action chemical kinetics. A stable BaF/3 cell-line that contains a high proportion (>90%) of inactive dimers of EGFR-eGFP but no secreted ligand and no other detectable ErbB receptors was used as the model cell system. EGF at concentrations of greater than 1 nM was found to cluster EGFR-eGFP dimers into higher-order complexes and cause parallel increases in EGFR phosphorylation. The kinetics of EGFR clustering and phosphorylation were both rapid, plateauing within 2 minutes after stimulation with 30 nM EGF. A rule-based model was formulated to interpret the data. This model took into account ligand binding, ligand-induced conformational changes in the cytosolic tail, monomer-dimer-trimer-tetramer transitions via ectodomain- and kinase-mediated interactions, and phosphorylation. The model predicts that cyclic EGFR tetramers are the predominant phosphorylated species, in which activated receptor dimers adopt a cyclic side-by-side orientation, and that receptor kinase activation is stabilised by the intramolecular interactions responsible for cyclic tetramerization.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division & Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Suzanne Orchard
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - Eduoard C. Nice
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
- Department of Biochemistry, Monash University, Clayton, Victoria 3080, Australia
| | - Antony W. Burgess
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division & Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Andrew H.A. Clayton
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
15
|
Sungkaworn T, Jiarpinitnun C, Chaiyakunvat P, Chatsudthipong V. Bivalent angiotensin II suppresses oxidative stress-induced hyper-responsiveness of angiotensin II receptor type I. Eur J Med Chem 2013; 63:629-34. [DOI: 10.1016/j.ejmech.2013.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/07/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
|
16
|
Hovanyecz P, Guibert E, Pellegrino J, Rodriguez J, Sigot V. Extended cold storage of cultured hepatocytes impairs endocytic uptake during normothermic rewarming. Cryobiology 2013; 66:112-20. [DOI: 10.1016/j.cryobiol.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 12/27/2022]
|
17
|
Radhakrishnan K, Halász Á, McCabe MM, Edwards JS, Wilson BS. Mathematical simulation of membrane protein clustering for efficient signal transduction. Ann Biomed Eng 2012; 40:2307-18. [PMID: 22669501 PMCID: PMC3822010 DOI: 10.1007/s10439-012-0599-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022]
Abstract
Initiation and propagation of cell signaling depend on productive interactions among signaling proteins at the plasma membrane. These diffusion-limited interactions can be influenced by features of the membrane that introduce barriers, such as cytoskeletal corrals, or microdomains that transiently confine both transmembrane receptors and membrane-tethered peripheral proteins. Membrane topographical features can lead to clustering of receptors and other membrane components, even under very dynamic conditions. This review considers the experimental and mathematical evidence that protein clustering impacts cell signaling in complex ways. Simulation approaches used to consider these stochastic processes are discussed.
Collapse
Affiliation(s)
| | - Ádám Halász
- Dept. of Mathematics, West Virginia University, Morgantown, WV
| | - Meghan M. McCabe
- Dept. of Chemical Engineering, University of New Mexico, Albuquerque, N M
| | - Jeremy S. Edwards
- Dept. of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, N M
- Dept. of Chemical Engineering, University of New Mexico, Albuquerque, N M
- Cancer Center, University of New Mexico, Albuquerque, N M
| | - Bridget S. Wilson
- Dept. of Pathology, University of New Mexico, Albuquerque, N M
- Cancer Center, University of New Mexico, Albuquerque, N M
| |
Collapse
|
18
|
Spendier K, Thomas JL. Image correlation spectroscopy of randomly distributed disks. J Biol Phys 2012; 37:477-92. [PMID: 22942489 DOI: 10.1007/s10867-011-9232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022] Open
Abstract
Image correlation spectroscopy (ICS) has been widely used to quantify spatiotemporal distributions of fluorescently labelled cell membrane proteins and receptors. When the membrane proteins are randomly distributed, ICS may be used to estimate protein densities, provided the proteins behave as point-like objects. At high protein area fraction, however, even randomly placed proteins cannot obey Poisson statistics, because of excluded area. The difficulty can arise if the protein effective area is quite large, or if proteins form large complexes or aggregate into clusters. In these cases, there is a need to determine the correct form of the intensity correlation function for hard disks in two dimensions, including the excluded area effects. We present an approximate but highly accurate algorithm for the computation of this correlation function. The correlation function was verified using test images of randomly distributed hard disks of uniform intensity convolved with the microscope point spread function. This algorithm can be readily modified to compute exact intensity correlation functions for any probe geometry, interaction potential, and fluorophore distribution; we show how to apply it to describe a random distribution of large proteins labeled with a single fluorophore.
Collapse
|
19
|
Robertson C, George SC. Theory and practical recommendations for autocorrelation-based image correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:080801-1. [PMID: 23224160 PMCID: PMC3414238 DOI: 10.1117/1.jbo.17.8.080801] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 05/18/2023]
Abstract
Image correlation spectroscopy (ICS) is a powerful technique for detecting arrangement of fluorophores in images. This tutorial gives background into the mathematical underpinnings of ICS, specifically image autocorrelation. The effects of various artifacts and image processing steps, including background subtraction, noise, and image morphology were examined analytically and their effects on ICS analysis modeled. A series of recommendations was built based on this analysis.
Collapse
Affiliation(s)
- Claire Robertson
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697
- University of California, Irvine, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California 92697
| | - Steven C. George
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697
- University of California, Irvine, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California 92697
- University of California, Irvine, Department of Chemical Engineering and Materials, Irvine, California 92697
- University of California, Irvine, Department of Medicine, Irvine, California 92697
- Address all correspondence to: Steven C. George, University of California, 2121 Engineering Hall, Irvine, California 92697. Tel:+(949) 824-8744; E-mail:
| |
Collapse
|
20
|
Bonor J, Adams EL, Bragdon B, Moseychuk O, Czymmek KJ, Nohe A. Initiation of BMP2 signaling in domains on the plasma membrane. J Cell Physiol 2012; 227:2880-8. [PMID: 21938723 DOI: 10.1002/jcp.23032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) is a potent growth factor crucial for cell fate determination. It directs the differentiation of mesenchymal stem cells into osteoblasts, chondrocytes, adipocytes, and myocytes. Initiation of BMP2 signaling pathways occurs at the cell surface through type I and type II serine/threonine kinases housed in specific membrane domains such as caveolae enriched in the caveolin-1 beta isoform (CAV1β, caveolae) and clathrin-coated pits (CCPs). In order for BMP2 to initiate Smad signaling it must bind to its receptors on the plasma membrane resulting in the phosphorylation of the BMP type Ia receptor (BMPRIa) followed by activation of Smad signaling. The current model suggests that the canonical BMP signaling pathway, Smad, occurs in CCPs. However, several recent studies suggested Smad signaling may occur outside of CCPs. Here, we determined; (i) The location of BMP2 binding to receptors localized in caveolae, CCPs, or outside of these domains using AFM and confocal microscopy. (ii) The location of phosphorylation of BMPRIa on the plasma membrane using membrane fractionation, and (iii) the effect of down regulation of caveolae on Smad signaling. Our data indicate that BMP2 binds with highest force to BMP receptors (BMPRs) localized in caveolae. BMPRIa is phosphorylated in caveolae and the disruption of caveolae-inhibited Smad signaling in the presence of BMP2. This suggests caveolae are necessary for the initiation of Smad signaling. We propose an extension of the current model of BMP2 signaling, in which the initiation of Smad signaling is mediated by BMPRs in caveolae.
Collapse
Affiliation(s)
- Jeremy Bonor
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sungkaworn T, Lenbury Y, Chatsudthipong V. Oxidative stress increases angiotensin receptor type I responsiveness by increasing receptor degree of aggregation using image correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2496-500. [DOI: 10.1016/j.bbamem.2011.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/11/2023]
|
22
|
Acute ligand-independent Src activation mimics low EGF-induced EGFR surface signalling and redistribution into recycling endosomes. Exp Cell Res 2010; 316:3239-53. [PMID: 20832399 DOI: 10.1016/j.yexcr.2010.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/12/2010] [Accepted: 09/02/2010] [Indexed: 01/09/2023]
Abstract
Src, a non-receptor tyrosine kinase, is a key signal transduction partner of epidermal growth factor (EGF) receptor (EGFR). In human breast cancer, EGFR and Src are frequently over-expressed and/or over-activated. Although reciprocal activation is documented, mechanisms underlying Src:EGFR interactions are incompletely understood. We here exploited ts/v-Src thermo-activation in MDCK monolayers to test whether acute Src activation impacts on signalling and trafficking of non-liganded EGFR. We found that thermo-activation caused rapid Src recruitment to the plasma membrane, concomitant association with EGFR, and its phosphorylation at Y845 and Y1173 predominantly at the cell surface. Like low EGF concentrations, activated Src (i) decreased EGF surface binding without affecting the total EGFR pool; (ii) triggered EGFR endocytosis via clathrin-coated vesicles; (iii) and led to its sequestration in perinuclear/recycling endosomes with avoidance of multivesicular bodies and lysosomal degradation. Combined Src activation and EGF were synergistic for EGFR-Y845 and -Y1173 phosphorylation at some endosomes. We conclude that acute effects of Src in MDCK cells may mimic those of low EGF on EGFR activation and redistribution. Src:EGFR interactions may be sufficient to trigger EGFR activation and might contribute to its local signalling, without requiring either soluble extracellular signal or receptor over-expression.
Collapse
|
23
|
Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc Natl Acad Sci U S A 2010; 107:16524-9. [PMID: 20813958 DOI: 10.1073/pnas.1002642107] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligand-driven dimerizations of ErbB receptor subunits fulfill a fundamental role in their activation. We have used the number and brightness analysis technique to investigate the existence of preformed ligand-independent dimers and clusters and to characterize the initial steps in the activation of ErbB1 and ErbB2. In cells expressing 50,000-200,000 receptors, ErbB1 was monomeric in the absence of ligand stimulation, whereas in CHO cells with receptor levels >500,000 as much as 30% of ErbB1 was present as preformed dimers. EGF induced the formation of ErbB1 dimers as well as larger clusters (up to pentamers) that colocalized with clathrin-coated pits. The distribution of unstimulated ErbB2 in cells expressing 3·10(5)-10(6) receptors was fundamentally different, in that this receptor was present in preformed homoassociated aggregates containing 5-10 molecules. These constitutive ErbB2 homoclusters colocalized with caveolae, increased in size at subphysiological temperatures, but decreased in size upon EGF stimulation. We conclude that these ErbB2 clusters are promoted primarily by membrane-mediated interactions and are dispersed upon ligand stimulation.
Collapse
|
24
|
Cymer F, Schneider D. Transmembrane helix-helix interactions involved in ErbB receptor signaling. Cell Adh Migr 2010; 4:299-312. [PMID: 20212358 DOI: 10.4161/cam.4.2.11191] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Among the many transmembrane receptor classes, the receptor tyrosine kinases represent an important superfamily, involved in many cellular processes like embryogenesis, development and cell division. Deregulation and dysfunctions of these receptors can lead to various forms of cancer and other diseases. Mostly, only fragmented knowledge exists about functioning of the entire receptors, and many studies have been performed on isolated receptor domains. In this review we focus on the function of the ErbB family of receptor tyrosine kinases with a special emphasis on the role of the transmembrane domain and on the mechanisms underlying regulated and deregulated signaling. Many general aspects of ErbB receptor structure and function have been analyzed and described. All human ErbBs appear to form homo- and heterodimers within cellular membranes and the single transmembrane domain of the receptors is involved in dimerization. Additionally, only defined structures of the transmembrane helix dimer allows signaling of ErbB receptors.
Collapse
Affiliation(s)
- Florian Cymer
- Albert-Ludwigs-University Freiburg, Department of Biochemistry and Molecular Biology, ZBMZ, and Fakultät für Biologie, Freiburg, Germany
| | | |
Collapse
|
25
|
Leonard D, Hayakawa A, Lawe D, Lambright D, Bellve KD, Standley C, Lifshitz LM, Fogarty KE, Corvera S. Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J Cell Sci 2008; 121:3445-58. [PMID: 18827013 PMCID: PMC2586290 DOI: 10.1242/jcs.031484] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biological function of receptors is determined by their appropriate trafficking through the endosomal pathway. Following internalization, the transferrin (Tf) receptor quantitatively recycles to the plasma membrane, whereas the epidermal growth factor (EGF) receptor undergoes degradation. To determine how Tf and EGF engage these two different pathways we imaged their binding and early endocytic pathway in live cells using total internal reflection fluorescence microscopy (TIRF-M). We find that EGF and Tf bind to distinct plasma membrane regions and are incorporated into different endocytic vesicles. After internalization, both EGF-enriched and Tf-enriched vesicles interact with endosomes containing early endosome antigen 1 (EEA1). EGF is incorporated and retained in these endosomes, while Tf-containing vesicles rapidly dissociate and move to a juxtanuclear compartment. Endocytic vesicles carrying EGF recruit more Rab5 GTPase than those carrying Tf, which, by strengthening their association with EEA1-enriched endosomes, may provide a mechanism for the observed cargo-specific sorting. These results reveal pre-endocytic sorting of Tf and EGF, a specialized role for EEA1-enriched endosomes in EGF trafficking, and a potential mechanism for cargo-specified sorting of endocytic vesicles by these endosomes.
Collapse
Affiliation(s)
- Deborah Leonard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 2008; 95:2086-96. [PMID: 18487307 DOI: 10.1529/biophysj.108.133371] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.
Collapse
|