1
|
Ainslie-Garcia MH, Farzan A, Jafarikia M, Lillie BN. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet Microbiol 2018; 219:171-177. [PMID: 29778193 DOI: 10.1016/j.vetmic.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
Foodborne human salmonellosis is an important food safety concern worldwide. Food-producing animals are one of the major sources of human salmonellosis, and thus control of Salmonella at the farm level could reduce Salmonella spread in the food supply system. Genetic selection of pigs with resistance to Salmonella infection may be one way to control Salmonella on swine farms. The objective of this study was to investigate the association between genetic variants in the porcine innate immune system with on-farm Salmonella shedding and Salmonella colonization tested at slaughter. Fourteen groups of pigs (total 809) were followed from birth to slaughter. Fecal samples collected five times at different stages of production and tissue samples obtained from tonsil and lymph nodes at slaughter were cultured for Salmonella. Genomic DNA was extracted and analyzed for 40 single nucleotide variants and two indels within porcine innate immune genes that were previously associated with Salmonella infection or other infectious diseases. A survey was used to collect information on farm management practices. A multilevel mixed-effects logistic regression modelling method was used to identify SNVs that are associated with Salmonella shedding and/or Salmonella colonization. One single nucleotide variant in the C-type lectin MBL1 and one single nucleotide variant in the cytosolic pattern recognition receptor NOD1 was associated with increased risk of on-farm shedding (p = 0.010) and internal colonization tested at slaughter (p = 0.018), respectively. These findings indicate the potential of these variants for genetic selection programs aimed at controlling Salmonella shedding and colonization in pigs.
Collapse
Affiliation(s)
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Canadian Center for Swine Improvement, Inc. 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
3
|
Bergman IM, Edman K, van As P, Huisman A, Juul-Madsen HR. A two-nucleotide deletion renders the mannose-binding lectin 2 (MBL2) gene nonfunctional in Danish Landrace and Duroc pigs. Immunogenetics 2014; 66:171-84. [DOI: 10.1007/s00251-014-0758-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
|
4
|
Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli. J Anim Sci Biotechnol 2012; 3:34. [PMID: 23137309 PMCID: PMC3554502 DOI: 10.1186/2049-1891-3-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/10/2012] [Indexed: 01/11/2023] Open
Abstract
Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenomics, which combines DNA variations, transcriptome, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance.
Collapse
|
5
|
Wang X, Ju Z, Huang J, Hou M, Zhou L, Qi C, Zhang Y, Gao Q, Pan Q, Li G, Zhong J, Wang C. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity. Vet Immunol Immunopathol 2012; 148:311-9. [PMID: 22771198 DOI: 10.1016/j.vetimm.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022]
Abstract
Mannose-binding lectin (MBL), a calcium-dependent collagenous lectin, plays an important role in the host immune defence against a wide range of pathogens. There are MBL1 and MBL2 genes which encode the MBL-A and MBL-C proteins, respectively. This study was carried out to investigate the relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and hemolytic complement activity in both classical pathway (CH50) and alternative pathway (ACH50) in Chinese Holstein cattle. Four single-nucleotide polymorphisms (SNPs) in the exon 1 of the MBL2 gene in Chinese Holstein cattle and Luxi yellow cattle were identified by the direct sequencing method. The SNP g.201 G>A was identified as a non-synonymous mutation (codon 31, Arg>Gln) at the N-terminus cysteine-rich domain and the SNPs g.234 C>A and g.235 G>A (codon 42) made Pro to Gln at the 1st Gly-X-Y repeat of the collagen-like domain, while the SNP g.244 T>C (codon 45) was identified as a synonymous mutation (Asn>Asn) at the 2 th Gly-X-Y repeat of the collagen-like domain. The SNP markers (g.201 G>A, and g.234 C>A) were significantly correlated with somatic cell score (SCS) (P<0.05). The concentration of MBL-C protein in serum ranges from 0.8 to 7.4 μg/mL by enzyme-linked immunosorbent assay. Six combinations of different haplotypes from the four SNPs were identified in Chinese Holstein cattle. Statistical analysis revealed that cows with the haplotype combination H4H5 exhibited the lowest SCS. The CH50 value of H4H5 and H5H5 cow are significantly higher than H2H5 haplotype combination (P<0.05). The association analysis results showed that the haplotype combination H4H5 may be used as a tolerance haplotype combination for the bovine mastitis.
Collapse
Affiliation(s)
- Xinju Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan 250131, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bergman IM, Sandholm K, Ekdahl KN, Okumura N, Uenishi H, Guldbrandtsen B, Essler SE, Knoll A, Heegaard PMH, Edfors I, Juul-Madsen HR. MBL1 genotypes in wild boar populations from Sweden, Austria, the Czech Republic, and Japan. Int J Immunogenet 2012; 40:131-9. [PMID: 22672630 DOI: 10.1111/j.1744-313x.2012.01132.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022]
Abstract
The single nucleotide polymorphism (SNP) G949T in the mannose-binding lectin ( MBL ) 1 gene has been associated with low MBL-A concentration in serum and detected at different frequencies in various European pig populations. However, the origin of this SNP is not known. Part of the MBL1 gene was sequenced in 12 wild boar/Large White crossbred pigs from the second backcross (BC 2 ) generation in a family material originating from two wild boar x Large White intercrosses. Also, MBL-A serum concentration was measured in the entire BC 2 generation (n = 45). Furthermore, the genotypes of 68 wild boars from Sweden, Austria, the Czech Republic, and Japan were determined in regard to five previously described SNPs in MBL1 . The T allele of G949T was present among the BC 2 animals. MBL-A serum concentration in the BC 2 animals showed a bimodal distribution, with one-third of the animals at levels between 0.7 and 1.6 μg mL(-1) and the remaining pigs at levels around 13 μg mL(-1) . There was a co-variation between the presence of the T allele and low MBL-A concentration in serum. The genotyping of the wild boars revealed differences between populations. The T allele of G949T was not detected in the Austrian and Japanese samples and is thus unlikely to be an original feature of wild boars. In contrast, it was present at high frequency (0.35) among the Swedish wild boars, probably representing a founder effect. Five MBL1 haplotypes were resolved. Only two of these were present among the Japanese wild boars compared to four in each of the European populations. This difference may reflect differences in selection pressure and population history.
Collapse
Affiliation(s)
- I-M Bergman
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Keirstead ND, Hayes MA, Vandervoort GE, Brooks AS, Squires EJ, Lillie BN. Single nucleotide polymorphisms in collagenous lectins and other innate immune genes in pigs with common infectious diseases. Vet Immunol Immunopathol 2011; 142:1-13. [PMID: 21570129 DOI: 10.1016/j.vetimm.2011.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 02/06/2023]
Abstract
Innate immune recognition of pathogens involves various surface receptors and soluble proteins that precede agglutination, complement activation, phagocytosis, and the adaptive immune response. Mannan-binding lectins (MBLs), ficolins (FCNs) and surfactant protein A (SP-A) are soluble collagenous lectins that bind surface structures of various bacteria, viruses and fungi. Some single nucleotide polymorphisms (SNPs) in collagenous lectin genes of humans and other species, including pigs, have been implicated in variation in susceptibility to infectious and inflammatory diseases. In this study we determined the frequencies of 13 SNP alleles of MBL-A, MBL-C, ficolin-α, ficolin-β, and SP-A in 1324 healthy pigs and 461 pigs diagnosed with common infectious diseases at necropsy. For comparison, we also analyzed 12 other SNP alleles in several other innate immune genes, including galectins and TLRs. Several SNPs within genes encoding porcine MBL-A, MBL-C and SP-A were more frequent in pigs diagnosed at necropsy with various diseases or pathogens. These findings suggest that several collagenous lectin SNPs are associated with disease susceptibility and therefore might be genetic markers of impaired innate immune function.
Collapse
Affiliation(s)
- N D Keirstead
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Sjölund M, Fossum C, Martín de la Fuente AJ, Alava M, Juul-Madsen HR, Lampreave F, Wallgren P. Effects of different antimicrobial treatments on serum acute phase responses and leucocyte counts in pigs after a primary and a secondary challenge infection with Actinobacillus pleuropneumoniae. Vet Rec 2011; 169:70. [PMID: 21737462 DOI: 10.1136/vr.d2268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The susceptibility to an initial challenge and a re-challenge inoculation with Actinobacillus pleuropneumoniae was analysed in pigs that were treated with antimicrobials of different efficacies following the first exposure to A pleuropneumoniae. In brief, 30 nine-week-old specific pathogen-free pigs were allocated to five groups of six. After acclimatisation, four groups were inoculated with A pleuropneumoniae serotype 2. At the onset of clinical signs, three of the groups of pigs were treated with enrofloxacin, tetracycline or penicillin. A fourth group served as the inoculated control and the fifth group as a control group that had not been inoculated. On day 28, all five groups were re-challenged with the same strain of A pleuropneumoniae serotype 2 as had been used in the first inoculation. No treatments were carried out at this time. The acute phase responses and differential leucocyte counts were monitored in detail after both inoculations. Leucocytosis and acute phase responses in the forms of serum amyloid A, pig-major acute phase protein and haptoglobin were recorded in all of the inoculated groups after the onset of clinical signs following the first inoculation. A porcine mannan-binding lectin-A response was less evident in the pigs. Acute phase responses resembling those of the first inoculation were observed in the pigs that had not previously been inoculated and in the pigs treated with enrofloxacin. Acute phase responses were not recorded in the other three groups, where the pigs had seroconverted to A pleuropneumoniae serotype 2 following the first inoculation.
Collapse
Affiliation(s)
- M Sjölund
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu J, Ju Z, Li Q, Huang J, Li R, Li J, Ma L, Zhong J, Wang C. Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle. Immunogenetics 2011; 63:727-42. [DOI: 10.1007/s00251-011-0548-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
10
|
Abstract
In the beginning were neither B cells nor T cells nor antibodies, but innate immune defense alone. The primary functional theme of innate immunity is the distinction between self and non-self, which is maintained by a vast number of cellular and subcellular components. In this context, the immense importance of the Toll-like receptors (TLRs) is well established. Positive (Darwinian) selection seems to be acting on the ligand-binding domains of these molecules, suggesting a selection pattern similar to that previously observed in the MHC proteins. In sharp contrast to TLRs, the biological significance of mannan-binding lectin (MBL) is controversial, and, concerning humans, it has been suggested that low concentration of MBL in serum represents a selective advantage. In this mini-review, based on a doctoral thesis, evolutionary aspects of TLRs and MBL are discussed.
Collapse
|
11
|
Juul-Madsen HR, Kjærup RM, Toft C, Henryon M, Heegaard PMH, Berg P, Dalgaard TS. Structural gene variants in the porcine mannose-binding lectin 1 (MBL1) gene are associated with low serum MBL-A concentrations. Immunogenetics 2011; 63:309-17. [PMID: 21274526 DOI: 10.1007/s00251-011-0512-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/04/2011] [Indexed: 11/24/2022]
Abstract
Mannose-binding lectin (MBL) is a collagenous lectin that kills a wide range of pathogenic microbes through complement activation. The MBL1 and MBL2 genes encode MBL-A and MBL-C, respectively. MBL deficiency in humans is associated with higher susceptibility to viral as well as bacterial infections. A number of single nucleotide polymorphisms (SNP) have been identified in the collagen-like domain of the human MBL gene, of which several are strongly associated with decreased concentrations of MBL in serum. In this study, we have identified a number of SNPs in the porcine MBL-A gene. Sequence comparisons identified a total of 14 SNPs, eight of which were found in exons and six in introns. Four of the eight exon-located SNPs were non-synonymous. Sequence data from several Duroc and Landrace pigs identified four different haplotypes. One haplotype was found in Duroc pigs only, and three haplotypes were found in the Landrace pigs. One of the identified haplotypes was associated with low concentration of MBL-A in serum. The concentration of MBL-A in serum was further assessed in a large number of Duroc and Landrace boars to address its correlation with disease frequency. The MBL-A concentration in Duroc boars showed one single population, whereas Landrace boars showed four distinct populations for MBL-A concentration. The Landrace boars were finally assessed for disease incidence, and the association with the concentration of MBL-A in serum was investigated. No association between MBL and disease incidence was found in this study.
Collapse
Affiliation(s)
- Helle R Juul-Madsen
- Department of Animal Health and Bioscience, Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark, Helle.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ontogeny and characterization of blood leukocyte subsets and serum proteins in piglets before and after weaning. Vet Immunol Immunopathol 2010; 133:95-108. [DOI: 10.1016/j.vetimm.2009.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 06/18/2009] [Accepted: 07/01/2009] [Indexed: 01/29/2023]
|
13
|
Young KM, Czyrny A, Russell S, Huber P, Lumsden JS. Plasma ladderlectin concentration following sterile inflammation and Aeromonas salmonicida subsp. salmonicida infection. JOURNAL OF FISH DISEASES 2009; 32:569-576. [PMID: 19538251 DOI: 10.1111/j.1365-2761.2009.00997.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plasma samples obtained from rainbow trout either experimentally infected with Aeromonas salmonicida or injected with either A. salmonicida lipopolysaccharide (LPS) or a commercial A. salmonicida vaccine (Lipogen) were analysed by enzyme immunoassay to evaluate changes in rainbow trout ladderlectin (RTLL) concentrations during the acute phase response (APR). Plasma RTLL concentrations in fish injected with A. salmonicida LPS, vaccine or live A. salmonicida varied over a 10 day period, but did not significantly increase. In contrast, fish experimentally infected with A. salmonicida exhibited a modest, but statistically significant (P < 0.05), decrease in RTLL concentration. These studies demonstrate that RTLL is not detectably induced during the trout APR to sterile inflammation or A. salmonicida infection, but plasma concentration of this protein may be reduced during bacterial infection.
Collapse
Affiliation(s)
- K M Young
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
14
|
Salvesen B, Mollnes TE. Pathway-specific complement activity in pigs evaluated with a human functional complement assay. Mol Immunol 2009; 46:1620-5. [PMID: 19328551 DOI: 10.1016/j.molimm.2009.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/17/2009] [Accepted: 02/24/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND The complement system is an important part of innate immunity. Complement deficiencies or inappropriate activation of complement may cause severe diseases. The complement functional test, Wielisa, assesses all three complement activation pathways in humans. It is important to have assays available to determine the functional complement activity in research animals. Since the pig is a relevant animal in experimental research, the aim of the present study was to evaluate the applicability of this human complement assay in pigs. METHODS Normal pig serum was serially diluted and assayed in the Wielisa test which is based on the activation of complement detected with an antibody against activated C9. The specificity of the three pathways was assessed using purified human MBL and mouse monoclonal antibodies against human C1q and pig factor D. Sera from 103 pigs and 38 newborn pigs were analyzed. Finally, functional activity of all pathways was assessed in vitro and in vivo in the absence and presence of complement inhibitors. RESULTS The detection antibody showed cross-reactivity against pig. Normal pig serum showed activity in all pathways however about 10-fold more serum was required to obtain values comparable to human serum. Anti-human C1q and anti-pig factor D antibodies abolished classical and alternative pathway activity, respectively. Sera with low lectin pathway activity reconstituted with purified human MBL, fully recovered this activity. No deficiencies were found in classical or alternative pathway, whereas the lectin pathway showed reduced activity in a substantial number of pigs, similar to the situation in humans. Finally, the assay was successfully used to evaluate and monitor inhibition of pig complement in vitro and in vivo. CONCLUSIONS The human complement Wielisa test can be used for functional evaluation of all complement pathways in pig serum.
Collapse
Affiliation(s)
- Bodil Salvesen
- Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway.
| | | |
Collapse
|
15
|
Damgaard BM, Malmkvist J, Pedersen LJ, Jensen KH, Thodberg K, Jørgensen E, Juul-Madsen HR. The effects of floor heating on body temperature, water consumption, stress response and immune competence around parturition in loose-housed sows. Res Vet Sci 2008; 86:136-45. [PMID: 18572210 DOI: 10.1016/j.rvsc.2008.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 03/27/2008] [Accepted: 05/01/2008] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to study whether floor heating from 12h after onset of nest building until 48 h after birth of the first piglet had any effect on measures related to body temperature, water consumption, stress response and immune competence in loose-housed sows (n=23). In conclusion, the present results indicate that floor heating for a limited period around parturition did not compromise physiological and immunological parameters, water intake and body temperature in loose-housed sows. The water intake peaked the day before parturition and the body temperature peaked on the day of parturition. A cortisol peak at parturition, a transient rise in the number of leucocytes and neutrophils and a transient reduction in the number of lymphocytes, erythrocytes and in the PCV value were observed. Around and after parturition some non-specific immunological variables seemed to be stimulated while others seemed to be compromised.
Collapse
Affiliation(s)
- B M Damgaard
- Department of Animal Health, Welfare and Nutrition, Faculty of Agricultural Sciences, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark.
| | | | | | | | | | | | | |
Collapse
|
16
|
Young KM, Russell S, Smith M, Huber P, Ostland VE, Brooks AS, Anthony Hayes M, Lumsden JS. Bacterial-binding activity and plasma concentration of ladderlectin in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2007; 23:305-15. [PMID: 17383895 DOI: 10.1016/j.fsi.2006.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/16/2006] [Accepted: 10/30/2006] [Indexed: 05/14/2023]
Abstract
Soluble, defense lectins bind conserved microbial patterns leading to pathogen opsonization, enhanced phagocytosis and activation of complement. These immune functions, however, vary widely among individuals due to genetic and acquired differences affecting binding capacity or plasma concentration. Most evidence for the defensive function of soluble lectins is based on mammals, but several functionally homologous, but less well-characterized, lectins have been identified in fish. In this study, we compared binding of rainbow trout plasma ladderlectin to relevant, intact bacterial targets. A polyclonal antiserum raised against a synthetic peptide identical to the 20 N-terminal amino acids of the reduced 16 kDa rainbow trout ladderlectin subunit was used to detect plasma ladderlectin in immunoblots and indirect enzyme-linked immunosorbent assay (ELISA). Ladderlectin binding to Aeromonas salmonicida subsp. salmonicida, Aeromonas hydrophila, Yersinia ruckeri and Pseudomonas sp. was detected by PAGE and immunoblots of saccharide elutions from intact bacteria incubated in the presence of normal trout plasma. Although plasma concentrations of immunoreactive ladderlectin were low in the majority of trout, significant (P < 0.0001) variation between individual fish was observed in two separate populations. In addition, one population demonstrated a subset of individuals whose ladderlectin levels were approximately seven-fold higher than the population median. These findings indicate that rainbow trout have variable amounts of plasma ladderlectin capable of binding to the surfaces of several relevant bacterial targets.
Collapse
Affiliation(s)
- Karrie M Young
- Fish Pathology Laboratory, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lillie BN, Keirstead ND, Squires EJ, Hayes MA. Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:830-46. [PMID: 17194476 DOI: 10.1016/j.dci.2006.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 05/13/2023]
Abstract
Previous studies showed that low expression of mannan-binding lectin C (MBL-C) in pigs was not due to single-nucleotide polymorphisms (SNPs) in the coding region of pig MBL2. In these studies, we compared the 5' flanking regions of porcine MBL1 (1907 bp) and MBL2 (1880 bp) in normal and diseased pigs with low or high hepatic expression of MBL2. Hepatic expression of MBL-C was very low in all pigs submitted for postmortem diagnosis. In various European pig breeds, a G(-1081)A substitution was linked to very low hepatic MBL-C expression, and was more frequent in diseased pigs. A C(-251)T substitution with less influence on MBL-C expression was more common in various breeds but was not associated with disease. MBL2 polymorphisms were associated with some disease groups and with the presence of some etiologic agents. These findings indicate that some promoter polymorphisms impair MBL-C expression in pigs and may increase their susceptibility to disease.
Collapse
Affiliation(s)
- Brandon N Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
18
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Lillie BN, Keirstead ND, Squires EJ, Hayes MA. Single-nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 2006; 58:983-93. [PMID: 17089118 DOI: 10.1007/s00251-006-0160-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The MBL1 and MBL2 genes encode mannan-binding lectins (MBL) A and C, respectively, that are collagenous lectins (collectins) produced mainly by the liver. Several single-nucleotide polymorphisms (SNPs) in the human MBL2 gene are responsible for various innate immune dysfunctions due to abnormal structure or expression of human MBL-C. The MBL1 gene encodes MBL-A, which has bacteria-binding properties in pigs and rodents but is mutated to a pseudogene in humans and chimpanzees. In these studies, we surveyed both porcine MBL genes for SNPs that might impair disease resistance. Single-strand conformational polymorphism (SSCP) analysis of MBL cDNAs from porcine liver revealed three SNPs within the coding region of MBL1 in various breeds of pigs. One nonsynonymous SNP that substituted cysteine for glycine in the collagen-like domain of pig MBL-A was found by a multiplex PCR test in all European pig breeds examined, with allele frequencies ranging from 1.4 to 46.4%. No SNPs were identified in the coding region of porcine MBL2 but the expression of MBL-C in the liver was widely variable in comparison to the expression of MBL-A, GAPDH, PigMAP, and haptoglobin. These results indicate that some pigs have a miscoding defect in MBL-A and a possible expression defect in MBL-C, which are analogous to coding and promoter polymorphisms that affect human MBL-C.
Collapse
Affiliation(s)
- Brandon N Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | |
Collapse
|