1
|
Nagel J, Törmäkangas O, Kuokkanen K, El-Tayeb A, Messinger J, Abdelrahman A, Bous C, Schiedel AC, Müller CE. Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Purinergic Signal 2024; 20:645-656. [PMID: 38795223 PMCID: PMC11555173 DOI: 10.1007/s11302-024-10005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 05/27/2024] Open
Abstract
P2X4 receptors are ATP-gated cation channels that were proposed as novel drug targets due to their role in inflammation and neuropathic pain. Only few potent and selective P2X4 receptor antagonists have been described to date. Labeled tool compounds suitable for P2X4 receptor binding studies are lacking. Here, we present a novel allosteric P2X4 receptor antagonist possessing high potency in the low nanomolar range. We describe its tritium-labeling resulting in the P2X4-selective radiotracer [3H]PSB-OR-2020 with high specific activity (45 Ci/mmol; 1.67 TBq/mmol). A radioligand binding assay was developed using human embryonic kidney (HEK293) cell membranes recombinantly expressing the human P2X4 receptor. Competition binding studies with structurally diverse P2X4 receptor antagonists revealed different allosteric binding sites indicating that the new class of P2X4 receptor antagonists, to which PSB-OR-2020 belongs, interacts with an unprecedented allosteric site. [3H]PSB-OR-2020 may become a useful tool for research on P2X4 receptors and for promoting drug development.
Collapse
Affiliation(s)
- Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Olli Törmäkangas
- Orion Pharma, Orion Corporation, Tengströminkatu 8, FI-20360 Turku, and Orionintie 1A, Espoo, FI- 02200, Finland
| | - Katja Kuokkanen
- Orion Pharma, Orion Corporation, Tengströminkatu 8, FI-20360 Turku, and Orionintie 1A, Espoo, FI- 02200, Finland
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Josef Messinger
- Orion Pharma, Orion Corporation, Tengströminkatu 8, FI-20360 Turku, and Orionintie 1A, Espoo, FI- 02200, Finland
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Christiane Bous
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Anke C Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, Bonn, 53121, Germany.
| |
Collapse
|
2
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
3
|
Petrushenko OA, Stratiievska AO, Petrushenko MO, Lukyanetz EA. Resensitization of TRPV1 channels after the P2 receptor activation in sensory neurons of spinal ganglia in rats. Front Cell Neurosci 2023; 17:1192780. [PMID: 37323583 PMCID: PMC10267357 DOI: 10.3389/fncel.2023.1192780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction TRPV1 channels are responsible for detecting noxious stimuli such as heat (>43°C), acid, and capsaicin. P2 receptors are involved in numerous functions of the nervous system, including its modulation and specific response to the application of ATP. In our experiments, we investigated the dynamics of calcium transients in DRG neurons associated with TRPV1 channel desensitization and the effect of activation of P2 receptors on this process. Methods We used DRG neurons from rats P7-8 after 1-2 days of culture to measure calcium transients by microfluorescence calcimetry using the fluorescent dye Fura-2 AM. Results We have shown that DRG neurons of small (d < 22 μm) and medium (d = 24-35 μm) sizes differ in TRPV1 expression. Thus, TRPV1 channels are mainly present in small nociceptive neurons (59% of the studied neurons). Short-term sequential application of the TRPV1 channel agonist capsaicin (100nM) leads to the desensitization of TRPV1 channels by the type of tachyphylaxis. We identified three types of sensory neurons based on responses to capsaicin: (1) desensitized 37.5%, (2) non-desensitized 34.4%, and (3) insensitive 23.4% to capsaicin. It has also been shown that P2 receptors are present in all types of neurons according to their size. So, the responses to ATP were different in different-sized neurons. Applying ATP (0.1 mM) to the intact cell membrane after the onset of tachyphylaxis caused recovery of calcium transients in response to the addition of capsaicin in these neurons. The amplitude of the capsaicin response after reconstitution with ATP was 161% of the previous minimal calcium transient in response to capsaicin. Discussion Significantly, the restoration of the amplitude of calcium transients under the ATP application is not associated with changes in the cytoplasmic pool of ATP because this molecule does not cross the intact cell membrane, thus, our results show the interaction between TRPV1 channels and P2 receptors. It is important to note that the restoration of the amplitude of calcium transients through TRPV1 channels after application of ATP was observed mainly in cells of 1-2 days of cultivation. Thus, the resensitization of capsaicin transients following P2 receptor activation may be associated with the regulation of the sensitivity of sensory neurons.
Collapse
|
4
|
Konda Mani S, Thiyagarajan R, Yli-Harja O, Kandhavelu M, Murugesan A. Structural analysis of human G-protein-coupled receptor 17 ligand binding sites. J Cell Biochem 2023; 124:533-544. [PMID: 36791278 DOI: 10.1002/jcb.30388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
The human G protein coupled membrane receptor (GPR17), the sensor of brain damage, is identified as a biomarker for many neurological diseases. In human brain tissue, GPR17 exist in two isoforms, long and short. While cryo-electron microscopy technology has provided the structure of the long isoform of GPR17 with Gi complex, the structure of the short isoform and its activation mechanism remains unclear. Recently, we theoretically modeled the structure of the short isoform of GPR17 with Gi signaling protein and identified novel ligands. In the present work, we demonstrated the presence of two distinct ligand binding sites in the short isoform of GPR17. The molecular docking of GPR17 with endogenous (UDP) and synthetic ligands (T0510.3657, MDL29950) found the presence of two distinct binding pockets. Our observations revealed that endogenous ligand UDP can bind stronger in two different binding pockets as evidenced by glide and autodock vina scores, whereas the other two ligand's binding with GPR17 has less docking score. The analysis of receptor-UDP interactions shows complexes' stability in the lipid environment by 100 ns atomic molecular dynamics simulations. The amino acid residues VAL83, ARG87, and PHE111 constitute ligand binding site 1, whereas site 2 constitutes ASN67, ARG129, and LYS232. Root mean square fluctuation analysis showed the residues 83, 87, and 232 with higher fluctuations during molecular dynamics simulation in both binding pockets. Our findings imply that the residues of GPR17's two binding sites are crucial, and their interaction with UDP reveals the protein's hidden signaling and communication properties. Furthermore, this finding may assist in the development of targeted therapies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Saravanan Konda Mani
- Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai, Tamilnadu, India
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Olli Yli-Harja
- Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, Washington, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMeditech and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Akshaya Murugesan
- BioMeditech and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
5
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
6
|
Mahmood A, Munir R, Zia-ur-Rehman M, Javid N, Shah SJA, Noreen L, Sindhu TA, Iqbal J. Synthesis of Sulfonamide Tethered (Hetero)aryl ethylidenes as Potential Inhibitors of P2X Receptors: A Promising Way for the Treatment of Pain and Inflammation. ACS OMEGA 2021; 6:25062-25075. [PMID: 34604685 PMCID: PMC8482771 DOI: 10.1021/acsomega.1c04302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 06/13/2023]
Abstract
P2X receptors have the ability to regulate various physiological functions like neurotransmission, inflammatory responses, and pain sensation. Such physiological properties make these receptors a new target for the treatment of pain and inflammation. Several antagonists of P2X receptors have been studied for the treatment of neuropathic pain and neurodegenerative disorders but potency and selectivity are the major issues with these known inhibitors. Sulfonamide derivatives were reported to be potent inhibitors of P2X receptors. In this study, sulfonamide carrying precursor hydrazide was synthesized by a facile method that was subsequently condensed with methyl (hetero)arylketones to obtain a series of new (hetero)aryl ethylidenes. These compounds were screened for inhibitory potential against h-P2X2, h-P2X4, h-P2X5, and h-P2X7 receptors to find their potency and selectivity. Computational studies were performed to confirm the mode of inhibition as well as type of interaction between ligand and target site. In calcium signaling experiments, compound 6h was found to be the most potent and selective inhibitor of h-P2X2 and h-P2X7 receptors with IC50 ± standard error of the mean (SEM) values of 0.32 ± 0.01 and 1.10 ± 0.21 μM, respectively. Compounds 6a and 6c exhibited selective inhibition for h-P2X7 receptor, whereas 6e, 7a, and 7b expressed selective inhibitions toward h-P2X2 receptor that were comparable to the positive control suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS).
Collapse
Affiliation(s)
- Abid Mahmood
- Centre
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Rubina Munir
- Department
of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | | | - Noman Javid
- Chemistry
Department (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Syed Jawad Ali Shah
- Centre
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Lubna Noreen
- Department
of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | | | - Jamshed Iqbal
- Centre
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
7
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Slepukhina MA, Ivashchenko DV, Sheina MA, Muradian AA, Blagovestnov DA, Sychev DA. Pain pharmacogenetics. Drug Metab Pers Ther 2020; 35:dmpt-2020-2939. [PMID: 32776897 DOI: 10.1515/dmpt-2020-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022]
Abstract
Pain is a significant problem in medicine. The use of PGx markers to personalize postoperative analgesia can increase its effectiveness and avoid undesirable reactions. This article describes the mechanisms of nociception and antinociception and shows the pathophysiological mechanisms of pain in the human body. The main subject of this article is pharmacogenetic approach to the selection of anesthetics. Current review presents data for local and general anesthetics, opioids, and non-steroidal anti-inflammatory drugs. None of the anesthetics currently has clinical guidelines for pharmacogenetic testing. This literature review summarizes the results of original research available, to date, and draws attention to this area.
Collapse
Affiliation(s)
| | - Dmitriy V Ivashchenko
- Child Psychiatry and Psychotherapy Department, Department of Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Maria A Sheina
- Department of Anesthesiology and Intensive Care, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Dmitriy A Sychev
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
9
|
Drosophila taste neurons as an agonist-screening platform for P2X receptors. Sci Rep 2020; 10:8292. [PMID: 32427920 PMCID: PMC7237442 DOI: 10.1038/s41598-020-65169-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/28/2020] [Indexed: 11/24/2022] Open
Abstract
The P2X receptor family of ATP-gated cation channels are attractive drug targets for pain and inflammatory disease, but no subtype-selective agonists, and few partially selective agonists have been described to date. As proof-of-concept for the discovery of novel P2X receptor agonists, here we demonstrate the use of Drosophila taste neurons heterologously expressing rat P2X2 receptors as a screening platform. We demonstrate that wild-type rat P2X2 expressed in Drosophila is fully functional (ATP EC50 8.7 µM), and that screening of small (2 µl) volumes of a library of 80 adenosine nucleotide analogues is rapid and straightforward. We have determined agonist potency and specificity profiles for rat P2X2 receptors; triphosphate-bearing analogues display broad activity, tolerating a number of substitutions, and diphosphate and monophosphate analogues display very little activity. While several ATP analogues gave responses of similar magnitude to ATP, including the previously identified agonists ATPγS and ATPαS, we were also able to identify a novel agonist, the synthetic analogue 2-fluoro-ATP, and to confirm its agonist activity on rat P2X2 receptors expressed in human cells. These data validate our Drosophila platform as a useful tool for the analysis of agonist structure-activity relationships, and for the screening and discovery of novel P2X receptor agonists.
Collapse
|
10
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
11
|
Sivcev S, Slavikova B, Rupert M, Ivetic M, Nekardova M, Kudova E, Zemkova H. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating. J Neurochem 2019; 150:28-43. [PMID: 31069814 DOI: 10.1111/jnc.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
P2X receptors (P2XRs) are ATP-gated cationic channels that are allosterically modulated by numerous compounds, including steroids and neurosteroids. These compounds may both inhibit and potentiate the activity of P2XRs, but sex steroids such as 17β-estradiol or progesterone are reported to be inactive. Here, we tested a hypothesis that testosterone, another sex hormone, modulates activity of P2XRs. We examined actions of native testosterone and a series of testosterone derivatives on the gating of recombinant P2X2R, P2X4R and P2X7R and native channels expressed in pituitary cells and hypothalamic neurons. The 17β-ester derivatives of testosterone rapidly and positively modulate the 1 µM ATP-evoked currents in P2X2R- and P2X4R-expressing cells, but not agonist-evoked currents in P2X7R-expressing cells. In general, most of the tested testosterone derivatives are more potent modulators than endogenous testosterone. The comparison of chemical structures and whole-cell recordings revealed that their interactions with P2XRs depend on the lipophilicity and length of the alkyl chain at position C-17. Pre-treatment with testosterone butyrate or valerate increases the sensitivity of P2X2R and P2X4R to ATP by several fold, reduces the rate of P2X4R desensitization, accelerates resensitization, and enhances ethidium uptake by P2X4R. Native channels are also potentiated by testosterone derivatives, while endogenously expressed GABA receptors type A are inhibited. The effect of ivermectin, a P2X4R-specific allosteric modulator, on deactivation is antagonized by testosterone derivatives in a concentration-dependent manner. Together, our results provide evidence for potentiation of particular subtypes of P2XRs by testosterone derivatives and suggest a potential role of ivermectin binding site for steroid-induced modulation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marian Rupert
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Nekardova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Swayne LA, Boyce AKJ. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease. Front Cell Neurosci 2017; 11:230. [PMID: 28848396 PMCID: PMC5550711 DOI: 10.3389/fncel.2017.00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023] Open
Abstract
Pannexin 1 (Panx1) channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs). Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.
Collapse
Affiliation(s)
- Leigh A Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, VancouverBC, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada
| |
Collapse
|
13
|
De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 Receptor as a Therapeutic Target. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:39-79. [PMID: 27038372 DOI: 10.1016/bs.apcsb.2015.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
14
|
Cai SL, Zheng YB, Cao SH, Cai XH, Li YQ. A conformation and charge co-modulated ultrasensitive biomimetic ion channel. Chem Commun (Camb) 2016; 52:12450-12453. [DOI: 10.1039/c6cc04899d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, an ultrasensitive nanopore-based sensor that co-modulated simultaneously by conformation and charge has been developed for the detection of ATP.
Collapse
Affiliation(s)
- Sheng-Lin Cai
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Yu-Bin Zheng
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Xiu-Hong Cai
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Yao-Qun Li
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|
15
|
Hausmann R, Kless A, Schmalzing G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 2015; 22:799-818. [PMID: 25439586 PMCID: PMC4460280 DOI: 10.2174/0929867322666141128163215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation
channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory
and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences
became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose
key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish
P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has
ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional
models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years
have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated
ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure
eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the
pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors
are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.
Collapse
Affiliation(s)
| | | | - Gunther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| |
Collapse
|
16
|
Ahmadi M, Nowroozi A, Shahlaei M. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors. J Mol Graph Model 2015; 61:243-61. [PMID: 26298810 DOI: 10.1016/j.jmgm.2015.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/22/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
The P2X purinoceptor 7 (P2X7R) is a trimeric ATP-activated ion channel gated by extracellular ATP. P2X7R has important role in numerous diseases including pain, neurodegeneration, and inflammatory diseases such as rheumatoid arthritis and osteoarthritis. In this prospective, the discovery of small-molecule inhibitors for P2X7R as a novel therapeutic target has received considerable attention in recent years. At first, 3D structure of P2X7R was built by using homology modeling (HM) and a 50ns molecular dynamics simulation (MDS). Ligand-based quantitative pharmacophore modeling methodology of P2X7R antagonists were developed based on training set of 49 compounds. The best four-feature pharmacophore model, includes two hydrophobic aromatic, one hydrophobic and one aromatic ring features, has the highest correlation coefficient (0.874), cost difference (368.677), low RMSD (2.876), as well as it shows a high goodness of fit and enrichment factor. Consequently, some hit compounds were introduced as final candidates by employing virtual screening and molecular docking procedure simultaneously. Among these compounds, six potential molecule were identified as potential virtual leads which, as such or upon further optimization, can be used to design novel P2X7R inhibitors.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Habermacher C, Dunning K, Chataigneau T, Grutter T. Molecular structure and function of P2X receptors. Neuropharmacology 2015; 104:18-30. [PMID: 26231831 DOI: 10.1016/j.neuropharm.2015.07.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
ATP-gated P2X receptors are trimeric ion channels selective to cations. Recent progress in the molecular biophysics of these channels enables a better understanding of their function. In particular, data obtained from biochemical, electrophysiogical and molecular engineering in the light of recent X-ray structures now allow delineation of the principles of ligand binding, channel opening and allosteric modulation. However, although a picture emerges as to how ATP triggers channel opening, there are a number of intriguing questions that remain to be answered, in particular how the pore itself opens in response to ATP and how the intracellular domain, for which structural information is limited, moves during activation. In this review, we provide a summary of functional studies in the context of the post-structure era, aiming to clarify our understanding of the way in which P2X receptors function in response to ATP binding, as well as the mechanism by which allosteric modulators are able to regulate receptor function. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Chloé Habermacher
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Kate Dunning
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Thierry Chataigneau
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France.
| |
Collapse
|
18
|
Higgins G, Buchanan P, Perriere M, Al-Alawi M, Costello RW, Verriere V, McNally P, Harvey BJ, Urbach V. Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol 2014; 51:178-90. [PMID: 24588705 DOI: 10.1165/rcmb.2012-0424oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In cystic fibrosis (CF), the airway surface liquid (ASL) height is reduced as a result of impaired ion transport, which favors bacterial colonization and inflammation of the airway and leads to progressive lung destruction. Lipoxin (LX)A4, which promotes resolution of inflammation, is inadequately produced in the airways of patients with CF. We previously demonstrated that LXA4 stimulates an ASL height increase and epithelial repair. Here we report the molecular mechanisms involved in these processes. We found that LXA4 (1 nM) induced an apical ATP release from non-CF (NuLi-1) and CF (CuFi-1) airway epithelial cell lines and CF primary cultures. The ATP release induced by LXA4 was completely inhibited by antagonists of the ALX/FPR2 receptor and Pannexin-1 channels. LXA4 induced an increase in intracellular cAMP and calcium, which were abolished by the selective inhibition of the P2RY11 purinoreceptor. Pannexin-1 and ATP hydrolysis inhibition and P2RY11 purinoreceptor knockdown all abolished the increase of ASL height induced by LXA4. Inhibition of the A2b adenosine receptor did not affect the ASL height increase induced by LXA4, whereas the PKA inhibitor partially inhibited this response. The stimulation of NuLi-1 and CuFi-1 cell proliferation, migration, and wound repair by LXA4 was inhibited by the antagonists of Pannexin-1 channel and P2RY11 purinoreceptor. Taken together, our results provide evidence for a novel role of LXA4 in stimulating apical ATP secretion via Pannexin-1 channels and P2RY11 purinoreceptors activation leading to an ASL height increase and epithelial repair.
Collapse
|
19
|
Huang LD, Fan YZ, Tian Y, Yang Y, Liu Y, Wang J, Zhao WS, Zhou WC, Cheng XY, Cao P, Lu XY, Yu Y. Inherent dynamics of head domain correlates with ATP-recognition of P2X4 receptors: insights gained from molecular simulations. PLoS One 2014; 9:e97528. [PMID: 24878662 PMCID: PMC4039465 DOI: 10.1371/journal.pone.0097528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
P2X receptors are ATP-gated ion channels involved in many physiological functions, and determination of ATP-recognition (AR) of P2X receptors will promote the development of new therapeutic agents for pain, inflammation, bladder dysfunction and osteoporosis. Recent crystal structures of the zebrafish P2X4 (zfP2X4) receptor reveal a large ATP-binding pocket (ABP) located at the subunit interface of zfP2X4 receptors, which is occupied by a conspicuous cluster of basic residues to recognize triphosphate moiety of ATP. Using the engineered affinity labeling and molecular modeling, at least three sites (S1, S2 and S3) within ABP have been identified that are able to recognize the adenine ring of ATP, implying the existence of at least three distinct AR modes in ABP. The open crystal structure of zfP2X4 confirms one of three AR modes (named AR1), in which the adenine ring of ATP is buried into site S1 while the triphosphate moiety interacts with clustered basic residues. Why architecture of ABP favors AR1 not the other two AR modes still remains unexplored. Here, we examine the potential role of inherent dynamics of head domain, a domain involved in ABP formation, in AR determinant of P2X4 receptors. In silico docking and binding free energy calculation revealed comparable characters of three distinct AR modes. Inherent dynamics of head domain, especially the downward motion favors the preference of ABP for AR1 rather than AR2 and AR3. Along with the downward motion of head domain, the closing movement of loop139-146 and loop169-183, and structural rearrangements of K70, K72, R298 and R143 enabled ABP to discriminate AR1 from other AR modes. Our observations suggest the essential role of head domain dynamics in determining AR of P2X4 receptors, allowing evaluation of new strategies aimed at developing specific blockers/allosteric modulators by preventing the dynamics of head domain associated with both AR and channel activation of P2X4 receptors.
Collapse
Affiliation(s)
- Li-Dong Huang
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Zhe Fan
- Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Shan Zhao
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Chao Zhou
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiao-Yang Cheng
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cao
- Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ye Yu
- Department of Pharmacology and Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- * E-mail:
| |
Collapse
|
20
|
Chataigneau T, Lemoine D, Grutter T. Exploring the ATP-binding site of P2X receptors. Front Cell Neurosci 2013; 7:273. [PMID: 24415999 PMCID: PMC3874471 DOI: 10.3389/fncel.2013.00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/07/2013] [Indexed: 02/05/2023] Open
Abstract
P2X receptors are ATP-gated non-selective cation channels involved in many different physiological processes, such as synaptic transmission, inflammation, and neuropathic pain. They form homo- or heterotrimeric complexes and contain three ATP-binding sites in their extracellular domain. The recent determination of X-ray structures of a P2X receptor solved in two states, a resting closed state and an ATP-bound, open-channel state, has provided unprecedented information not only regarding the three-dimensional shape of the receptor, but also on putative conformational changes that couple ATP binding to channel opening. These data provide a structural template for interpreting the huge amount of functional, mutagenesis, and biochemical data collected during more than fifteen years. In particular, the interfacial location of the ATP binding site and ATP orientation have been successfully confirmed by these structural studies. It appears that ATP binds to inter-subunit cavities shaped like open jaws, whose tightening induces the opening of the ion channel. These structural data thus represent a firm basis for understanding the activation mechanism of P2X receptors.
Collapse
Affiliation(s)
- Thierry Chataigneau
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| | - Damien Lemoine
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| | - Thomas Grutter
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| |
Collapse
|
21
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
22
|
Jiang LH, Baldwin JM, Roger S, Baldwin SA. Insights into the Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and Contributions in Diseases, Revealed by Structural Modeling and Single Nucleotide Polymorphisms. Front Pharmacol 2013; 4:55. [PMID: 23675347 PMCID: PMC3646254 DOI: 10.3389/fphar.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
The mammalian P2X7 receptors (P2X7Rs), a member of the ionotropic P2X receptor family with distinctive functional properties, play an important part in mediating extracellular ATP signaling in health and disease. A clear delineation of the molecular mechanisms underlying the key receptor properties, such as ATP-binding, ion permeation, and large pore formation of the mammalian P2X7Rs, is still lacking, but such knowledge is crucial for a better understanding of their physiological functions and contributions in diseases and for development of therapeutics. The recent breakthroughs in determining the atomic structures of the zebrafish P2X4.1R in the closed and ATP-bound open states have provided the long-awaited structural information. The human P2RX7 gene is abundant with non-synonymous single nucleotide polymorphisms (NS-SNPs), which generate a repertoire of human P2X7Rs with point mutations. Characterizations of the NS-SNPs identified in patients of various disease conditions and the resulting mutations have informed previously unknown molecular mechanisms determining the mammalian P2X7R functions and diseases. In this review, we will discuss the new insights into such mechanisms provided by structural modeling and recent functional and genetic linkage studies of NS-SNPs.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | | | |
Collapse
|
23
|
Bhargava Y, Rettinger J, Mourot A. Allosteric nature of P2X receptor activation probed by photoaffinity labelling. Br J Pharmacol 2013; 167:1301-10. [PMID: 22725669 DOI: 10.1111/j.1476-5381.2012.02083.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera - BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding.
Collapse
Affiliation(s)
- Y Bhargava
- Department of Biophysical Chemistry, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
24
|
Dellal SS, Hume RI. Covalent modification of mutant rat P2X2 receptors with a thiol-reactive fluorophore allows channel activation by zinc or acidic pH without ATP. PLoS One 2012; 7:e47147. [PMID: 23112811 PMCID: PMC3480388 DOI: 10.1371/journal.pone.0047147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Rat P2X2 receptors open at an undetectably low rate in the absence of ATP. Furthermore, two allosteric modulators, zinc and acidic pH, cannot by themselves open these channels. We describe here the properties of a mutant receptor, K69C, before and after treatment with the thiol-reactive fluorophore Alexa Fluor 546 C(5)-maleimide (AM546). Xenopus oocytes expressing unmodified K69C were not activated under basal conditions nor by 1,000 µM ATP. AM546 treatment caused a small increase in the inward holding current which persisted on washout and control experiments demonstrated this current was due to ATP independent opening of the channels. Following AM546 treatment, zinc (100 µM) or acidic external solution (pH 6.5) elicited inward currents when applied without any exogenous ATP. In the double mutant K69C/H319K, zinc elicited much larger inward currents, while acidic pH generated outward currents. Suramin, which is an antagonist of wild type receptors, behaved as an agonist at AM546-treated K69C receptors. Several other cysteine-reactive fluorophores tested on K69C did not cause these changes. These modified receptors show promise as a tool for studying the mechanisms of P2X receptor activation.
Collapse
Affiliation(s)
- Shlomo S. Dellal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Richard I. Hume
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Petrushenko YA. P2X Receptors: Peculiarities of the Structure and Modulation of the Functions. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9284-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
27
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
28
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Seven mammalian purinergic receptor subunits, denoted P2X1-P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca(2+) influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | |
Collapse
|
30
|
Abstract
P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action.
Collapse
Affiliation(s)
- Richard J Evans
- Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
31
|
Burnstock G, Kennedy C. P2X receptors in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:333-372. [PMID: 21586364 DOI: 10.1016/b978-0-12-385526-8.00011-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Seven P2X receptor subunits have been cloned which form functional homo- and heterotrimers. These are cation-selective channels, equally permeable to Na(+) and K(+) and with significant Ca(2+) permeability. The three-dimensional structure of the P2X receptor is described. The channel pore is formed by the α-helical transmembrane spanning region 2 of each subunit. When ATP binds to a P2X receptor, the pore opens within milliseconds, allowing the cations to flow. P2X receptors are expressed on both central and peripheral neurons, where they are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed in most types of nonneuronal cells and mediate a wide range of actions, such as contraction of smooth muscle, secretion, and immunomodulation. Changes in the expression of P2X receptors have been characterized in many pathological conditions of the cardiovascular, gastrointestinal, respiratory, and urinogenital systems and in the brain and special senses. The therapeutic potential of P2X receptor agonists and antagonists is currently being investigated in a range of disorders, including chronic neuropathic and inflammatory pain, depression, cystic fibrosis, dry eye, irritable bowel syndrome, interstitial cystitis, dysfunctional urinary bladder, and cancer.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, United Kingdom
| | | |
Collapse
|
32
|
Jacobson KA, Gao ZG, Göblyös A, IJzerman AP. Allosteric modulation of purine and pyrimidine receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:187-220. [PMID: 21586360 PMCID: PMC3165024 DOI: 10.1016/b978-0-12-385526-8.00007-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the purine and pyrimidine receptors, the discovery of small molecular allosteric modulators has been most highly advanced for the A(1) and A(3) adenosine receptors (ARs). These AR modulators have allosteric effects that are structurally separated from the orthosteric effects in SAR studies. The benzoylthiophene derivatives tend to act as allosteric agonists as well as selective positive allosteric modulators (PAMs) of the A(1) AR. A 2-amino-3-aroylthiophene derivative T-62 has been under development as a PAM of the A(1) AR for the treatment of chronic pain. Several structurally distinct classes of allosteric modulators of the human A(3) AR have been reported: 3-(2-pyridinyl)isoquinolines, 2,4-disubstituted quinolines, 1H-imidazo-[4,5-c]quinolin-4-amines, endocannabinoid 2-arachidonylglycerol, and the food dye Brilliant Black BN. Site-directed mutagenesis of A(1) and A(3) ARs has identified residues associated with the allosteric effect, distinct from those that affect orthosteric binding. A few small molecular allosteric modulators have been reported for several of the P2X ligand-gated ion channels and the G protein-coupled P2Y receptor nucleotides. Metal ion modulation of the P2X receptors has been extensively explored. The allosteric approach to modulation of purine and pyrimidine receptors looks promising for development of drugs that are event and site specific in action.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anikó Göblyös
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
33
|
Abstract
The membrane potential fulfils an important role in initiating smooth muscle contraction, through its depolarization and the subsequent influx of Ca(2+) through voltage-gated Ca(2+) channels. Changes in membrane potential can also coordinate contraction across great distances, utilizing the speed of electrical current flow through gap junctions. Hence, regulating membrane potential can greatly influence smooth muscle function. In this chapter, we will consider the influence of ion channels, as dynamic gatekeepers of membrane permeability, on urogenital function. Through their ability to act as key regulators of both the resting membrane potential and its dynamic changes, they provide important pharmacological targets for influencing urogenital function.Urogenital smooth muscle and urothelia contain a diverse range of molecularly and functionally distinct K(+) channels, which are key to regulating the resting membrane and for re-establishing the normal membrane potential following both active and passive changes. The voltage-gated Ca(2+) channels are key to initiating contraction and causing rapid depolarization, supplemented in some smooth muscles by rapid Na(+) conductances. The Cl(-) channels, often assumed to be passive, can actively change the membrane potential, and hence, cellular function, because Cl(-) is not usually at its equilibrium potential. The useful ways in which these ion channels can be targeted therapeutically in the ureter, bladder and urethra are discussed, focussing particularly on treatments for ureteric obstruction and detrusor overactivity. Current treatments for many urinary tract disorders, particularly the overactive bladder, are complicated by side effects. While ion channels have traditionally been considered as poor therapeutic targets by the pharmaceutical industry, our increasing knowledge of the molecular diversity of K(+) and Cl(-) channels gives new hope for more narrowly focused drug targeting, while the exciting discoveries of active currents in interstitial cells give us a new set of cellular targets for drugs.
Collapse
Affiliation(s)
- A F Brading
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | | |
Collapse
|
34
|
Stojilkovic SS, Yan Z, Obsil T, Zemkova H. Structural insights into the function of P2X4: an ATP-gated cation channel of neuroendocrine cells. Cell Mol Neurobiol 2010; 30:1251-8. [PMID: 21107680 DOI: 10.1007/s10571-010-9568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
The P2X4 receptor (P2X4R) is a member of a family of ATP-gated cation channels that are composed of three subunits. Each subunit has two transmembrane (TM) domains linked by a large extracellular loop and intracellularly located N- and C-termini. The receptors are expressed in excitable and non-excitable cells and have been implicated in the modulation of membrane excitability, calcium signaling, neurotransmitter and hormone release, and pain physiology. P2X4Rs activate rapidly and desensitize within the seconds of agonist application, both with the rates dependent on ATP concentrations, and deactivate rapidly and independently of ATP concentration. Disruption of conserved cysteine ectodomain residues affects ATP binding and gating. Several ectodomain residues of P2X4R were identified as critical for ATP binding, including K67, K313, and R295. Ectodomain residues also account for the allosteric regulation of P2X4R; H140 is responsible for copper binding and H286 regulates receptor functions with protons. Ivermectin sensitized receptors, amplified the current amplitude, and slowed receptor deactivation by binding in the TM region. Scanning mutagenesis of TMs revealed the helical topology of both domains, and suggested that receptor function is critically dependent on the conserved Y42 residue. In this brief article, we summarize this study and re-interpret it using a model based on crystallization of the zebrafish P2X4.1 receptor.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, National Institutes of Health, Bldg. 49, Room 6A-36, 49 Convent Drive, Bethesda, MD 20892-4510, USA.
| | | | | | | |
Collapse
|
35
|
Bodnar M, Wang H, Riedel T, Hintze S, Kato E, Fallah G, Gröger-Arndt H, Giniatullin R, Grohmann M, Hausmann R, Schmalzing G, Illes P, Rubini P. Amino acid residues constituting the agonist binding site of the human P2X3 receptor. J Biol Chem 2010; 286:2739-49. [PMID: 21098022 DOI: 10.1074/jbc.m110.167437] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homomeric P2X3 receptors are present in sensory ganglia and participate in pain perception. Amino acid (AA) residues were replaced in the four supposed nucleotide binding segments (NBSs) of the human (h) P2X3 receptor by alanine, and these mutants were expressed in HEK293 cells and Xenopus laevis oocytes. Patch clamp and two-electrode voltage clamp measurements as well as the Ca(2+) imaging technique were used to compare the concentration-response curves of the selective P2X1,3 agonist α,β-methylene ATP obtained at the wild-type P2X3 receptor and its NBS mutants. Within these NBSs, certain Gly (Gly-66), Lys (Lys-63, Lys-176, Lys-284, Lys-299), Asn (Asn-177, Asn-279), Arg (Arg-281, Arg-295), and Thr (Thr-172) residues were of great importance for a full agonist response. However, the replacement of further AAs in the NBSs by Ala also appeared to modify the amplitude of the current and/or [Ca(2+)](i) responses, although sometimes to a minor degree. The agonist potency decrease was additive after the simultaneous replacement of two adjacent AAs by Ala (K65A/G66A, F171A/T172A, N279A/F280A, F280A/R281A) but was not altered after Ala substitution of two non-adjacent AAs within the same NBS (F171A/N177A). SDS-PAGE in the Cy5 cell surface-labeled form demonstrated that the mutants appeared at the cell surface in oocytes. Thus, groups of AAs organized in NBSs rather than individual amino acids appear to be responsible for agonist binding at the hP2X3 receptor. These NBSs are located at the interface of the three subunits forming a functional receptor.
Collapse
Affiliation(s)
- Mandy Bodnar
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamada A, Katanosaka Y, Mohri S, Naruse K. A rapid microfluidic switching system for analysis at the single cellular level. IEEE Trans Nanobioscience 2010; 8:306-11. [PMID: 20142146 DOI: 10.1109/tnb.2009.2035253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analysis of cellular responses to chemicals at high spatiotemporal resolution is required for precise understanding of intracellular signal transduction. Here, we demonstrated a novel method for applying different solutions to a part of or all of a cell at high spatiotemporal resolution. We fabricated a microfluidic device using polydimethylsiloxane, and the sharp interface between the two solution streams flowing in the channel was used for the application of different solutions. We constructed a computer-controlled system to control the interface movement precisely, rapidly, and reproducibly during positioning, and spatial and temporal resolutions attained were 1.6 mum and 189 ms, respectively. We then applied the present system to the analysis of intracellular responses to chemicals. We were able to measure [Ca (2+)] (i) increases within 500 ms, when one laminar stream covered a part of the cell. This method can be used as a generic platform to investigate responses against drugs at the single cell level.
Collapse
Affiliation(s)
- Akira Yamada
- Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | | | | | | |
Collapse
|
37
|
Jiang R, Martz A, Gonin S, Taly A, de Carvalho LP, Grutter T. A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor. J Biol Chem 2010; 285:15805-15. [PMID: 20308075 DOI: 10.1074/jbc.m110.101980] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent crystal structure of the ATP-gated P2X4 receptor revealed a static view of its architecture, but the molecular mechanisms underlying the P2X channels activation are still unknown. By using a P2X2 model based on the x-ray structure, we sought salt bridges formed between charged residues located in a region that directly connects putative ATP-binding sites to the ion channel. To reveal their significance for ion channel activation, we made systematic charge exchanges and measured the effects on ATP sensitivity. We found that charge reversals at the interfacial residues Glu(63) and Arg(274) produced gain-of-function phenotypes that were cancelled upon paired charge swapping. These results suggest that a putative intersubunit salt bridge formed between Glu(63) and Arg(274) contributes to the ion channel function. Engineered cysteines E63C and R274C formed redox-dependent cross-links in the absence of ATP. By contrast, the presence of ATP reduced the rate of disulfide bond formation, indicating that ATP binding might trigger relative movement of adjacent subunits at the level of Glu(63) and Arg(274), allowing the transmembrane helices to open the channel.
Collapse
Affiliation(s)
- Ruotian Jiang
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, BP 24, 67401 Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Kracun S, Chaptal V, Abramson J, Khakh BS. Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J Biol Chem 2010; 285:10110-10121. [PMID: 20093367 DOI: 10.1074/jbc.m109.089185] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X receptors are ligand-gated cation channels that transition from closed to open states upon binding ATP. The crystal structure of the closed zebrafish P2X4.1 receptor directly reveals that the ion-conducting pathway is formed by three transmembrane domain 2 (TM2) alpha-helices, each being provided by the three subunits of the trimer. However, the transitions in TM2 that accompany channel opening are incompletely understood and remain unresolved. In this study, we quantified gated access to Cd(2+) at substituted cysteines in TM2 of P2X2 receptors in the open and closed states. Our data for the closed state are consistent with the zebrafish P2X4.1 structure, with isoleucines and threonines (Ile-332 and Thr-336) positioned one helical turn apart lining the channel wall on approach to the gate. Our data for the open state reveal gated access to deeper parts of the pore (Thr-339, Val-343, Asp-349, and Leu-353), suggesting the closed channel gate is between Thr-336 and Thr-339. We also found unexpected interactions between native Cys-348 and D349C that result in tight Cd(2+) binding deep within the intracellular vestibule in the open state. Interpreted with a P2X2 receptor structural model of the closed state, our data suggest that the channel gate opens near Thr-336/Thr-339 and is accompanied by movement of the pore-lining regions, which narrow toward the cytosolic end of TM2 in the open state. Such transitions would relieve the barrier to ion flow and render the intracellular vestibule less splayed during channel opening in the presence of ATP.
Collapse
Affiliation(s)
| | | | - Jeff Abramson
- Departments of Physiology, Los Angeles, California 90095
| | - Baljit S Khakh
- Departments of Physiology, Los Angeles, California 90095; Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095.
| |
Collapse
|
39
|
P2X receptors: dawn of the post-structure era. Trends Biochem Sci 2009; 35:83-90. [PMID: 19836961 PMCID: PMC2824114 DOI: 10.1016/j.tibs.2009.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 12/04/2022]
Abstract
P2X receptors are non-selective cation channels gated by extracellular ATP. They play key roles in various physiological processes such as nerve transmission, pain sensation and the response to inflammation, making them attractive drug targets for the treatment of inflammatory pain. The recent report of the three-dimensional (3D) crystal structure of zebrafish P2X4.1 represents a step change in our understanding of these membrane ion channels, where previously only low-resolution structural data and inferences from indirect structure–function studies were available. The purpose of this review is to place previous work within the context of the new 3D structure, and to summarize the key questions and challenges which await P2X researchers as we move into the post-structure era.
Collapse
|
40
|
Wilkinson WJ, Gadeberg HC, Harrison AWJ, Allen ND, Riccardi D, Kemp PJ. Carbon monoxide is a rapid modulator of recombinant and native P2X(2) ligand-gated ion channels. Br J Pharmacol 2009; 158:862-71. [PMID: 19694727 DOI: 10.1111/j.1476-5381.2009.00354.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Carbon monoxide (CO) is a potent modulator of a wide variety of physiological processes, including sensory signal transduction. Many afferent sensory pathways are dependent upon purinergic neurotransmission, but direct modulation of the P2X purinoceptors by this important, endogenously produced gas has never been investigated. EXPERIMENTAL APPROACH Whole-cell patch-clamp experiments were used to measure ATP-elicited currents in human embryonic kidney 293 cells heterologously expressing P2X(2), P2X(3), P2X(2/3) and P2X(4) receptors and in rat pheochromocytoma (PC12) cells known to express native P2X(2) receptors. Modulation was investigated using solutions containing CO gas and the CO donor molecule, tricarbonyldichlororuthenium (II) dimer (CORM-2). KEY RESULTS CO was a potent and selective modulator of native P2X(2) receptors, and these effects were mimicked by a CO donor (CORM-2). Neither pre-incubation with 8-bromoguanosine-3',5'-cyclomonophosphate nor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (a potent blocker of soluble guanylyl cyclase) affected the ability of the CO donor to enhance the ATP-evoked P2X(2) currents. The CO donor caused a small, but significant inhibition of currents evoked by P2X(2/3) and P2X(4) receptors, but was without effect on P2X(3) receptors. CONCLUSIONS AND IMPLICATIONS These data provided an explanation for how CO might regulate sensory neuronal traffic in physiological reflexes such as systemic oxygen sensing but also showed that CO could be used as a selective pharmacological tool to assess the involvement of homomeric P2X(2) receptors in physiological systems.
Collapse
Affiliation(s)
- W J Wilkinson
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Singh H, Warburton S, Vondriska TM, Khakh BS. Proteomics to identify proteins interacting with P2X2 ligand-gated cation channels. J Vis Exp 2009:1178. [PMID: 19455095 PMCID: PMC2794295 DOI: 10.3791/1178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ligand-gated ion channels underlie synaptic communication in the nervous system(1). In mammals there are three families of ligand-gated channels: the cys loop, the glutamate-gated and the P2X receptor channel family(2). In each case binding of transmitter leads to the opening of a pore through which ions flow down their electrochemical gradients. Many ligand-gated channels are also permeable to calcium ions(3, 4), which have downstream signaling roles(5) (e.g. gene regulation) that may exceed the duration of channel opening. Thus ligand-gated channels can signal over broad time scales ranging from a few milliseconds to days. Given these important roles it is necessary to understand how ligand-gated ion channels themselves are regulated by proteins, and how these proteins may tune signaling. Recent studies suggest that many, if not all, channels may be part of protein signaling complexes(6). In this article we explain how to identify the proteins that bind to the C-terminal aspects of the P2X2 receptor cytosolic domain. P2X receptors are ATP-gated cation channels and consist of seven subunits (P2X1-P2X7). P2X receptors are widely expressed in the brain, where they mediate excitatory synaptic transmission and presynaptic facilitation of neurotransmitter release(7). P2X receptors are found in excitable and non-excitable cells and mediate key roles in neuronal signaling, inflammation and cardiovascular function(8). P2X2 receptors are abundant in the nervous system(9) and are the focus of this study. Each P2X subunit is thought to possess two membrane spanning segments (TM1 & TM2) separated by an extracellular region(7) and intracellular N and C termini (Fig 1a)(7). P2X subunits(10) (P2X1-P2X7) show 30 50% sequence homology at the amino acid level(11). P2X receptors contain only three subunits, which is the simplest stoichiometry among ionotropic receptors. The P2X2 C-terminus consists of 120 amino acids (Fig 1b) and contains several protein docking consensus sites, supporting the hypothesis that P2X2 receptor may be part of signaling complexes. However, although several functions have been attributed to the C-terminus of P2X2 receptors(9) no study has described the molecular partners that couple to the intracellular side of this protein via the full length C-terminus. In this methods paper we describe a proteomic approach to identify the proteins which interact with the full length C terminus of P2X2 receptors.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
43
|
Roberts JA, Valente M, Allsopp RC, Watt D, Evans RJ. Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis. J Neurochem 2009; 109:1042-52. [PMID: 19519776 PMCID: PMC2695859 DOI: 10.1111/j.1471-4159.2009.06035.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At the majority of mutants in the region Glu181-Val200 incorporating a conserved AsnPheThrΦΦxLys motif cysteine substitution had no effect on sensitivity to ATP, partial agonists, or methanethiosulfonate (MTS) compounds. For the F185C mutant the efficacy of partial agonists was reduced by ∼ 90% but there was no effect on ATP potency or the actions of MTS reagents. At T186C, F188C and K190C mutants ATP potency and partial agonists responses were reduced. The ATP sensitivity of the K190C mutant was rescued towards WT levels by positively charged (2-aminoethyl)methanethiosulfonate hydrobromide and reduced by negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate. Both MTS reagents decreased ATP potency at the T186C mutant, and abolished responses at the F195C mutant. 32P-2-azido ATP binding to the mutants T186C and K190C was sensitive to MTS reagents consistent with an effect on binding, however binding at F195C was unaffected indicating an effect on gating. The accessibility of the introduced cysteines was probed with (2-aminoethyl)methanethiosulfonate hydrobromide-biotin, this showed that the region Thr186-Ser192 is likely to form a beta sheet and that accessibility is blocked by ATP. Taken together these results suggest that Thr186, Phe188 and Lys190 are involved in ATP binding to the receptor and Phe185 and Phe195 contribute to agonist evoked conformational changes.
Collapse
Affiliation(s)
- Jonathan A Roberts
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
44
|
Schwarz N, Fliegert R, Adriouch S, Seman M, Guse AH, Haag F, Koch-Nolte F. Activation of the P2X7 ion channel by soluble and covalently bound ligands. Purinergic Signal 2009; 5:139-49. [PMID: 19255877 PMCID: PMC2686825 DOI: 10.1007/s11302-009-9135-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/16/2008] [Indexed: 12/12/2022] Open
Abstract
The homotrimeric P2X7 purinergic receptor has sparked interest because of its capacity to sense adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) released from cells and to induce calcium signaling and cell death. Here, we examine the response of arginine mutants of P2X7 to soluble and covalently bound ligands. High concentrations of ecto-ATP gate P2X7 by acting as a soluble ligand and low concentrations of ecto-NAD gate P2X7 following ADP-ribosylation at R125 catalyzed by toxin-related ecto-ADP-ribosyltransferase ART2.2. R125 lies on a prominent cysteine-rich finger at the interface of adjacent receptor subunits, and ADP-ribosylation at this site likely places the common adenine nucleotide moiety into the ligand-binding pocket of P2X7.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Immunology, Campus-Forschung 02.059, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Adriouch S, Scheuplein F, Bähring R, Seman M, Boyer O, Koch-Nolte F, Haag F. Characterisation of the R276A gain-of-function mutation in the ectodomain of murine P2X7. Purinergic Signal 2009; 5:151-61. [PMID: 19234763 DOI: 10.1007/s11302-009-9134-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/16/2008] [Indexed: 12/20/2022] Open
Abstract
The cytolytic P2X7 purinoceptor is widely expressed on leukocytes and has sparked interest because of its key role in the activation of the inflammasome, the release of the pro-inflammatory cytokine IL-1beta and cell death. We report here the functional characterisation of a R276A gain-of-function mutant analysed for its capacities to induce membrane depolarisation, calcium influx and opening of a large membrane pore permeable to YO-PRO-1. Our results highlight the particular sensitivity of R276A mutant to low micromolar adenosine triphosphate (ATP) concentrations, which possibly reflect an increased affinity for its ligands, and a slower closing kinetics of the receptor channel. Our findings support the notion that evolutionary pressures maintain the low sensitivity of P2X7 to ATP. We also believe that the R276A mutant described here may be useful for the generation of new animal models with exacerbated P2X7 functions that will serve to better characterise its role in inflammation and in immune responses.
Collapse
|
46
|
Bavan S, Straub VA, Blaxter ML, Ennion SJ. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper. BMC Evol Biol 2009; 9:17. [PMID: 19154569 PMCID: PMC2633282 DOI: 10.1186/1471-2148-9-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 01/20/2009] [Indexed: 12/02/2022] Open
Abstract
Background Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. Results ATP (EC50 ~44.5 μM) evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 μM) and suramin (IC50 22.6 μM) and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 μM and 19.9 μM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. Conclusion The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent to the split between vertebrates and invertebrates. Furthermore, several characteristics of HdP2X including fast kinetics with low ATP sensitivity, potentiation by ivermectin in a channel with fast kinetics and distinct copper and zinc binding sites not dependent on histidines make HdP2X a useful model for comparative structure-function studies allowing a better understanding of P2X receptors in higher organisms.
Collapse
Affiliation(s)
- Selvan Bavan
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
47
|
Agboh KC, Powell AJ, Evans RJ. Characterisation of ATP analogues to cross-link and label P2X receptors. Neuropharmacology 2008; 56:230-6. [PMID: 18599093 PMCID: PMC2613953 DOI: 10.1016/j.neuropharm.2008.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/09/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
P2X receptors are a distinct family of ATP-gated ion channels with a number of physiological roles ranging from smooth muscle contractility to the regulation of blood clotting. In this study we determined whether the UV light-reactive ATP analogues 2-azido ATP, ATP azidoanilide (ATP-AA) and 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) can be used to label the ATP binding site of P2X1 receptors. These analogues were agonists, and in patch clamp studies evoked inward currents from HEK293 cells stably expressing the P2X1 receptor. Following irradiation in the presence of these compounds subsequent responses to an EC50 concentration of ATP were reduced by >65%. These effects were partially reversed by co-application of ATP or suramin with the photo-reactive ATP analogue at the time of irradiation. In autoradiographic studies radiolabelled 2-azido [γ32P] ATP and ATP-AA-[γ32P] cross-linked to P2X1 receptors and this binding was reduced by co-incubation with ATP. These studies demonstrate that photo-reactive ATP analogues can be used to label P2X receptor and may prove useful in elucidating the ATP binding site at this novel class of ATP binding proteins.
Collapse
Affiliation(s)
- Kelvin C Agboh
- Department of Cell Physiology and Pharmacology, University of Leicester, P.O. Box 138, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
48
|
Gating the pore of P2X receptor channels. Nat Neurosci 2008; 11:883-7. [PMID: 18587390 DOI: 10.1038/nn.2151] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 05/27/2008] [Indexed: 01/02/2023]
Abstract
Three families of ligand-activated ion channels mediate synaptic communication between excitable cells in mammals. For pentameric channels related to nicotinic acetylcholine receptors and tetrameric channels such as glutamate receptors, the pore-forming and gate regions have been studied extensively. In contrast, little is known about the structure of trimeric P2X receptor channels, a family of channels that are activated by ATP and are important in neuronal signaling, pain transmission and inflammation. To identify the pore-forming and gate regions in P2X receptor channels, we introduced cysteine residues throughout the two transmembrane (TM) segments and studied their accessibility to thiol-reactive compounds and ions. Our results show that TM2 lines the central ion-conduction pore, TM1 is positioned peripheral to TM2 and the flow of ions is minimized in the closed state by a gate formed by the external region of TM2.
Collapse
|