1
|
Borghi SM, Domiciano TP, Rasquel-Oliveira FS, Ferraz CR, Bussmann AJC, Vignoli JA, Camilios-Neto D, Ambrósio SR, Arakawa NS, Casagrande R, Verri WA. Sphagneticola trilobata (L.) Pruski-derived kaurenoic acid prevents ovalbumin-induced asthma in mice: Effect on Th2 cytokines, STAT6/GATA-3 signaling, NFκB/Nrf2 redox sensitive pathways, and regulatory T cell phenotype markers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114708. [PMID: 34619320 DOI: 10.1016/j.jep.2021.114708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM Investigate KA effect and mechanisms in asthma. METHODS Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil; Centro de Pesquisa em Ciências da Saúde, Universidade Norte do Paraná - Unopar, Rua Marselha, 591, Jardim Piza, 86.041-140, Londrina, Paraná, Brazil.
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Allan J C Bussmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Josiane A Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Sergio R Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca - Unifran, Avenida Dr. Armando de Sáles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| | - Nilton S Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Avenida Robert Koch, 60, Universidade Estadual de Londrina, 86039-440, Londrina, Paraná, Brazil; Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Avenida Robert Koch, 60, Universidade Estadual de Londrina, 86039-440, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
3
|
Scherer A, Stephens VR, McGivney GR, Gutierrez WR, Laverty EA, Knepper-Adrian V, Dodd RD. Distinct Tumor Microenvironments Are a Defining Feature of Strain-Specific CRISPR/Cas9-Induced MPNSTs. Genes (Basel) 2020; 11:E583. [PMID: 32456131 PMCID: PMC7288323 DOI: 10.3390/genes11050583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays important roles in cancer biology, but genetic backgrounds of mouse models can complicate interpretation of tumor phenotypes. A deeper understanding of strain-dependent influences on the tumor microenvironment of genetically-identical tumors is critical to exploring genotype-phenotype relationships, but these interactions can be difficult to identify using traditional Cre/loxP approaches. Here, we use somatic CRISPR/Cas9 tumorigenesis approaches to determine the impact of mouse background on the biology of genetically-identical malignant peripheral nerve sheath tumors (MPNSTs) in four commonly-used inbred strains. To our knowledge, this is the first study to systematically evaluate the impact of host strain on CRISPR/Cas9-generated mouse models. Our data identify multiple strain-dependent phenotypes, including changes in tumor onset and the immune microenvironment. While BALB/c mice develop MPNSTs earlier than other strains, similar tumor onset is observed in C57BL/6, 129X1 and 129/SvJae mice. Indel pattern analysis demonstrates that indel frequency, type and size are similar across all genetic backgrounds. Gene expression and IHC analysis identify multiple strain-dependent differences in CD4+ T cell infiltration and myeloid cell populations, including M2 macrophages and mast cells. These data highlight important strain-specific phenotypes of genomically-matched MPNSTs that have implications for the design of future studies using similar in vivo gene editing approaches.
Collapse
Affiliation(s)
- Amanda Scherer
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Victoria R. Stephens
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- PREP program, University of Iowa, Iowa City, IA 52242, USA
| | - Gavin R. McGivney
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Wade R. Gutierrez
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Emily A. Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Vickie Knepper-Adrian
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| |
Collapse
|
4
|
Yang J, Wang J, Zhang X, Qiu Y, Yan J, Sun S, He Y, Yin Y, Xu W. Mast cell degranulation impairs pneumococcus clearance in mice via IL-6 dependent and TNF-α independent mechanisms. World Allergy Organ J 2019; 12:100028. [PMID: 31044024 PMCID: PMC6479162 DOI: 10.1016/j.waojou.2019.100028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Mast cells participate in immune responses by releasing potent immune system modifiers via degranulation. Due to currently reported controversial roles of mast cells in Streptococcus pneumoniae infections, this study aimed to determine the role and mechanism of mast cells in clearing S. pneumoniae in mice. Methods In vivo mouse model of mast cell degranulation established by administration of C48/80 was evaluated for the influences of mast cell degranulation on bacterial colonization and inflammation. In vitro model was established to observe the influences of mast cell degranulation on phagocytic and bactericidal functions of neutrophils and macrophages. IL-6 null and TNF-α null mice on the C57BL/6 background were used to investigate the effects of inflammatory factors released by mast cell degranulation on bacterial clearance. Results Mast cell degranulation increased IL-6 and TNF-α levels and immune cell numbers in nasal lavage fluid, and inhibited the bactericidal function of macrophages and neutrophils in vitro. It decreased the number of neutrophils and macrophages recruited to respiratory tract after S. pneumoniae challenge and inhibited the clearance of S. pneumoniae in mice. After pretreatment with C48/80, S. pneumoniae loads were significantly lower in IL-6 null mice than in wild type mice, while no differences were observed between TNF-α null and wild type mice. Conclusions Mast cell degranulation can cause inflammation and impair immune cell recruitment to respiratory tract after S. pneumoniae challenge. Products of mast cell degranulation including IL-6 decreased the bactericidal function of neutrophils and macrophages. Through these mechanisms, mast cell degranulation inhibited clearance of S. pneumoniae in mice.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jichao Wang
- Department of Clinical Laboratory, Chongqing Hospital for Women and Children, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jurong Yan
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Si Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Rubić-Schneider T, Carballido-Perrig N, Regairaz C, Raad L, Jost S, Rauld C, Christen B, Wieczorek G, Kreutzer R, Dawson J, Lametschwandner G, Littlewood-Evans A, Carballido JM. GPR91 deficiency exacerbates allergic contact dermatitis while reducing arthritic disease in mice. Allergy 2017; 72:444-452. [PMID: 27527650 PMCID: PMC5324651 DOI: 10.1111/all.13005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Background Succinate, in addition to its role as an intermediary of the citric acid cycle, acts as an alarmin, initiating and propagating danger signals resulting from tissue injury or inflammatory stimuli. The contribution of this immune sensing pathway to the development of allergic and inflammatory responses is unknown. Methods Ear thickness of wild‐type (wt) and Sucnr1‐deficient (Sucnr1−/−) mice, sensitized and challenged with oxazolone, was used as a criterion to assess the relevance of SUCNR1/GPR91 expression mediating allergic contact dermatitis (ACD). Results obtained in this system were contrasted with data generated using passive cutaneous anaphylaxis, ovalbumin‐induced asthma and arthritis models. Results We found augmented ACD reactions in Sucnr1−/− mice. This observation correlated with increased mast cell activation in vitro and in vivo. However, exacerbated mast cell activation in Sucnr1−/− mice did not contribute to the enhancement of asthma or arthritis and seemed to be due to alterations during mast cell development as augmented mast cell responses could be recapitulated in wt mast cells differentiated in the absence of succinate. Conclusions A deficiency in succinate sensing during mast cell development confers these cells with a hyperactive phenotype. Such a phenomenon does not translate into exacerbation of asthma or mast cell‐dependent arthritis. On the contrary, the fact that Sucnr1−/− mice developed reduced arthritic disease, using two different in vivo models, indicates that GPR91 antagonists may have therapeutic potential for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- T. Rubić-Schneider
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
- Former NIBR; Vienna Austria
| | - N. Carballido-Perrig
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
- Former NIBR; Vienna Austria
| | - C. Regairaz
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | - L. Raad
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | | | - C. Rauld
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | - B. Christen
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | - G. Wieczorek
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | - R. Kreutzer
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | - J. Dawson
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
| | | | | | - J. M. Carballido
- Novartis Institutes for Biomedical Research (NIBR); Basel Switzerland
- Former NIBR; Vienna Austria
| |
Collapse
|
6
|
Gong F, Pan YH, Huang X, Zhu HY, Jiang DL. From bench to bedside: Therapeutic potential of interleukin-9 in the treatment of asthma. Exp Ther Med 2017; 13:389-394. [PMID: 28352305 DOI: 10.3892/etm.2017.4024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/28/2016] [Indexed: 11/05/2022] Open
Abstract
Initially identified as a T cell and mast cell growth factor, interleukin (IL)-9 has long been recognized as an important mediator of asthma. Recently, accumulating results from transgenic mice demonstrated that systemic or lung-specific overexpression of IL-9 caused asthma-associated symptoms. Moreover, anti-mIL-9 antibody (Ab) blocking treatment alleviated disease in animal models of asthma. In light of the large quantity of data from the murine models, MEDI-528, a humanized anti-IL-9 monoclonal Ab has been produced to assess the activity of IL-9 on human asthma. In order to ascertain whether it is a successful translation from bench to bedside, the biological features of IL-9 were evaluated and up-to-date information regarding the role of IL-9 in different experimental murine models and human asthma were summarized.
Collapse
Affiliation(s)
- Fang Gong
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Yu-Hong Pan
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Xuan Huang
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Hua-Yan Zhu
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Dong-Lin Jiang
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
7
|
Reuter S, Maxeiner J, Meyer-Martin H, Michel A, Baars P, Bopp T, Waisman A, Reissig S, Wehler TC, Schild H, Taube C, Stassen M, Becker M. Cylindromatosis (Cyld) gene mutation in T cells promotes the development of an IL-9-dependent allergic phenotype in experimental asthma. Cell Immunol 2016; 308:27-34. [PMID: 27372382 DOI: 10.1016/j.cellimm.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Cylindromatosis (CYLD) is a ubiquitously expressed deubiquitinating enzyme which removes activating ubiquitin residues from important signaling molecules of the NF-κB pathway. In CYLDex7/8 transgenic mice, a naturally occurring short isoform (sCYLD) is overexpressed in the absence of full length CYLD, leading to excessive NF-κB activity. Herein, we investigated the impact of the CYLDex7/8 mutation selectively in T cells on the development of experimental allergic airway disease induced by sensitization and challenge with ovalbumin. Compared with their wildtype littermates, mice bearing the T cell-specific mutation (CD4+CYLDex7/8) display stronger eosinophilia and mucus production in the lungs and higher IgE serum levels. The reason for these observations is excessive production of T cell-derived IL-9, a cytokine to whom allergy-promoting properties were ascribed. Consequently, blockade of IL-9 in CD4+CYLDex7/8 mice alleviates the development of disease symptoms. Thus, by polarization of the T cell cytokine response, sCYLD can favor the development of allergic airway disease.
Collapse
Affiliation(s)
- Sebastian Reuter
- III. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Div. of Experimental Asthma Research, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Joachim Maxeiner
- Asthma Core Facility, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Helen Meyer-Martin
- III. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Anastasija Michel
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Pamela Baars
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Sonja Reissig
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Thomas C Wehler
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Hansjörg Schild
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Christian Taube
- III. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Asthma Core Facility, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Stassen
- Asthma Core Facility, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany.
| | - Marc Becker
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Institute of Pathology, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
8
|
Serra-Pages M, Torres R, Plaza J, Herrerias A, Costa-Farré C, Marco A, Jiménez M, Maurer M, Picado C, de Mora F. Activation of the Prostaglandin E2 receptor EP2 prevents house dust mite-induced airway hyperresponsiveness and inflammation by restraining mast cells' activity. Clin Exp Allergy 2016; 45:1590-600. [PMID: 25823713 DOI: 10.1111/cea.12542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2 ) has been proposed to exert antiasthmatic effects in patients, to prevent antigen-induced airway pathology in murine models, and to inhibit mast cells (MC) activity in vitro. OBJECTIVE To assess in a murine model whether the protective effect of PGE2 may be a consequence of its ability to activate the E-prostanoid (EP)2 receptor on airway MC. METHODS Either BALB/c or C57BL/6 mice were exposed intranasally (i.n.) to house dust mite (HDM) aeroallergens. Both strains were given PGE2 locally (0.3 mg/kg), but only BALB/c mice were administered butaprost (EP2 agonist: 0.3 mg/kg), or AH6809 (EP2 antagonist; 2.5 mg/kg) combined with the MC stabilizer sodium cromoglycate (SCG: 25 mg/kg). Airway hyperresponsiveness (AHR) and inflammation, along with lung MC activity, were evaluated. In addition, butaprost's effect was assessed in MC-mediated passive cutaneous anaphylaxis (PCA) in mice challenged with 2,4-dinitrophenol (DNP). RESULTS Selective EP2 agonism attenuated aeroallergen-caused AHR and inflammation in HDM-exposed BALB/c mice, and this correlated with a reduced lung MC activity. Accordingly, the blockade of endogenous PGE2 by means of AH6809 worsened airway responsiveness in sensitive BALB/c mice, and such worsening was reversed by SCG. The relevance of MC to PGE2 -EP2 driven protection was further highlighted in MC-dependent PCA, where butaprost fully prevented MC-induced ear swelling. Unlike in BALB/c mice, PGE2 did not protect the airways of HDM-sensitized C57BL/6 animals, a strain in which we showed MC to be irrelevant to aeroallergen-driven AHR and inflammation. CONCLUSIONS & CLINICAL RELEVANCE The beneficial effect of both exogenous and endogenous PGE2 in aeroallergen-sensitized mice may be attributable to the activation of the EP2 receptor, which in turn acts as a restrainer of airway MC activity. This opens a path towards the identification of therapeutic targets against asthma along the 'EP2 -MC-airway' axis.
Collapse
Affiliation(s)
- M Serra-Pages
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Respiratorias, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Plaza
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Respiratorias, Barcelona, Spain
| | - A Herrerias
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Costa-Farré
- Department of Surgery and Animals Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Marco
- Department of Surgery and Animals Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Jiménez
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Hepáticas y Digestivas
| | - M Maurer
- Department of Dermatology, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - C Picado
- CIBER (Centro de Investigación Biomédica en Red) de Enfermedades Respiratorias, Barcelona, Spain.,Department of Pneumology and Respiratory Allergy, Hospital Clínic, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - F de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Miller M, Beppu A, Rosenthal P, Pham A, Das S, Karta M, Song DJ, Vuong C, Doherty T, Croft M, Zuraw B, Zhang X, Gao X, Aceves S, Chouiali F, Hamid Q, Broide DH. Fstl1 Promotes Asthmatic Airway Remodeling by Inducing Oncostatin M. THE JOURNAL OF IMMUNOLOGY 2015; 195:3546-56. [PMID: 26355153 DOI: 10.4049/jimmunol.1501105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
Abstract
Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma.
Collapse
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Andrew Beppu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alexa Pham
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sudipta Das
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Maya Karta
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine, Seoul 02841, Korea
| | - Christine Vuong
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Taylor Doherty
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bruce Zuraw
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Xu Zhang
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Seema Aceves
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; and
| | - Fazila Chouiali
- Meakins-Christie Laboratories of McGill University and McGill University Health Center Research Institute, Montreal, Quebec H2X 2p2, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories of McGill University and McGill University Health Center Research Institute, Montreal, Quebec H2X 2p2, Canada
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
10
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
11
|
TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol 2015; 136:433-40.e1. [PMID: 25746972 DOI: 10.1016/j.jaci.2015.01.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/04/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND IL-9 is important for the growth and survival of mast cells. IL-9 is produced by T cells, natural killer T cells, mast cells, eosinophils, and innate lymphoid cells, although the cells required for mast cell accumulation during allergic inflammation remain undefined. OBJECTIVE We sought to elucidate the role of TH9 cells in promoting mast cell accumulation in models of allergic lung inflammation. METHODS Adoptive transfer of ovalbumin-specific TH2 and TH9 cells was used to assess the ability of each subset to mediate mast cell accumulation in tissues. Mast cell accumulation was assessed in wild-type mice and mice with PU.1-deficient T cells subjected to acute and chronic models of allergic inflammation. RESULTS Adoptive transfer experiments demonstrated that recipients of TH9 cells had significantly higher mast cell accumulation and expression of mast cell proteases compared with control or TH2 recipients. Mast cell accumulation was dependent on IL-9, but not IL-13, a cytokine required for many aspects of allergic inflammation. In models of acute and chronic allergic inflammation, decreased IL-9 levels in mice with PU.1-deficient T cells corresponded to diminished tissue mast cell numbers and expression of mast cell proteases. Mice with PU.1-deficient T cells have defects in IL-9 production from CD4(+) T cells, but not natural killer T cells or innate lymphoid cells, suggesting a TH cell-dependent phenotype. Rag1(-/-) mice subjected to a chronic model of allergic inflammation displayed reduced mast cell infiltration comparable with accumulation in mice with PU.1-deficient T cells, emphasizing the importance of IL-9 produced by T cells in mast cell recruitment. CONCLUSION TH9 cells are a major source of IL-9 in models of allergic inflammation and play an important role in mast cell accumulation and activation.
Collapse
|
12
|
Downey J, Gour N, Wills-Karp M. Mechanisms of Experimental Mouse Models of Airway Hyperresponsiveness. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
The PGE2-EP2-mast cell axis: an antiasthma mechanism. Mol Immunol 2014; 63:61-8. [PMID: 24768319 DOI: 10.1016/j.molimm.2014.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
Despite the fact that cyclooxygenase and its products, prostaglandins, have been traditionally associated with the development of inflammation, PGE2 was implicated early on as potentially beneficial in asthma. During the 1970s and 1980s, several studies reported the bronchodilator effect of PGE2 in asthma patients. In parallel, it was being shown to exert an inhibitory effect on mast cells in vitro. In spite of this, data supporting the beneficial role for PGE2 in asthma were scarce and sometimes controversial. Many years later, in vitro and in vivo studies suggested a range of biological activities attributable to PGE2, others than the ability to relax smooth muscle, that potentially explained some of the observed positive effects in asthma. The identification and cloning of the four PGE2 receptors made available new tools with which to fine-tune investigation of the anti-inflammatory, pro-inflammatory, immunoregulatory, and bronchodilation mechanisms of PGE2. Among these, several suggested involvement of mast cells, a cell population known to play a fundamental role in acute and chronic asthma. Indeed, it has been shown that PGE2 prevents human and murine MC activity in vitro through activation of the EP2 receptor, and also that both exogenously administered and endogenous PGE2 inhibit airway MC activity in vivo in mouse models of asthma (likely through an EP2-mediated mechanism as well). In the last few years, we have furthered into the functional connection between PGE2-induced mast cells inhibition and attenuated damage, in asthma and allergy models. The validity of the findings supporting a beneficial effect of PGE2 in different asthma phases, the direct effect of PGE2 on mast cells populations, and the functional implications of the PGE2-MC interaction on airway function are some of the topics addressed in this review, under the assumption that increased understanding of the PGE2-EP2-mast cell axis will likely lead to the discovery of novel antiasthma targets.
Collapse
|
14
|
Li S, Aliyeva M, Daphtary N, Martin RA, Poynter ME, Kostin SF, van der Velden JL, Hyman AM, Stevenson CS, Phillips JE, Lundblad LKA. Antigen-induced mast cell expansion and bronchoconstriction in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol 2013; 306:L196-206. [PMID: 24285269 DOI: 10.1152/ajplung.00055.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung mastocytosis and antigen-induced bronchoconstriction are common features in allergic asthmatics. It is therefore important that animal models of asthma show similar features of mast cell inflammation and reactivity to inhaled allergen. We hypothesized that house dust mite (HDM) would induce mastocytosis in the lung and that inhalation of HDM would trigger bronchoconstriction. Mice were sensitized with intranasal HDM extract, and the acute response to nebulized HDM or the mast cell degranulating compound 48/80 was measured with respiratory input impedance. Using the constant-phase model we calculated Newtonian resistance (Rn) reflecting the conducting airways, tissue dampening (G), and lung elastance (H). Bronchoalveolar lavage fluid was analyzed for mouse mast cell protease-1 (mMCP-1). Lung tissue was analyzed for cytokines, histamine, and α-smooth muscle actin (α-SMA), and histological slides were stained for mast cells. HDM significantly increased Rn but H and G remained unchanged. HDM significantly expanded mast cells compared with control mice; at the same time mMCP-1, α-SMA, Th2 cytokines, and histamine were significantly increased. Compound 48/80 inhalation caused bronchoconstriction and mMCP-1 elevation similarly to HDM inhalation. Bronchoconstriction was eliminated in mast cell-deficient mice. We found that antigen-induced acute bronchoconstriction has a distinct phenotype in mice. HDM sensitization caused lung mastocytosis, and we conclude that inhalation of HDM caused degranulation of mast cells leading to an acute bronchoconstriction without affecting the lung periphery and that mast cell-derived mediators are responsible for the development of the HDM-induced bronchoconstriction in this model.
Collapse
Affiliation(s)
- Shannon Li
- Dept. of Medicine, The Univ. of Vermont, Vermont Lung Center, HSRF, Rm. 230, 149 Beaumont Ave., Burlington, VT 05405-0075.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther 2013; 26:532-9. [PMID: 23583635 DOI: 10.1016/j.pupt.2013.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023]
Abstract
Therapeutics targeting specific mechanisms of asthma have shown promising results in mouse models of asthma. However, these successes have not transferred well to the clinic or to the treatment of asthma sufferers. We suggest a reason for this incongruity is that mast cell-dependent responses, which may play an important role in the pathogenesis of both atopic and non-atopic asthma, are not a key component in most of the current asthma mouse models. Two reasons for this are that wild type mice have, in contrast to humans, a negligible number of mast cells localized in the smaller airways and in the parenchyma, and that only specific protocols show mast cell-dependent reactions. The development of mast cell-deficient mice and the reconstitution of mast cells within these mice have opened up the possibility to generate mouse models of asthma with a marked role of mast cells. In addition, mast cell-deficient mice engrafted with mast cells have a distribution of mast cells more similar to humans. In this article we review and highlight the mast cell-dependent and -independent responses with respect to airway hyperresponsiveness and inflammation in asthma models using mast cell-deficient and mast cell-engrafted mice.
Collapse
Affiliation(s)
- Ying Lei
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
16
|
Fuchs B, Sjöberg L, Möller Westerberg C, Ekoff M, Swedin L, Dahlén SE, Adner M, Nilsson GP. Mast cell engraftment of the peripheral lung enhances airway hyperresponsiveness in a mouse asthma model. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1027-36. [PMID: 23043076 DOI: 10.1152/ajplung.00227.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease, characterized by airway hyperresponsiveness (AHR), inflammation, and tissue remodeling, in which mast cells play a central role. In the present study, we analyzed how mast cell numbers and localization influence the AHR in a chronic murine model of asthma. C57BL/6 (wild-type) and mast cell-deficient B6.Cg-Kit(W-sh) mice without (Wsh) and with (Wsh+MC) mast cell engraftment were sensitized to and subsequently challenged with ovalbumin for a 91-day period. In wild-type mice, pulmonary mast cells were localized in the submucosa of the central airways, whereas the more abundant mast cells in Wsh+MC mice were found mainly in the alveolar parenchyma. In Wsh+MC, ovalbumin challenge induced a relocation of mast cells from the perivascular space and central airways to the parenchyma. Allergen challenge caused a similar AHR in wild-type and Wsh mice in the resistance of the airways and the pulmonary tissue. In Wsh+MC mice the AHR was more pronounced. The elevated functional responses were partly related to the numbers and localization of connective tissue-type mast cells in the peripheral pulmonary compartments. A mast cell-dependent increase in IgE and IL-33 together with impairment of the IL-23/IL-17 axis was evoked in Wsh and Wsh+MC mice by allergen challenge. This study shows that within the same chronic murine asthma model the development of AHR can be both dependent and independent of mast cells. Moreover, the spatial distribution and number of pulmonary mast cells determine severity and localization of the AHR.
Collapse
Affiliation(s)
- Barbara Fuchs
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
[Inflammation and remodeling of the distal airways: studies in humans and experimental models]. Arch Bronconeumol 2011; 47 Suppl 2:2-9. [PMID: 21640278 DOI: 10.1016/s0300-2896(11)70014-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Asthma is characterized by inflammation and remodeling of the airways, giving rise to airway obstruction and symptoms of wheezing, chest tightness, cough and dyspnea. Most of these observations arise from the study of samples obtained from the central airways by distinct methods. However, it is currently accepted that this inflammatory process occurs not only in the central airway but also in the small airway and even in the pulmonary parenchyma of all asthmatic patients, even those with mild asthma. CD4+ lymphocytes, activated eosinophils and IL-5 mRNA expression are present in a greater quantity in the small airways. Also present is remodeling, with an increase in submucosal thickness, the muscular layer and adventitia. This inflammatory process causes a disconnection between the pulmonary parenchyma and the airway, giving rise to obstruction of the small airway, which is currently considered to be predominant in asthmatic patients. Likewise, studies of experimental asthma in animals support the substantial role of the distal airway. Recognition that asthma affects the entire airway could be clinically important and lead to the distal lung being considered as a target in any effective therapeutic strategy. However, longitudinal studies are required to evaluate the impact of distal airway inflammation and its treatment in asthma.
Collapse
|
18
|
Protease phenotype of constitutive connective tissue and of induced mucosal mast cells in mice is regulated by the tissue. Proc Natl Acad Sci U S A 2011; 108:14210-5. [PMID: 21825171 DOI: 10.1073/pnas.1111048108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mouse mast cells (MCs) express a large number of serine proteases including tryptases, mouse mast cell protease (mMCP)-6 and -7; chymases, mMCP-1, -2, and -4; and an elastase, mMCP-5; along with carboxypeptidase-A3 (CPA3). In helminth-infected mouse intestine, distinct protease phenotypes are observed for connective tissue MCs (CTMCs) (mMCP-4(+)-7(+), and CPA3(+)) and mucosal MCs (MMCs) (mMCP-1(+) and 2(+)). To determine whether the protease phenotype was regulated by the tissue, we compared the phenotype of constitutive CTMCs and induced MMCs in trachea and large airways in antigen-sensitized unchallenged and challenged mice to MCs in skin and helminthic-infected intestine. We found that in the trachea, unlike in skin and intestine, CTMCs and MMCs both express all six serine proteases and CPA3 (mMCP-1(+), -2(+), 4(+)-7(+), CPA3(+)). This phenotype also holds for the lung CTMCs in the proximal bronchi, whereas the induced MMCs express only four proteases, mMCP-1, -2, -6, and -7. Thus, the T-cell-dependent induction of MMCs in trachea, large bronchi, and small intestine provides numbers but does not determine the protease phenotype. Furthermore, the CTMCs, which are constitutive, also show striking differences at these tissue sites, supporting the view that the differences in expression are tissue directed and not dependent on inflammation.
Collapse
|
19
|
Bryce PJ. Revolution 9: the backwards and forwards evidence surrounding interleukin-9. Am J Respir Crit Care Med 2011; 183:834-5. [PMID: 21471072 DOI: 10.1164/rccm.201009-1464ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
20
|
Qing K, Weifeng W, Fan Y, Yuluan Y, Yu P, Yanlan H. Distinct different expression of Th17 and Th9 cells in coxsackie virus B3-induced mice viral myocarditis. Virol J 2011; 8:267. [PMID: 21635745 PMCID: PMC3315794 DOI: 10.1186/1743-422x-8-267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/02/2011] [Indexed: 02/06/2023] Open
Abstract
Background Recently, a new subset of CD4+T helper(Th) cell that predominantly secret cytokine interleukin-9(IL-9) is identified, termed Th9 cell. It has been reported to participate in tissue inflammation and autoimmune responses, and induce disease which differed from Th17 cells. Th17 cells have been shown to play a critical role in viral myocarditis (VMC), but whether Th9 cells are involved in the pathogenesis of VMC remains unclear. Results BALB/c mice were intraperitoneally (i.p) injected with coxsackie virus B3(CVB3) for establishing VMC models. Control mice were treated with phosphate-buffered saline i.p. On day 0,7,14,21,28,35,42 after injection, myocardial histopathological changes were evaluated by hematoxylin-eosin staining. Splenic Th17 and Th9 cells subsets were analyzed by flow cytometry. And cardiac IL-17, IL-9 mRNA were measured by semi-quantitative reverse transcription-PCR and nested PCR, respectively. Results showed the levels of Th17 cells and IL-17 mRNA obviously increased in VMC mice on 7 day after infection, peaked on day 28, and highly persisted to at least day 42 (p < 0.05). While the frequencies of Th9 cells and IL-9 mRNA showed no significant difference between VMC and control group throughout the course of the experiment(p > 0.05). Conclusions It was differentiated Th17 but not Th9 cells significantly elevated in the development of CVB3-induced VMC. The microenvironment of VMC seemed to contribute to the differentiation and proliferation of Th17 rather than Th9 cells. Our preliminary data implied Th9 cells could not protect against VMC nor promote the disease.
Collapse
Affiliation(s)
- Kong Qing
- Guangxi Cardiovascular Institute, Shuang-Yong Road, Nanning, China
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Although MCs (mast cells) were discovered over 100 years ago, for the majority of this time their function was linked almost exclusively to allergy and allergic disease with few other roles in health and disease. The engineering of MC-deficient mice and engraftment of these mice with MCs deficient in receptors or mediators has advanced our knowledge of the role of MCs in vivo. It is now known that MCs have very broad and varied roles in both physiology and disease which will be reviewed here with a focus on some of the most recent discoveries over the last year. MCs can aid in maintaining a healthy physiology by secreting mediators that promote wound healing and homoeostasis as well as interacting with neurons. Major developments have been made in understanding MC function in defence against pathogens, in recognition of pathogens as well as direct effector functions. Probably the most quickly developing area of understanding is the involvement and contribution MCs make in the progression of a variety of diseases from some of the most common diseases to the more obscure.
Collapse
|
22
|
Naura AS, Zerfaoui M, Kim H, Abd Elmageed ZY, Rodriguez PC, Hans CP, Ju J, Errami Y, Park J, Ochoa AC, Boulares AH. Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 185:3076-85. [PMID: 20668217 DOI: 10.4049/jimmunol.0904214] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of inducible NO synthase (iNOS) in allergic airway inflammation remains elusive. We tested the hypothesis that iNOS plays different roles during acute versus chronic airway inflammation. Acute and chronic mouse models of OVA-induced airway inflammation were used to conduct the study. We showed that iNOS deletion was associated with a reduction in eosinophilia, mucus hypersecretion, and IL-5 and IL-13 production upon the acute protocol. Such protection was completely abolished upon the chronic protocol. Interestingly, pulmonary fibrosis observed in wild-type mice under the chronic protocol was completely absent in iNOS(-/-) mice despite persistent IL-5 and IL-13 production, suggesting that these cytokines were insufficient for pulmonary fibrosis. Such protection was associated with reduced collagen synthesis and indirect but severe TGF-beta modulation as confirmed using primary lung smooth muscle cells. Although activation of matrix metalloproteinase-2/-9 exhibited little change, the large tissue inhibitor of metalloproteinase-2 (TIMP-2) increase detected in wild-type mice was absent in the iNOS(-/-) counterparts. The regulatory effect of iNOS on TIMP-2 may be mediated by peroxynitrite, as the latter reversed TIMP-2 expression in iNOS(-/-) lung smooth muscle cells and fibroblasts, suggesting that the iNOS-TIMP-2 link may explain the protective effect of iNOS-knockout against pulmonary fibrosis. Analysis of lung sections from chronically OVA-exposed iNOS(-/-) mice revealed evidence of residual but significant protein nitration, prevalent oxidative DNA damage, and poly(ADP-ribose) polymerase-1 activation. Such tissue damage, inflammatory cell recruitment, and mucus hypersecretion may be associated with substantial arginase expression and activity. The results in this study exemplify the complexity of the role of iNOS in asthma and the preservation of its potential as a therapeutic a target.
Collapse
Affiliation(s)
- Amarjit S Naura
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|