1
|
Dong J, Wang B, Wang G, Zhang S, Wang X, Wang R, Crabbe MJC, Wang Z. Probing action potentials of single beating cardiomyocytes using atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5527-5535. [PMID: 39069789 DOI: 10.1039/d4ay00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This paper presents a method for using atomic force microscopy to probe action potentials of single beating cardiomyocytes at the nanoscale. In this work, the conductive tip of an atomic force microscope (AFM) was used as a nanoelectrode to record the action potentials of self-beating cardiomyocytes in both the non-constant force contact mode and the constant force contact mode. An electrical model of a tip-cell interface was developed and the indentation force effect on the seal of an AFM conductive tip-cell membrane was theoretically analyzed. The force feedback of AFM allowed for the precise control of tip-cell contact, and enabled reliable measurements. The feasibility of simultaneously recording the action potentials and force information during the contraction of the same beating cardiomyocyte was studied. Furthermore, the AFM tip electrode was used to probe the differences of action potentials using different drugs. This method provides a way at the nanoscale for electrophysiological studies on single beating cardiomyocytes, neurons, and ion channels embedded within the cell membrane in relation to disease states, pharmaceutical drug testing and screening.
Collapse
Affiliation(s)
- Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Guoliang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Siwei Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xingyue Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Rui Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - M James C Crabbe
- Wolfson College, University of Oxford, Oxford OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Institute of Biomedical and Environmental Science & Technology, Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
2
|
Turnbull IC, Bajpai A, Jankowski KB, Gaitas A. Single-Cell Analysis of Contractile Forces in iPSC-Derived Cardiomyocytes: Paving the Way for Precision Medicine in Cardiovascular Disease. Int J Mol Sci 2023; 24:13416. [PMID: 37686223 PMCID: PMC10487756 DOI: 10.3390/ijms241713416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in cardiac disease modeling, drug screening, and regenerative medicine. Furthermore, patient-specific iPSC-CMS can be tested for personalized medicine. To provide a deeper understanding of the contractile force dynamics of iPSC-CMs, we employed Atomic Force Microscopy (AFM) as an advanced detection tool to distinguish the characteristics of force dynamics at a single cell level. We measured normal (vertical) and lateral (axial) force at different pacing frequencies. We found a significant correlation between normal and lateral force. We also observed a significant force-frequency relationship for both types of forces. This work represents the first demonstration of the correlation of normal and lateral force from individual iPSC-CMs. The identification of this correlation is relevant because it validates the comparison across systems and models that can only account for either normal or lateral force. These findings enhance our understanding of iPSC-CM properties, thereby paving the way for the development of therapeutic strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Apratim Bajpai
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katherine B. Jankowski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York, NY 10029, USA
| |
Collapse
|
3
|
Cheng C, Wang S, Dong J, Zhang S, Yu D, Wang Z. Effects of targeted lung cancer drugs on cardiomyocytes studied by atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4077-4084. [PMID: 37565311 DOI: 10.1039/d3ay00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKIs) has become one of the important targeted drugs for the treatment of non-small cell lung cancer (NSCLC). But the cardiac adverse events (AEs) related to the EGFR-TKI treatment occur frequently. And the cases of TKI-associated cardiac AEs remain poorly understood. In order to study the effects of EGFR-TKIs on cardiomyocytes, atomic force microscopy (AFM) was used to measure and analyze the physical properties of cardiomyocytes under the actions of three drugs (gefitinib, afatinib and osimertinib) with different concentrations. By comparing the height, adhesion, Young's modulus, the amplitude and the time of the contraction and relaxation process, it was found that the changes of the mechanical properties of cells were well correlated with the symptoms of AEs, such as cardiomyocyte hypertrophy, QT prolongation, atrial fibrillation, ejection fraction reductions, and cardiac failure. In addition, osimertinib has the most obvious effect on cardiomyocytes at a low concentration, and gefitinib has the greatest effect with the increase of concentration, while afatinib has the least effect on cardiomyocytes. This provides a new method for screening drugs and exploring the principle of action in the process of cancer treatment at the cellular level.
Collapse
Affiliation(s)
- Can Cheng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Shuwei Wang
- Affiliated Hospital of Jilin Medical University, Jilin City, Jilin, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Dongliang Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
4
|
Kanade PP, Oyunbaatar NE, Shanmugasundaram A, Jeong YJ, Kim ES, Lee BK, Lee DW. MEA-integrated cantilever platform for comparison of real-time change in electrophysiology and contractility of cardiomyocytes to drugs. Biosens Bioelectron 2022; 216:114675. [DOI: 10.1016/j.bios.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
5
|
Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. MICROSYSTEMS & NANOENGINEERING 2022; 8:26. [PMID: 35299653 PMCID: PMC8882466 DOI: 10.1038/s41378-021-00344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 05/08/2023]
Abstract
Emerging heart-on-a-chip platforms are promising approaches to establish cardiac cell/tissue models in vitro for research on cardiac physiology, disease modeling and drug cardiotoxicity as well as for therapeutic discovery. Challenges still exist in obtaining the complete capability of in situ sensing to fully evaluate the complex functional properties of cardiac cell/tissue models. Changes to contractile strength (contractility) and beating regularity (rhythm) are particularly important to generate accurate, predictive models. Developing new platforms and technologies to assess the contractile functions of in vitro cardiac models is essential to provide information on cell/tissue physiologies, drug-induced inotropic responses, and the mechanisms of cardiac diseases. In this review, we discuss recent advances in biosensing platforms for the measurement of contractile functions of in vitro cardiac models, including single cardiomyocytes, 2D monolayers of cardiomyocytes, and 3D cardiac tissues. The characteristics and performance of current platforms are reviewed in terms of sensing principles, measured parameters, performance, cell sources, cell/tissue model configurations, advantages, and limitations. In addition, we highlight applications of these platforms and relevant discoveries in fundamental investigations, drug testing, and disease modeling. Furthermore, challenges and future outlooks of heart-on-a-chip platforms for in vitro measurement of cardiac functional properties are discussed.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Manpreet Malhi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350 China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1 Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| |
Collapse
|
6
|
Desbiolles BXE, Hannebelle MTM, de Coulon E, Bertsch A, Rohr S, Fantner GE, Renaud P. Volcano-Shaped Scanning Probe Microscopy Probe for Combined Force-Electrogram Recordings from Excitable Cells. NANO LETTERS 2020; 20:4520-4529. [PMID: 32426984 PMCID: PMC7291358 DOI: 10.1021/acs.nanolett.0c01319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/19/2020] [Indexed: 05/30/2023]
Abstract
Atomic force microscopy based approaches have led to remarkable advances in the field of mechanobiology. However, linking the mechanical cues to biological responses requires complementary techniques capable of recording these physiological characteristics. In this study, we present an instrument for combined optical, force, and electrical measurements based on a novel type of scanning probe microscopy cantilever composed of a protruding volcano-shaped nanopatterned microelectrode (nanovolcano probe) at the tip of a suspended microcantilever. This probe enables simultaneous force and electrical recordings from single cells. Successful impedance measurements on mechanically stimulated neonatal rat cardiomyocytes in situ were achieved using these nanovolcano probes. Furthermore, proof of concept experiments demonstrated that extracellular field potentials (electrogram) together with contraction displacement curves could simultaneously be recorded. These features render the nanovolcano probe especially suited for mechanobiological studies aiming at linking mechanical stimuli to electrophysiological responses of single cells.
Collapse
Affiliation(s)
- B. X. E. Desbiolles
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - M. T. M Hannebelle
- Laboratory
of Bio- and Nano- Instrumentation, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - E. de Coulon
- Laboratory
of Cellular Optics II, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - A. Bertsch
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - S. Rohr
- Laboratory
of Cellular Optics II, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - G. E. Fantner
- Laboratory
of Bio- and Nano- Instrumentation, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - P. Renaud
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Simeonov S, Schäffer TE. Ultrafast Imaging of Cardiomyocyte Contractions by Combining Scanning Ion Conductance Microscopy with a Microelectrode Array. Anal Chem 2019; 91:9648-9655. [PMID: 31247725 DOI: 10.1021/acs.analchem.9b01092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Beating cardiomyocytes undergo fast morphodynamics during the contraction-relaxation cycle. However, imaging these morphodynamics with a high spatial and temporal resolution is difficult, owing to a lack of suitable techniques. Here, we combine scanning ion conductance microscopy (SICM) with a microelectrode array (MEA) to image the three-dimensional (3D) topography of cardiomyocytes during a contraction-relaxation cycle with 1 μm spatial and 1 ms time resolution. We record the vertical motion of cardiomyocytes at many locations across a cell by SICM and synchronize these data using the simultaneously recorded action potential by the MEA as a time reference. This allows us to reconstruct the time-resolved 3D morphology of cardiomyocytes during a full contraction-relaxation cycle with a raw data rate of 200 μs/frame and to generate spatially resolved images of contractile parameters (maximum displacement, time delay, asymmetry factor). We use the MEA-SICM setup to visualize the effect of blebbistatin, a myosin II inhibitor, on the morphodynamics of contractions. Further, we find an upper limit of 0.02% for cell volume changes during an action potential. The results show that MEA-SICM provides an ultrafast imaging platform for investigating the functional interplay of cardiomyocyte electrophysiology and mechanics.
Collapse
Affiliation(s)
- Stefan Simeonov
- Institute of Applied Physics , University of Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Tilman E Schäffer
- Institute of Applied Physics , University of Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| |
Collapse
|
8
|
Amarouch MY, El Hilaly J, Mazouzi D. AFM and FluidFM Technologies: Recent Applications in Molecular and Cellular Biology. SCANNING 2018; 2018:7801274. [PMID: 30069282 PMCID: PMC6057332 DOI: 10.1155/2018/7801274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 05/05/2023]
Abstract
Atomic force microscopy (AFM) is a widely used imaging technique in material sciences. After becoming a standard surface-imaging tool, AFM has been proven to be useful in addressing several biological issues such as the characterization of cell organelles, quantification of DNA-protein interactions, cell adhesion forces, and electromechanical properties of living cells. AFM technique has undergone many successful improvements since its invention, including fluidic force microscopy (FluidFM), which combines conventional AFM with microchanneled cantilevers for local liquid dispensing. This technology permitted to overcome challenges linked to single-cell analyses. Indeed, FluidFM allows isolation and injection of single cells, force-controlled patch clamping of beating cardiac cells, serial weighting of micro-objects, and single-cell extraction for molecular analyses. This work aims to review the recent studies of AFM implementation in molecular and cellular biology.
Collapse
Affiliation(s)
- Mohamed Yassine Amarouch
- Materials, Natural Substances, Environment and Modeling Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- Biology, Environment & Health Team, Department of Biology, Faculty of Sciences and Techniques Errachidia, University of Moulay Ismaïl Meknes, Meknes, Morocco
| | - Jaouad El Hilaly
- Materials, Natural Substances, Environment and Modeling Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- Biology, Environment & Health Team, Department of Biology, Faculty of Sciences and Techniques Errachidia, University of Moulay Ismaïl Meknes, Meknes, Morocco
- Regional Institute of Education and Training Careers, Department of Life and Earth Sciences, Fez, Morocco
| | - Driss Mazouzi
- Materials, Natural Substances, Environment and Modeling Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- Biology, Environment & Health Team, Department of Biology, Faculty of Sciences and Techniques Errachidia, University of Moulay Ismaïl Meknes, Meknes, Morocco
| |
Collapse
|