1
|
Krochtová K, Janovec L, Bogárová V, Halečková A, Kožurková M. Interaction of 3,9-disubstituted acridine with single stranded poly(rA), double stranded poly(rAU) and triple stranded poly(rUAU): molecular docking - A spectroscopic tandem study. Chem Biol Interact 2024; 394:110965. [PMID: 38552767 DOI: 10.1016/j.cbi.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Viktória Bogárová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Annamária Halečková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
2
|
Hansda S, Ghosh R. Bystander effect of ultraviolet A radiation protects A375 melanoma cells by induction of antioxidant defense. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 40:46-67. [PMID: 35895930 DOI: 10.1080/26896583.2021.1994820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultraviolet (UV) irradiated cells release factors that result in varied responses by non-irradiated cells via bystander effects (BE). The UV-BE is dependent on the cell types involved and on the wavelength of the radiation. Using conditioned medium from UVA-irradiated A375 human melanoma cells (UVA-CM), UVA-bystander response was evaluated on the viability of naïve A375 cells. UVA-CM treatment itself did not alter cell viability; however, UVA-CM treated bystander cells were more resistant to the lethal action of UVA, UVB, UVC or H2O2. Effects of UVA-CM on cell proliferation, mechanism of cell death, DNA damage, malondialdehyde formation, generation of reactive oxygen species (ROS) and antioxidant status were studied in A375 cells. We observed that UVA-CM triggered antioxidant defenses to elicit protective responses through elevation of antioxidant enzyme activities in cells, which persisted until 5 h after exposure to UVA-CM. This was possibly responsible for decreased generation of ROS and diminished DNA and membrane damage in cells. These bystander cells were resistant to killing when exposed to different genotoxic agents. Damaged nuclei, induction of apoptosis and autophagic death were also lowered in these cells. The influence of UVA-CM on cancer stem cells side population was assessed.Highlights:UVA radiation induced bystander effects in A375 cellsDamage by genotoxicants is suppressed due to lower ROS generation on UVA-CM treatmentUVA-CM exposure enhanced higher activities of CAT and GPxResistance to genotoxic agents in such cells was due to elevated antioxidant defenceUVA-bystander phenomenon was a protective response.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
3
|
Hansda S, Mitra A, Ghosh R. Studies to explore the UVA photosensitizing action of 9-phenylacridine in cells by interaction with DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:393-422. [PMID: 33586599 DOI: 10.1080/15257770.2021.1880011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acridine and its derivatives are well known for their DNA binding properties. In this report, we present our findings on evaluating different binding parameters of the interaction of 9-phenylacridine (ACPH) with DNA. Absorption spectroscopic studies including standard and reverse titration, the effects of ionic strength and temperature on titration, and Job plot analysis were done to calculate the binding constant and determine the different thermodynamic parameters and stoichiometry of the binding. Spectrofluorimetry and circular dichroism (CD) spectral titration were also utilized to confirm these findings. The results indicated that ACPH binds to DNA reversibly through non-electrostatic interactions by hydrogen bonding and van der Waals interactions. The binding constant and the number of binding sites were of the order 103 M-1 and ≈2, respectively with a binding stoichiometry of 1:4. The binding of ACPH with DNA was spontaneous, exothermic and enthalpy-driven. The extent of uptake of ACPH in B16 melanoma cells was estimated. As this compound absorbs in the UVA region, the effect of treatment with ACPH prior to UVA exposure was assessed to evaluate its phototoxicity in these cells. Our results indicated that the binding to DNA enhanced damage to sensitize cells to killing through apoptosis. Our findings indicated its potential to act as a photosensitizer.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Anindita Mitra
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
4
|
Leonova E, Shvirksts K, Borisovs V, Smelovs E, Sokolovska J, Bisenieks E, Duburs G, Grube M, Sjakste N. Spectroscopic and electrochemical study of interactions between DNA and different salts of 1,4-dihydropyridine AV-153. PeerJ 2020; 8:e10061. [PMID: 33240591 PMCID: PMC7664466 DOI: 10.7717/peerj.10061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
1,4-dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antimutagenic and DNA-binding activity. The latter activity was first described for water-soluble 1,4-DHP with carboxylic group in position 4, the sodium salt of the 1,4-DHP derivative AV-153 among others. Some data show the modification of physicochemical properties and biological activities of organic compounds by metal ions that form the salts. We demonstrated the different affinity to DNA and DNA-protecting capacity of AV-153 salts, depending on the salt-forming ion (Na, K, Li, Rb, Ca, Mg). This study aimed to use different approaches to collate data on the DNA-binding mode of AV-153-Na and five other AV-153 salts. All the AV-153 salts in this study quenched the ethidium bromide and DNA complex fluorescence, which points to an intercalation binding mode. For some of them, the intercalation binding was confirmed using cyclic voltammetry and circular dichroism spectroscopy. It was shown that in vitro all AV-153 salts can interact with four DNA bases. The FTIR spectroscopy data showed the interaction of AV-153 salts with both DNA bases and phosphate groups. A preference for base interaction was observed as the AV-153 salts interacted mostly with G and C bases. However, the highest differences were detected in the spectral region assigned to phosphate groups, which might indicate either conformational changes of DNA molecule (B form to A or H form) or partial denaturation of the molecule. According to the UV/VIS spectroscopy data, the salts also interact with the human telomere repeat, both in guanine quadruplex (G4) and single-stranded form; Na and K salts manifested higher affinity to G4, Li and Rb -to single-stranded DNA.
Collapse
Affiliation(s)
- Elina Leonova
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Vitalijs Borisovs
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
5
|
Hansda S, Ghosh G, Ghosh R. 9-phenyl acridine photosensitizes A375 cells to UVA radiation. Heliyon 2020; 6:e04733. [PMID: 32944667 PMCID: PMC7481570 DOI: 10.1016/j.heliyon.2020.e04733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Acridines are an important class of bioactive molecules having varied uses. Its derivative, 9-phenylacridine (ACPH) had been found to exhibit antitumor activity both in cell lines and in vivo model. Its DNA binding ability and absorbance in the ultraviolet range encouraged us to investigate its role as a photosensitizer with UVA radiation. We investigated the effects of ACPH prior to UVA exposure on in vitro DNA through photo-cleavage assay. Effect of such treatment was also studied in cultured A375 melanoma cells. Endpoints studied included morphological changes, evaluation of cellular viability, scratch assay, intracellular reactive oxygen species (ROS) production, DNA damage, lipid peroxidation, glutathione (GSH) level, autophagy, cell cycle progression, depletion of mitochondrial membrane potential (ΔΨmt), induction of apoptosis and Hoechst dye efflux assay. Our findings indicated that ACPH could sensitize damage to DNA induced by UVA both in vitro and in cells. It could also potentiate cell killing by UVA. It arrested cells in G2/M phase and induced apoptotic death through mitochondria mediated pathway. This sensitization was through enhancement of intracellular ROS. Our findings also indicated that the stem cells side population was reduced on such treatment. The findings are important as it indicates ACPH as a promising photosensitizer and indicates its possible role in photodynamic therapy.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Gargi Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| |
Collapse
|
6
|
Thorat BR, Rani D, Yamgar RS, Mali SN. Synthesis, Spectroscopic, In-vitro and Computational Analysis of Hydrazones as Potential Antituberculosis Agents: (Part-I). Comb Chem High Throughput Screen 2020; 23:392-401. [PMID: 32209038 DOI: 10.2174/1386207323999200325125858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Since the last few decades, the healthcare sector is facing the problem of the development of multidrug-resistant (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) infections all over the world. Regardless of the current healthcare progress for the treatment of mycobacterial infections, we are still unable to control addition of every year 9 million new cases of tuberculosis (TB). OBJECTIVE We had an objective to synthesize some novel hydrazones, which were further subjected to characterization, Photoluminescence study, in vitro anti-mycobacterium testing and in silico ADMET predictions. METHODS Some new hydrazone derivatives have been successfully prepared by the condensation reaction in the present study. All the compounds were characterized by using FTIR, NMR, UV, Fluorescence spectroscopic techniques. RESULTS All our newly synthesized compounds showed strong electronic excitation at 292.6 - 319.0 nm and displayed more intense emissions in the 348 - 365 nm regions except compound 3i. The newly synthesized hydrazones 3a, 3b, 3f and 3g were found to be the most active compounds and showed MIC (Minimum inhibitory concentrations) values of 12.5 μg/mL. CONCLUSION In the realm of development of more potent, effective, safer and less toxic antituberculosis agents; our current study would definitely help the medicinal chemists to develop potent analogues containing hydrazine motifs in them.
Collapse
Affiliation(s)
- Bapu R Thorat
- Department of Chemistry, Government of Maharashtra's Ismail Yusuf College of Arts, Science and Commerce, Mumbai 60, India
| | - Deepa Rani
- Department of Chemistry, Government of Maharashtra's Ismail Yusuf College of Arts, Science and Commerce, Mumbai 60, India
| | - Ramesh S Yamgar
- Department of Chemistry, Chikitsak Samuha's Patkar-Varde College of Arts, Science and Commerce, Goregaon (West), Mumbai 400 062, India
| | - Suraj N Mali
- Government College of Pharmacy, Karad, Maharashtra, 415125, India
| |
Collapse
|
7
|
Tripathi AK. Binding interaction of N-acetylated acridine conjugate with ct-DNA and β-cyclodextrin: Synthesis and photophysical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:497-502. [PMID: 30059876 DOI: 10.1016/j.saa.2018.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/23/2018] [Indexed: 05/17/2023]
Abstract
In the present work we are reporting the synthesis and binding interaction of a saturated fatty acid containing 9-aminoacridine derivative (AC-PA) with ct-DNA and β-cyclodextrin (β-CD). From Steady-state fluorescence experiments this newly synthesized 9-aminoacridine derivative, AC-PA, shows more efficient binding interaction with ct-DNA as compared to the 9-aminoacridine (AC). The extent of interaction of AC-PA and AC with ct-DNA was found out by calculating the fluorescence quenching by using Stern-Volmer quenching equation. The calculated quenching constants of AC-PA and AC are (4.5 ± 0.5) × 103M-1 (3.7 ± 0.5) × 103M-1 respectively. The mechanism of fluorescence quenching of AC-PA and AC, were understand by using Stern-Volmer plots as well as time-resolved fluorescence experiments. The fluorescence quenching of AC-PA and AC by ct-DNA are static in nature and take place by formation of ground state complexes. The binding mode between AC-PA and AC were understood by DNA melting analysis experiment. The DNA melting analysis experiments were reveals that the binding interactions between fluorophores (AC-PA and AC) with ct-DNA are intercalative in nature. The melting temperature and mode of binding intercalative mode of binding between AC-PA and AC were further confirmed by DSC and CD experiments. The steady-state and time-resolved fluorescence parameters of AC-PA are quite sensitive towards the formation of inclusion complexes between AC-PA and β-CD. Long hydrophobic tail containing acridine conjugate (AC-PA) shows more efficient binding interactions with the β-CD and the calculated binding constants value of AC-PA is 0.51 × 102M-1. Whereas, the parent molecule, AC not showing any binding interactions with β-CD.
Collapse
Affiliation(s)
- Alok Kumar Tripathi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India.
| |
Collapse
|
8
|
Mitra A, Saikh F, Das J, Ghosh S, Ghosh R. Studies on the interaction of a synthetic nitro-flavone derivative with DNA: A multi-spectroscopic and molecular docking approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:357-369. [PMID: 29885634 DOI: 10.1016/j.saa.2018.05.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/09/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Interaction of a ligand with DNA is often the basis of drug action of many molecules. Flavones are important in this regard as their structural features confer them the ability to bind to DNA. 2-(4-Nitrophenyl)-4H-chromen-4-one (4NCO) is an important biologically active synthetic flavone derivative. We are therefore interested in studying its interaction with DNA. Absorption spectroscopy studies included standard and reverse titration, effect of ionic strength on titration, determination of stoichiometry of binding and thermal denaturation. Spectrofluorimetry techniques included fluorimetric titration, quenching studies and fluorescence displacement assay. Assessment of relative viscosity and estimation of thermodynamic parameters from CD spectral studies were also undertaken. Furthermore, molecular docking analyses were also done with different short DNA sequences. The fluorescent flavone 4NCO reversibly interacted with DNA through partial intercalation as well as minor-groove binding. The binding constant and the number of binding sites were of the order 104 M-1 and 1 respectively. The binding stoichiometry with DNA was found to be 1:1. The nature of the interaction of 4NCO with DNA was hydrophobic in nature and the process of binding was spontaneous, endothermic and entropy-driven. The flavone also showed a preference for binding to GC rich sequences. The study presents a profile for structural and thermodynamic parameters, for the binding of 4NCO with DNA. DNA is an important target for ligands that are effective against cell proliferative disorders. In this regard, the molecule 4NCO is important since it can exert its biological activity through its DNA binding ability and can be a potential drug candidate.
Collapse
Affiliation(s)
- A Mitra
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - F Saikh
- Department of Chemistry, Organic Section, Jadavpur University, Kolkata 700032, West Bengal, India
| | - J Das
- Department of Chemistry, Organic Section, Jadavpur University, Kolkata 700032, West Bengal, India
| | - S Ghosh
- Department of Chemistry, Organic Section, Jadavpur University, Kolkata 700032, West Bengal, India
| | - R Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
9
|
Leonova E, Shvirksts K, Grube M, Ignatovich L, Chen CYC, Sjakste T, Sjakste N. Spectrophotometric study of DNA interactions with ftorafur and its elementoorganic derivatives. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2017; 99:601-612. [DOI: 10.1080/02772248.2016.1273614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Elina Leonova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | - Calvin Yu-Chian Chen
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Tatjana Sjakste
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Nikolajs Sjakste
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
10
|
Chagas MBO, Cordeiro NCC, Marques KMR, Rocha Pitta MG, Rêgo MJBM, Lima MCA, Pitta MGR, Pitta IR. New thiazacridine agents: Synthesis, physical and chemical characterization, and in vitro anticancer evaluation. Hum Exp Toxicol 2016; 36:1059-1070. [DOI: 10.1177/0960327116680274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of new thiazacridine agents were synthesized and evaluated as antitumor agents, in terms of not only their cytotoxicity but also their selectivity. The cytotoxicity assay confirmed that all compounds showed cytotoxic activity and selectivity. The new compound, 3-acridin-9-ylmethyl-5-(5-bromo-1 H-indol-3-ylmethylene)-thiazolidine-2,4-dione (LPSF/AA29 – 7a), proved to be the most promising compound as it presents lower half-maximal inhibitory concentration (IC50) values (ranging from 0.25 to 68.03 µM) depending on cell lineage. In HepG2 cells, the lowest IC50 value was exhibited by 3-acridin-9-ylmethyl-5-(4-piperidin-1-yl-benzylidene)-thiazolidine-2,4-dione (LPSF/AA36 – 7b; 46.95 µM). None of the synthesized compounds showed cytotoxic activity against normal cells (IC50 > 100 µM). The mechanism of death induction and cell cycle effects was also evaluated. Flow cytometric analysis revealed that the compounds LPSF/AA29 – 7a and LPSF/AA36 – 7b significantly increased the percentage of apoptotic cells and induced G2/M arrest in the cell cycle progression. Therefore, these new thiazacridine derivatives constitute promising antitumor agents whose cytotoxicity and selectivity properties indicate they have potential to contribute to or serve as a basis for the development of new cancer drugs in the future.
Collapse
Affiliation(s)
- MBO Chagas
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - NCC Cordeiro
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - KMR Marques
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MG Rocha Pitta
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MJBM Rêgo
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MCA Lima
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MGR Pitta
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - IR Pitta
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
11
|
New spiro tria(thia)zolidineacridines as topoisomerase inhibitors, DNA binders and cytostatic compounds. Int J Biol Macromol 2016; 86:690-700. [DOI: 10.1016/j.ijbiomac.2016.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
|
12
|
Liu P, Hu Y, Chen J, Yang Q. Direct detection of the anti-cancer drug 9-phenylacridine in tissues by graphite rod laser desorption vacuum-ultraviolet post-ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1328-1334. [PMID: 26405794 DOI: 10.1002/rcm.7226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/11/2015] [Accepted: 05/12/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Traditionally, drug analysis in biological tissue by mass spectrometry has required complicated sample pre-treatment, which not only wasted time, but also had adverse effects on the results. In order to assist assessment of potential drugs rapidly and accurately, a direct analytical method for drug detection in tissues is needed. The development of such a method is described in this study. METHODS An anti-cancer drug, 9-phenylacridine (ACPH), injected into the kidney of mice, was directly analysed from tissues placed on the surface of a graphite rod by near-infrared (1064 nm) laser desorption single photon ionization mass spectrometry (LD/SPI-MS). RESULTS The LD/SPI-MS method was successfully validated by direct analysis of ACPH in kidney sections of mice, without any complicated and time-consuming sample pre-treatment. The sensitivity of detection was down to about 100 fmol per spot and the wide linear dynamic range allowed quantitative detection of ACPH in complex biological samples. A drug-time curve was acquired of ACPH in the kidney of mice after the drug had been injected into the caudal vein. CONCLUSIONS It was demonstrated that the anti-tumor drug ACPH could be directly and rapidly detected by LD/SPI-MS in biological tissues without any time-consuming pre-treatment procedure. This method could potentially be applied to the selective localization and analysis of small molecule drugs in tissues and to the study of the pharmacokinetics of new drugs.
Collapse
Affiliation(s)
- Ping Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| | - Jiaxin Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| | - Qing Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| |
Collapse
|
13
|
|
14
|
Morioka R, Hirano K, Satoh T, Miura M. Unexpected Cyclization of Tritylamines Promoted by Copper Salt through CH and CN Bond Cleavages to Produce Acridine Derivatives. Chemistry 2014; 20:12720-4. [DOI: 10.1002/chem.201404656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/05/2022]
|
15
|
Buraka E, Chen CYC, Gavare M, Grube M, Makarenkova G, Nikolajeva V, Bisenieks I, Brūvere I, Bisenieks E, Duburs G, Sjakste N. DNA-binding studies of AV-153, an antimutagenic and DNA repair-stimulating derivative of 1,4-dihydropiridine. Chem Biol Interact 2014; 220:200-7. [PMID: 25016077 DOI: 10.1016/j.cbi.2014.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 01/24/2023]
Abstract
UNLABELLED The ability to intercalate between DNA strands determines the cytotoxic activity of numerous anticancer drugs. Strikingly, intercalating activity was also reported for some compounds considered to be antimutagenic. The aim of this study was to determine the mode of interaction of DNA with the antimutagenic and DNA repair-stimulating dihydropyridine (DHP) AV-153. DNA and AV-153 interactions were studied by means of UV/VIS spectroscopy, fluorimetry and infrared spectroscopy. Compound AV-153 is a 1,4 dihydropyridine with ethoxycarbonyl groups in positions 3 and 5. Computer modeling of AV-153 and DNA interactions suggested an ability of the compound to dock between DNA strands at a single strand break site in the vicinity of two pyrimidines, which was confirmed in the present study. AV-153 evidently interacted with DNA, as addition of DNA to AV-153 solutions resulted in pronounced hyperchromic and bathochromic effects on the spectra. Base modification in a plasmid by peroxynitrite only minimally changed binding affinity of the compound; however, induction of single-strand breaks using Fenton's reaction greatly increased binding affinity. The affinity did not change when the ionic strength of the solution was changed from 5 to 150 mM NaCl, although it increased somewhat at 300 mM. Neither was it influenced by temperature changes from 25 to 40°C, however, it decreased when the pH of the solution was changed from 7.4 to 4.7. AV-153 competed with EBr for intercalation sites in DNA: 116 mM of the compound caused a two-fold decrease in fluorescence intensity. FT-IR spectral data analyses indicated formation of complexes between DNA and AV-153. The second derivative spectra analyses indicated interaction of AV-153 with guanine, cytosine and thymine bases, but no interaction with adenine was detected. CONCLUSIONS The antimutagenic substance AV-153 appears to intercalate between the DNA strands at the site of a DNA nick in the vicinity of two pyrimidines.
Collapse
Affiliation(s)
- E Buraka
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia; Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - C Yu-Chian Chen
- Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - M Gavare
- Institute of Microbiology and Biotechnology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - M Grube
- Institute of Microbiology and Biotechnology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - G Makarenkova
- Faculty of Biology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - V Nikolajeva
- Faculty of Biology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - I Bisenieks
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - I Brūvere
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - E Bisenieks
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - G Duburs
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - N Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia; Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia.
| |
Collapse
|
16
|
Ghosh S, Bishayee K, Khuda-Bukhsh AR. Oleanolic acid isolated from ethanolic extract of Phytolacca decandra induces apoptosis in A375 skin melanoma cells: drug-DNA interaction and signaling cascade. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:102-14. [DOI: 10.1016/s2095-4964(14)60015-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Evstigneev MP, Shestopalova AV. Structure, Thermodynamics and Energetics of Drug-DNA Interactions: Computer Modeling and Experiment. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2014. [DOI: 10.1007/978-94-017-9257-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules 2013; 18:15035-50. [PMID: 24322489 PMCID: PMC6270168 DOI: 10.3390/molecules181215035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.
Collapse
|
19
|
Quantitative structure–property relationship study on the intercalation of anticancer drugs with ct-DNA. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0716-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Novel naphthalimide polyamine derivatives as potential antitumor agents. Mol Biol Rep 2013; 40:4129-37. [DOI: 10.1007/s11033-013-2523-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
|
21
|
Bag SS, Kundu R, Jana S. Sensing of biomolecules and label-free discrimination of DNA containing a triple T–C/T–G mismatch pair with a fluorescence light-up probe, triazolylpyrene (TNDMBPy). Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Bag SS, Ghorai S, Jana S, Mukherjee C. Solvatochromic fluorescent cyanophenoxazine: design, synthesis, photophysical properties and fluorescence light-up sensing of ct-DNA. RSC Adv 2013. [DOI: 10.1039/c3ra23463k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Bag SS, Pradhan MK, Kundu R, Jana S. Highly solvatochromic fluorescent naphthalimides: Design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA. Bioorg Med Chem Lett 2013. [PMID: 23206865 DOI: 10.1016/j.bmcl.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
|
25
|
Ghosh R, Bhowmik S, Guha D. 9-Phenyl acridine exhibits antitumour activity by inducing apoptosis in A375 cells. Mol Cell Biochem 2011; 361:55-66. [DOI: 10.1007/s11010-011-1088-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
|