1
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
2
|
Tang H, Zhu L, Zhao X, Jiang X, Zhang J, Pei C, Li L, Kong X. Characterization of CD3γ/δ gene and its immune response in Qihe crucian carp Carassius auratus after challenged by Aeromonas veronii and Poly(I:C). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108550. [PMID: 36646341 DOI: 10.1016/j.fsi.2023.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
CD3γ/δ found in non-mammalian vertebrates is a CD3 homolog with structural characteristics similar to both mammalian CD3γ and CD3δ, and plays important roles in T cell recognization and immune response in fish. In this study, the full-length of CD3γ/δ from Qihe crucian carp (named CaCD3γ/δ) was cloned and characterized, then the expression response profiles and potential immune functions was explored after Aeromonas veronii and Poly(I:C) challenge. The results showed that the full-length of CaCD3γ/δ was 819 bp including a 5'-UTR of 141 bp, a 3'-UTR of 168 bp, and an ORF of 510 bp encoding a putative 169-aa protein with an estimated MW of 18.71 kD and a theoretical pI of 8.77. The protein sequence of CaCD3γ/δ contained a Leu-Leu and a CXXXC motif in the extracellular domain, and an ITAM and a Leu-Ile motif in the cytoplasm, and a residue of Asn in the transmembrane. CaCD3γ/δ was constitutively expressed in the spleen, liver, gill, and blood of Qihe crucian carp. After the carp were challenged with Poly(I:C) and Aeromonas veronii, the mRNA expression levels of CaCD3γ/δ were significantly changed in the spleen, head kidney, intestine and gill, according to the results of qPCR. However, compared with A. veronii, Poly(I:C) challenge can rapidly induce the CaCD3γ/δ expression levels in head kidney, intestine and spleen, which suggested CaCD3γ/δ may be differentially modulated by different pathogens. Moreover, the results of immunohistochemical analysis showed that the CaCD3γ/δ+ secreted cells in the spleen and gills of Qihe crucian were increased after challenged with Poly(I:C), as well as the spleen challenged with A. veronii, but at different levels. Combined with the fact that vascular congestion, necrosis of parenchymal cells, and inflammatory cells including lymphocytes infiltration were also observed in the gill and spleen of Qihe crucian carp treated with A. veronii and Poly(I:C) revealed by pathological analysis, it was predicted that CaCD3γ/δ+ T lymphocytes may participated in the immune response against pathogens. This study will contribute to understand the important role of CaCD3γ/δ+ T lymphocytes in the immune response of Qihe crucian carp, and provide new insights for the prevention and treatment of the diseases of Qihe crucian carp.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
3
|
CD3γ/δ in sea bass (Dicentrarchus labrax): Molecular characterization and expression analysis. RESULTS IN IMMUNOLOGY 2011; 1:31-5. [PMID: 24371550 DOI: 10.1016/j.rinim.2011.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022]
Abstract
The CD3 complex is the common marker on the surface of both αβ and γδ T cells and is essential for formation of the T-cell receptor complex and for T-cell activation. In this paper, we report the gene cloning and molecular characterization of a CD3γ/δ homologue in sea bass (Dicentrarchus labrax), the analysis of transcription levels in lymphoid and non-lymphoid organs and the gene regulation after in vitro stimulation with LPS and PHA. Four cysteine residues in the extracellular domain, involved in the constitution of immunoglobulin-like domain, are present in sea bass CD3γ/δ sequence and they are conserved both in number and position from mammals to teleost sequences. Similar to other known CD3γ/δs, in sea bass CD3γ/δ there is also a conserved immunoreceptor tyrosine-based activation ITAM motif that could be responsible for its individual signal transduction capacity. The real time RT-PCR basal analysis shows the highest level of CD3γ/δ mRNA in thymus, followed by peripheral blood leucocytes, spleen, gills, gut, liver, head kidney, brain and muscle. The expression analysis under stimuli condition reveals a significant decrease of CD3γ/δ expression after LPS stimulation and a significant increase after PHA-L stimulation, in agreement with mammals results. In conclusion, these data allow us to affirm that sea bass CD3γ/δ can be used as a T cell marker and will help in adding new insight on the immune response mechanisms of sea bass.
Collapse
|
4
|
Liu Y, Moore L, Koppang EO, Hordvik I. Characterization of the CD3zeta, CD3gammadelta and CD3epsilon subunits of the T cell receptor complex in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:26-35. [PMID: 17532043 DOI: 10.1016/j.dci.2007.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/19/2007] [Revised: 03/26/2007] [Accepted: 03/30/2007] [Indexed: 05/15/2023]
Abstract
The CD3 subunits are essential components of the T cell receptor complex, transmitting signals to the inside of the cell. We report here cDNAs and corresponding genes encoding CD3zeta, CD3gammadelta and CD3epsilon in Atlantic salmon, and real-time RT-PCR analysis to reveal their tissue-specific expression. Salmon CD3zeta is the subunit that shows the highest sequence similarity to the mammalian counterparts, comprising of a short extracellular (EX) part, a transmembrane (TM) peptide and a long cytoplasmic (CY) tail with three immunoreceptor tyrosine-based activation motifs (ITAMs). The gene encoding CD3zeta in salmon has 7 exons. Salmon CD3gammadelta (a forerunner of CD3gamma and CD3delta in mammals) and CD3epsilon are related molecules each having an Ig-like EX domain, a TM peptide and a CY tail with one ITAM. Two distinct CD3gammadelta genes were found, each having 6 exons. The gene encoding CD3epsilon in salmon has 5 exons. RT-PCR also revealed a transcript from a degenerated CD3epsilon gene in salmon (Salmo salar) and brown trout (Salmo trutta). This pseudogene is located tail to tail to a CD3gammadelta gene in salmon and has a typical CD3epsilon gene structure with the exception of 1 extra exon. All the CD3 genes in salmon were most abundantly expressed in thymus but the expression of the CD3epsilon pseudogene was only a fraction of that from the intact CD3epsilon gene.
Collapse
Affiliation(s)
- Yun Liu
- Department of Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|