1
|
Uzun Yaylacı E. Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:415-427. [PMID: 39373773 DOI: 10.1007/s00249-024-01723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to calculate the effect of nanopatterns' peak sharpness, width, and spacing parameters on P. aeruginosa and S. aureus cell walls by artificial neural network and finite element analysis. Elastic and creep deformation models of bacteria were developed in silico. Maximum deformation, maximum stress, and maximum strain values of the cell walls were calculated. According to the results, while the spacing of the nanopatterns is constant, it was determined that when their peaks were sharpened and their width decreased, maximum deformation, maximum stress, and maximum strain affecting the cell walls of both bacteria increased. When sharpness and width of the nano-patterns are kept constant and the spacing is increased, maximum deformation, maximum stress, and maximum strain in P. aeruginosa cell walls increase, but a decrease in S. aureus was observed. This study proves that changes in the geometric structures of nanopatterned surfaces can show different effects on different bacteria.
Collapse
Affiliation(s)
- Ecren Uzun Yaylacı
- Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
2
|
Kingsbury JS, Starr CG, Gokarn YR. A scaling relationship between thermodynamic and hydrodynamic interactions in protein solutions. Biophys J 2024:S0006-3495(24)00659-3. [PMID: 39360382 DOI: 10.1016/j.bpj.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
Weak protein interactions are associated with a broad array of biological functions and are often implicated in molecular dysfunction accompanying human disease. In addition, these interactions are a critical determinant in the effective manufacturing, stability, and administration of biotherapeutic proteins. Despite their prominence, much remains unknown about how molecular attributes influence the hydrodynamic and thermodynamic contributions to the overall interaction mechanism. To systematically probe these contributions, we have evaluated self-interaction in a diverse set of proteins that demonstrate a broad range of behaviors from attractive to repulsive. Analysis of the composite trending in the data provides a convenient interconversion among interaction parameters measured from the concentration dependence of the molecular weight, diffusion coefficient, and sedimentation coefficient, as well as insight into the relationship between thermodynamic and hydrodynamic interactions. We find relatively good agreement between our data and a model for interacting hard spheres in the range of weak self-association. In addition, we propose an empirically derived, general scaling relationship applicable across a broad range of self-association and repulsive behaviors.
Collapse
Affiliation(s)
| | | | - Yatin R Gokarn
- Global CMC Development, Sanofi, Framingham, Massachusetts
| |
Collapse
|
3
|
Correia JJ, Stafford WF, Erlandsen H, Cole JL, Premathilaka SH, Isailovic D, Dignam JD. Hydrodynamic and thermodynamic analysis of PEGylated human serum albumin. Biophys J 2024; 123:2506-2521. [PMID: 38898654 PMCID: PMC11365110 DOI: 10.1016/j.bpj.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Covalent labeling of therapeutic drugs and proteins with polyethylene glycol (PEGylation) is an important modification for improving stability, solubility, and half-life. PEGylation alters protein solution behavior through its impact on thermodynamic nonideality by increasing the excluded volume, and on hydrodynamic nonideality by increasing the frictional drag. To understand PEGylation's impact, we investigated the thermodynamic and hydrodynamic properties of a model system consisting of PEGylated human serum albumin derivatives using analytical ultracentrifugation (AUC) and dynamic light scattering (DLS). We constructed PEGylated human serum albumin derivatives of single, linear 5K, 10K, 20K, and 40K PEG chains and a single branched-chain PEG of 40K (2 × 20K). Sedimentation velocity (SV) experiments were analyzed using SEDANAL direct boundary fitting to extract ideal sedimentation coefficients so, hydrodynamic nonideality ks, and thermodynamic nonideality 2BM1SV terms. These quantities allow the determination of the Stokes radius Rs, the frictional ratio f/fo, and the swollen or entrained volume Vs/v, which measure size, shape, and solvent interaction. We performed sedimentation equilibrium experiments to obtain independent measurements of thermodynamic nonideality 2BM1SE. From DLS measurements, we determined the interaction parameter, kD, the concentration dependence of the apparent diffusion coefficient, D, and from extrapolation of D to c = 0 a second estimate of Rs. Rs values derived from SV and DLS measurements and ensemble model calculations (see complementary study) are then used to show that ks + kD = theoretical 2B22M1. In contrast, experimental BM1 values from SV and sedimentation equilibrium data collectively allow for similar analysis for protein-PEG conjugates and show that ks + kD = 1.02-1.07∗BM1, rather than the widely used ks + kD = 2BM1 developed for hard spheres. The random coil behavior of PEG dominates the colloidal properties of PEG-protein conjugates and exceeds the sum of a random coil and hard-sphere volume due to excess entrained water.
Collapse
Affiliation(s)
- John J Correia
- Department of Cell & Molecular Biology, University of Miss Medical Center, Jackson, Mississippi.
| | - Walter F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Heidi Erlandsen
- Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | | | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio
| | - John David Dignam
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio
| |
Collapse
|
4
|
Yarawsky AE, Gough ES, Zai-Rose V, Figueroa NI, Cunningham HM, Burgner JW, DeLion MT, Paul LN. BASIS: BioAnalysis SEDFIT integrated software for cGMP analysis of SV-AUC data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:111-121. [PMID: 38329496 DOI: 10.1007/s00249-024-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the "gold standard" analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, "BASIS", which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.
Collapse
Affiliation(s)
| | - Erik S Gough
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Valeria Zai-Rose
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | | | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| |
Collapse
|
5
|
Ong Q, Xufeng X, Stellacci F. Versatile Capillary Cells for Handling Concentrated Samples in Analytical Ultracentrifugation. Anal Chem 2024; 96:2567-2573. [PMID: 38301115 PMCID: PMC10867799 DOI: 10.1021/acs.analchem.3c05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
In concentrated macromolecular dispersions, far-from-ideal intermolecular interactions determine the dispersion behaviors including phase transition, crystallization, and liquid-liquid phase separation. Here, we present a novel versatile capillary-cell design for analytical ultracentrifugation-sedimentation equilibrium (AUC-SE), ideal for studying samples at high concentrations. Current setups for such studies are difficult and unreliable to handle, leading to a low experimental success rate. The design presented here is easy to use, robust, and reusable for samples in both aqueous and organic solvents while requiring no special tools or chemical modification of AUC cells. The key and unique feature is the fabrication of liquid reservoirs directly on the bottom window of AUC cells, which can be easily realized by laser ablation or mechanical drilling. The channel length and optical path length are therefore tunable. The success rate for assembling this new cell is close to 100%. We demonstrate the practicality of this cell by studying: (1) the equation of state and second virial coefficients of concentrated gold nanoparticle dispersions in water and bovine serum albumin (BSA) as well as lysozyme solution in aqueous buffers, (2) the gelation phase transition of DNA and BSA solutions, and (3) liquid-liquid phase separation of concentrated BSA/polyethylene glycol (PEG) droplets.
Collapse
Affiliation(s)
- Quy Ong
- Laboratory Of Supramolecular
Nanomaterials And Interfaces, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Xu Xufeng
- Laboratory Of Supramolecular
Nanomaterials And Interfaces, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Laboratory Of Supramolecular
Nanomaterials And Interfaces, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Correia JJ, Bishop GR, Kyle PB, Wright RT, Sherwood PJ, Stafford WF. Sedimentation velocity FDS studies of antibodies in pooled human serum. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:321-332. [PMID: 37160443 DOI: 10.1007/s00249-023-01652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
The biotech industry has great interest in investigating therapeutic proteins in high concentration environments like human serum. The fluorescence detection system (Aviv-FDS) allows the performance of analytical ultracentrifuge (AUC) sedimentation velocity (SV) experiments in tracer or BOLTS protocols. Here, we compare six pooled human serum samples by AUC SV techniques and demonstrate the potential of this technology for characterizing therapeutic antibodies in serum. Control FDS SV experiments on serum alone reveal a bilirubin-HSA complex whose sedimentation is slowed by solution nonideality and exhibits a Johnston-Ogston (JO) effect due to the presence of high concentrations of IgG. Absorbance SV experiments on diluted serum samples verify the HSA-IgG composition as well as a significant IgM pentamer boundary at 19 s. Alexa-488 labeled Simponi (Golimumab) is used as a tracer to investigate the behavior of a therapeutic monoclonal antibody (mAb) in serum, and the sedimentation behavior of total IgG in serum. Serum dilution experiments allow extrapolation to zero concentration to extract so, while global direct boundary fitting with SEDANAL verifies the utility of a matrix of self- and cross-term phenomenological nonideality coefficients (ks and BM1) and the source of the JO effect. The best fits include weak reversible association (~ 4 × 103 M-1) between Simponi and total human IgG. Secondary mAbs to human IgG and IgM verify the formation of a 10.2 s 1:1 complex with human IgG and a 19 s complex with human IgM pentamers. These results demonstrate that FDS AUC allows a range of approaches for investigating therapeutic antibodies in human serum.
Collapse
Affiliation(s)
- J J Correia
- Department of Cell and Molecular Biology, University of Miss Medical Center, Jackson, MS, USA.
| | - G R Bishop
- Department of Pharmacology and Toxicology, University of Miss Medical Center, Jackson, MS, USA
| | - P B Kyle
- Department of Pathology, University of Miss Medical Center, Jackson, MS, USA
| | - R T Wright
- Janssen Research and Development, Spring House, PA, 19477, USA
| | | | - W F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Bishop GR, Correia JJ. Simulation of Gilbert theory for self-association in sedimentation velocity experiments: a guide to evaluate best fitting models. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:281-292. [PMID: 36881128 DOI: 10.1007/s00249-023-01634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
There is a long tradition in the Biophysics community of using simulations as a means to understand macromolecular behavior in various physicochemical methods. This allows a rigorous means to interpret observations in terms of fundamental principles, including chemical equilibrium, reaction kinetics, transport processes and thermodynamics. Here we simulate data for the Gilbert Theory for self-association, a fundamental analytical ultracentrifuge (AUC) technique to understand the shape of sedimentation velocity reaction boundaries that involve reversible monomer-Nmer interactions. Simulating monomer-dimer through monomer-hexamer systems as a function of concentration about the equilibrium constant allows a visual means to differentiate reaction stoichiometry by determining end points and inflection positions. Including intermediates (eg A1-A2-A3-A4-A5-A6) in the simulations reveals the smoothing of the reaction boundary and the removal of sharp inflections between monomers and polymers. The addition of cooperativity restores sharp boundaries or peaks to the observation and allows more discrimination in the selection of possible fitting models. Thermodynamic nonideality adds additional features when applied across wide ranges of concentration that might be appropriate for high-concentration therapeutic monoclonal antibody (mAb) solutions. This presentation serves as a tutorial for using modern AUC analysis software like SEDANAL for selecting potential fitting models.
Collapse
Affiliation(s)
- G R Bishop
- Department of Pharmacology & Toxicology, UMMC, Jackson, MS, USA
| | - J J Correia
- Department of Cell and Mol Biology, UMMC, Jackson, MS, USA.
| |
Collapse
|
8
|
Yarawsky AE, Dinu V, Harding SE, Herr AB. Strong non-ideality effects at low protein concentrations: considerations for elongated proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:427-438. [PMID: 37055656 PMCID: PMC10599268 DOI: 10.1007/s00249-023-01648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
A recent investigation was aimed at obtaining structural information on a highly extended protein via SEC-MALS-SAXS. Significantly broadened elution peaks were observed, reminiscent of a phenomenon known as viscous fingering. This phenomenon is usually observed above 50 mg/mL for proteins like bovine serum albumin (BSA). Interestingly, the highly extended protein (Brpt5.5) showed viscous fingering at concentrations lower than 5 mg/mL. The current study explores this and other non-ideal behavior, emphasizing the presence of these effects at relatively low concentrations for extended proteins. BSA, Brpt5.5, and a truncated form of Brpt5.5 referred to as Brpt1.5 are studied systematically using size-exclusion chromatography (SEC), sedimentation velocity analytical ultracentrifugation (AUC), and viscosity. The viscous fingering effect is quantified using two approaches and is found to correlate well with the intrinsic viscosity of the proteins-Brpt5.5 exhibits the most severe effect and is the most extended protein tested in the study. By AUC, the hydrodynamic non-ideality was measured for each protein via global analysis of a concentration series. Compared to BSA, both Brpt1.5 and Brpt5.5 showed significant non-ideality that could be easily visualized at concentrations at or below 5 mg/mL and 1 mg/mL, respectively. A variety of relationships were examined for their ability to differentiate the proteins by shape using information from AUC and/or viscosity. Furthermore, these relationships were also tested in the context of hydrodynamic modeling. The importance of considering non-ideality when investigating the structure of extended macromolecules is discussed.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics (NCMH), University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Hopkins MM, Antonopoulos IH, Parupudi A, Bee JS, Bain DL. Comparative Thermodynamics of the Reversible Self-Association of Therapeutic mAbs Reveal Opposing Roles for Linked Proton- and Ion-Binding Events. Pharm Res 2023; 40:1383-1397. [PMID: 36869246 DOI: 10.1007/s11095-023-03485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE Reversible self-association (RSA) has long been a concern in therapeutic monoclonal antibody (mAb) development. Because RSA typically occurs at high mAb concentrations, accurate assessment of the underlying interaction parameters requires explicitly addressing hydrodynamic and thermodynamic nonideality. We previously examined the thermodynamics of RSA for two mAbs, C and E, in phosphate buffered saline (PBS). Here we continue to explore the mechanistic aspects of RSA by examining the thermodynamics of both mAbs under reduced pH and salt conditions. METHODS Dynamic light scattering and sedimentation velocity (SV) studies were conducted for both mAbs at multiple protein concentrations and temperatures, with the SV data analyzed via global fitting to determine best-fit models, interaction energetics, and nonideality contributions. RESULTS We find that mAb C self-associates isodesmically irrespective of temperature, and that association is enthalpically driven but entropically penalized. Conversely, mAb E self-associates cooperatively and via a monomer-dimer-tetramer-hexamer reaction pathway. Moreover, all mAb E reactions are entropically driven and enthalpically modest or minimal. CONCLUSIONS The thermodynamics for mAb C self-association are classically seen as originating from van der Waals interactions and hydrogen bonding. However, relative to the energetics we determined in PBS, self-association must also be linked to proton release and/or ion uptake events. For mAb E, the thermodynamics implicate electrostatic interactions. Furthermore, self-association is instead linked to proton uptake and/or ion release, and primarily by tetramers and hexamers. Finally, although the origins of mAb E cooperativity remain unclear, ring formation remains a possibility whereas linear polymerization reactions can be eliminated.
Collapse
Affiliation(s)
- Mandi M Hopkins
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Ioanna H Antonopoulos
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA
- Biophysical Characterization, KBI Biopharma, Louisville, CO, 80027, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Drug Product and Formulation Sciences, GSK Vaccines, Rockville, MD, 20850, USA
| | - Jared S Bee
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Formulation and Drug Product Development, REGENXBIO Inc, Rockville, MD, 20850, USA
| | - David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Uttinger MJ, Hundschell CS, Lautenbach V, Pusara S, Bäther S, Heyn TR, Keppler JK, Wenzel W, Walter J, Kozlowska M, Wagemans AM, Peukert W. Determination of specific and non-specific protein-protein interactions for beta-lactoglobulin by analytical ultracentrifugation and membrane osmometry experiments. SOFT MATTER 2022; 18:6739-6756. [PMID: 36040122 DOI: 10.1039/d2sm00908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein-protein interactions are essential for the understanding of biological processes. Specific protein aggregation is an important aspect for many biological systems. In particular, electrostatic interactions play the key role for protein-protein interactions, as many amino acids have pH-dependent charge states. Moreover, protein dissociation is directly related to the solution pH, ionic strength, temperature and protein concentration. The subtle interplay between different specific and non-specific interactions is demonstrated for beta-lactoglobulin (BLG) with a focus on low salt concentrations, thus mimicking technically relevant processing conditions. BLG is a well-characterized model system, proven to attain its monomer-dimer equilibrium strongly dependent upon the pH of the solution. In this manuscript, we present a unique combination of analytical ultracentrifugation and membrane osmometry experiments, which quantifies specific and non-specific interactions, i.e. in terms of the dimer dissociation constants and the second osmotic virial coefficient, at pH 3 and 7 and sodium chloride concentrations of 10 mM and 100 mM. This provides direct insight to protein-protein interactions for a system with a concentration-dependent monomer-dimer equilibrium. Moreover, using a coarse-grained extended DLVO model in combination with molecular dynamics simulations, we quantify non-specific monomer-monomer, monomer-dimer and dimer-dimer interactions as well as the binding free energy of BLG dimerization from theoretical calculations. The experimentally determined interactions are shown to be mainly governed by electrostatic interactions and further agree with free energy calculations. Our experimental protocol aims to determine non-specific and specific interactions for a dynamically interacting system and provides an understanding of protein-protein interactions for BLG at low salt concentrations.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - C S Hundschell
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - V Lautenbach
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - S Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Bäther
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - T R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - J K Keppler
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - W Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - J Walter
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - M Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - A M Wagemans
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - W Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| |
Collapse
|
11
|
Yarawsky AE, Hopkins JB, Chatzimagas L, Hub JS, Herr AB. Solution Structural Studies of Pre-amyloid Oligomer States of the Biofilm Protein Aap. J Mol Biol 2022; 434:167708. [PMID: 35777467 PMCID: PMC9615840 DOI: 10.1016/j.jmb.2022.167708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus epidermidis is a commensal bacterium on human skin that is also the leading cause of medical device-related infections. The accumulation-associated protein (Aap) from S. epidermidis is a critical factor for infection via its ability to mediate biofilm formation. The B-repeat superdomain of Aap is composed of 5 to 17 Zn2+-binding B-repeats, which undergo rapid, reversible assembly to form dimer and tetramer species. The tetramer can then undergo a conformational change and nucleate highly stable functional amyloid fibrils. In this study, multiple techniques including analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) are used to probe a panel of B-repeat mutant constructs that assemble to distinct oligomeric states to define the structural characteristics of B-repeat dimer and tetramer species. The B-repeat region from Aap forms an extremely elongated conformation that presents several challenges for standard SAXS analyses. Specialized approaches, such as cross-sectional analyses, allowed for in-depth interpretation of data, while explicit-solvent calculations via WAXSiS allowed for accurate evaluation of atomistic models. The resulting models suggest mechanisms by which Aap functional amyloid fibrils form, illuminating an important contributing factor to recurrent staphylococcal infections.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Analytical ultracentrifugation: still the gold standard that offers multiple solutions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 49:673-676. [PMID: 33211149 DOI: 10.1007/s00249-020-01483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the nature of macromolecules and their interactions in solution underpins many fields, including biology, chemistry and materials science. The 24th International Analytical Ultracentrifugation Workshop and Symposium (AUC2019, held in Christchurch, New Zealand, August 2019), brought together 77 international delegates to highlight recent developments in the field. There was a focus on analytical ultracentrifugation, although we recognise that this is but one of the key methods in the biophysicist's toolkit. Many of the presentations showcased the versatility of analytical ultracentrifugation and how such experiments are integrated with other solution techniques, such as small-angle X-ray scattering, cryo-electron microscopy, isothermal titration calorimetry and more. This special issue emphasises a wide range of themes covered in the meeting, including carbohydrate chemistry, protein chemistry, polymer science, and macromolecular interactions.
Collapse
|
13
|
Energetic Dissection of Mab-Specific Reversible Self-Association Reveals Unique Thermodynamic Signatures. Pharm Res 2021; 38:243-255. [PMID: 33604786 DOI: 10.1007/s11095-021-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Reversible self-association (RSA) remains a challenge in the development of therapeutic monoclonal antibodies (mAbs). We recently analyzed the energetics of RSA for five IgG mAbs (designated as A-E) under matched conditions and using orthogonal methods. Here we examine the thermodynamics of RSA for two of the mAbs that showed the strongest evidence of RSA (mAbs C and E) to identify underlying mechanisms. METHODS Concentration-dependent dynamic light scattering and sedimentation velocity (SV) studies were carried out for each mAb over a range of temperatures. Because self-association was weak, the SV data were globally analyzed via direct boundary fitting to identify best-fit models, accurately determine interaction energetics, and account for the confounding effects of thermodynamic and hydrodynamic nonideality. RESULTS mAb C undergoes isodesmic self-association at all temperatures examined, with the energetics indicative of an enthalpically-driven reaction offset by a significant entropic penalty. By contrast, mAb E undergoes monomer-dimer self-association, with the reaction being entropically-driven and comprised of only a small enthalpic contribution. CONCLUSIONS Classical interpretations implicate van der Waals interactions and H-bond formation for mAb C RSA, and electrostatic interactions for mAb E. However, noting that RSA is likely coupled to additional equilibria, we also discuss the limitations of such interpretations.
Collapse
|