1
|
Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophys Rev 2022; 14:1109-1140. [PMID: 36249860 PMCID: PMC9552142 DOI: 10.1007/s12551-022-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022] Open
Abstract
Attachment to and fusion with cell membranes are two major steps in the replication cycle of many human viruses. We focus on these steps for three enveloped viruses, i.e., HIV-1, IAVs, and SARS-CoV-2. Viral spike proteins drive the membrane attachment and fusion of these viruses. Dynamic interactions between the spike proteins and membrane receptors trigger their specific attachment to the plasma membrane of host cells. A single virion on cell membranes can engage in binding with multiple receptors of the same or different types. Such dynamic and multivalent binding of these viruses result in an optimal attachment strength which in turn leads to their cellular entry and membrane fusion. The latter process is driven by conformational changes of the spike proteins which are also class I fusion proteins, providing the energetics of membrane tethering, bending, and fusion. These viruses exploit cellular and membrane factors in regulating the conformation changes and membrane processes. Herein, we describe the major structural and functional features of spike proteins of the enveloped viruses including highlights on their structural dynamics. The review delves into some of the case studies in the literature discussing the findings on multivalent binding, membrane hemifusion, and fusion of these viruses. The focus is on applications of biophysical tools with an emphasis on single-particle methods for evaluating mechanisms of these processes at the molecular and cellular levels.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
2
|
Zhdanov VP. Virology from the perspective of theoretical colloid and interface science. Curr Opin Colloid Interface Sci 2021; 53:101450. [PMID: 36568530 PMCID: PMC9761319 DOI: 10.1016/j.cocis.2021.101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral infections occur at very different length and time scales and include various processes, which can often be described using the models developed and/or employed in colloid and interface science. Bearing in mind the currently active COVID-19, I discuss herein the models aimed at viral transmission via respiratory droplets and the contact of virions with the epithelium. In a more general context, I outline the models focused on penetration of virions via the cellular membrane, initial stage of viral genome replication, and formation of viral capsids in cells. In addition, the models related to a new generation of drug delivery vehicles, for example, lipid nanoparticles with size about 100-200 nm, are discussed as well. Despite the high current interest in all these processes, their understanding is still limited, and this area is open for new theoretical studies.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Liu M, Apriceno A, Sipin M, Scarpa E, Rodriguez-Arco L, Poma A, Marchello G, Battaglia G, Angioletti-Uberti S. Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions. Nat Commun 2020; 11:4836. [PMID: 32973157 PMCID: PMC7515919 DOI: 10.1038/s41467-020-18603-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.
Collapse
Affiliation(s)
- Meng Liu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Azzurra Apriceno
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Miguel Sipin
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Laura Rodriguez-Arco
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Gabriele Marchello
- Institute for the Physics of Living Systems, University College London, London, UK
- Physical Chemistry Chemical Physics Division, Department of Chemistry, University College London, London, UK
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Stefano Angioletti-Uberti
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
4
|
Eloul S, Kätelhön E, Compton RG. When does near-wall hindered diffusion influence mass transport towards targets? Phys Chem Chem Phys 2018; 18:26539-26549. [PMID: 27711751 DOI: 10.1039/c6cp05716k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The diffusion of a particle is slowed as it moves close to a surface. We identify the conditions under which this hindered diffusion is significant and show that is strongly dependant on the sizes of both the particle and the target. We focus particularly on the transport of nano-particles to a variety of targets including a planar surface, a sphere, a disc and a wire, and provide data which allows the frequency of impacts to be inferred for a variety of experimental conditions. Equations are given to estimate the particle fluxes and we explain literature observations reported on the detected frequency of impacts. Finally we observe a drastic effect on the calculation of the mean first passage time of a single particle impacting a sub-micron sized target, showing the importance of this effect in biological systems.
Collapse
Affiliation(s)
- Shaltiel Eloul
- Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
5
|
Zhdanov VP. Interpretation of amperometric kinetics of content release during contacts of vesicles with a lipid membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:461-470. [PMID: 27942741 DOI: 10.1007/s00249-016-1189-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The exocytotic pathway of secretion of molecules from cells includes transport by vesicles, tether-mediated fusion of vesicles with the plasma membrane accompanied by pore formation, and diffusion-mediated release of their contents via a pore to the outside. In related basic biophysical studies, vesicle-content release is tracked by measuring corresponding amperometric spikes. Although experiments of this type have a long history, the understanding of the underlying physics is still elusive. The present study elucidates the likely contribution of line energy, membrane tension and bending, osmotic pressure, hydration forces, and tethers to the potential energy for fusion-related pore formation and evolution. The overdamped Langevin equation is used to describe the pore dynamics, which are in turn employed to calculate the kinetics of content release and to interpret the shape of amperometric spikes.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
6
|
Abstract
The diffusion of a particle from bulk solution is slowed as it moves close to an adsorbing surface. A general model is reported that is easily applied by theoreticians and experimentalists. Specifically, it is shown here that in general and regardless of the space size, the magnitude of the effect of hindered diffusion on the flux is a property of the diffusion layer thickness. We explain and approximate the effect. Predictions of concentration profiles show that a "hindered diffusion layer" is formed near the adsorbing surface within the diffusion layer, observed even when the particle radius is just a 0.1% of the diffusion layer thickness. In particular, we focus on modern electrochemistry processes involving with impact of particles with either ultrasmall electrodes or particles in convective systems. The concept of the "hindered diffusion layer" is generally important for example in recent biophysical models of particles diffusion to small targets.
Collapse
Affiliation(s)
- Shaltiel Eloul
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Zhdanov VP. Diffusion-limited attachment of nanoparticles to flexible membrane-immobilized receptors. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|