1
|
Xu C, Xue M, Jiang N, Li Y, Meng Y, Liu W, Fan Y, Zhou Y. Characteristics and expression profiles of MHC class Ⅰ molecules in Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108794. [PMID: 37146848 DOI: 10.1016/j.fsi.2023.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Major histocompatibility complex class Ⅰ (MHC Ⅰ) molecules play a vital role in adaptive immune systems in vertebrates by presenting antigens to effector T cells. Understanding the expression profiling of MHC Ⅰ molecules in fish is essential for improving our knowledge of the relationship between microbial infection and adaptive immunity. In this study, we conducted a comprehensive analysis of MHC Ⅰ gene characteristics in Carassius auratus, an important freshwater aquaculture fish in China that is susceptible to Cyprinid herpesvirus 2 (CyHV-2) infection. We identified approximately 20 MHC Ⅰ genes discussed, including U, Z, and L lineage genes. However, only U and Z lineage proteins were identified in the kidney of Carassius auratus using high pH reversed-phase chromatography and mass spectrometry. The L lineage proteins were either not expressed or present at an extremely low level in the kidneys of Carassius auratus. We also used targeted proteomics to analyze changes in protein MHC Ⅰ molecules abundance in healthy and CyHV-2-infected Carassius auratus. We observed that five MHC Ⅰ molecules were upregulated, and Caau-UFA was downregulated in the diseased group. This study is the first to reveal the expression of MHC Ⅰ molecules at a large scale in Cyprinids, which enhances our understanding of fish adaptive immune systems.
Collapse
Affiliation(s)
- Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
2
|
Molecular characterization, expression patterns, and subcellular localization of a classical and a novel nonclassical MHC class I α molecules from Japanese eel Anguilla japonica. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Wcisel DJ, Dornburg A, McConnell SC, Hernandez KM, Andrade J, de Jong JLO, Litman GW, Yoder JA. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Immunogenetics 2023; 75:53-69. [PMID: 35869336 PMCID: PMC9845131 DOI: 10.1007/s00251-022-01270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Multiple novel immunoglobulin-like transcripts (NILTs) have been identified from salmon, trout, and carp. NILTs typically encode activating or inhibitory transmembrane receptors with extracellular immunoglobulin (Ig) domains. Although predicted to provide immune recognition in ray-finned fish, we currently lack a definitive framework of NILT diversity, thereby limiting our predictions for their evolutionary origin and function. In order to better understand the diversity of NILTs and their possible roles in immune function, we identified five NILT loci in the Atlantic salmon (Salmo salar) genome, defined 86 NILT Ig domains within a 3-Mbp region of zebrafish (Danio rerio) chromosome 1, and described 41 NILT Ig domains as part of an alternative haplotype for this same genomic region. We then identified transcripts encoded by 43 different NILT genes which reflect an unprecedented diversity of Ig domain sequences and combinations for a family of non-recombining receptors within a single species. Zebrafish NILTs include a sole putative activating receptor but extensive inhibitory and secreted forms as well as membrane-bound forms with no known signaling motifs. These results reveal a higher level of genetic complexity, interindividual variation, and sequence diversity for NILTs than previously described, suggesting that this gene family likely plays multiple roles in host immunity.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, 28223, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Kyle M Hernandez
- Center for Translational Data Science and Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
- Current Affiliation: Kite Pharma, Santa Monica, 90404, CA, USA
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, 33701, FL, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
4
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
5
|
Honjo Y, Takano K, Ichinohe T. Characterization of novel zebrafish MHC class I U lineage genes and their haplotype. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103952. [PMID: 33279476 DOI: 10.1016/j.dci.2020.103952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Major histocompatibility complex (MHC) genes are essential for distinguishing between individuals in all jawed vertebrates. Although MHC class I (mhc1) genes in zebrafish comprise distinct haplotypes, not all members of the mhc1 gene family have been fully characterized. In this study, we report the identification of two novel U lineage genes isolated from the WIK strain of zebrafish. These new mhc1 genes, named una and uoa, are located in tandem on chromosome 19 with >70% homology to previously isolated U genes. Sequencing of their neighboring genes revealed that una and uoa form a unique haplotype different from the previously known U lineage haplotypes. Additionally, we determined the expression profiles of U, Z, and L genes in three different tissues. These findings collectively suggest that mhc1 U lineage genes and their haplotypes in zebrafish are more divergent than previously considered, and their expression patterns vary significantly among different tissues.
Collapse
Affiliation(s)
- Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | - Kosuke Takano
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan; Division of Hematology, National Defence Medical College, Tokorozawa, Saitama, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
6
|
MHC class I evolution; from Northern pike to salmonids. BMC Ecol Evol 2021; 21:3. [PMID: 33514321 PMCID: PMC7853315 DOI: 10.1186/s12862-020-01736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Salmonids are of major importance both as farmed and wild animals. With the changing environment comes changes in pathogenic pressures so understanding the immune system of all salmonid species is of essence. Major histocompatibility complex (MHC) genes are key players in the adaptive immune system signalling infection to responding T-cells populations. Classical MHC class I (MHCI) genes, defined by high polymorphism, broad expression patterns and peptide binding ability, have a key role in inducing immunity. In salmonids, the fourth whole genome duplication that occurred 94 million years ago has provided salmonids with duplicate MHCI regions, while Northern Pike, a basal sister clade to salmonids, represent a species which has not experienced this whole genome duplication. Results Comparing the gene organization and evolution of MHC class I gene sequences in Northern pike versus salmonids displays a complex picture of how many of these genes evolved. Regional salmonid Ia and Ib Z lineage gene duplicates are not orthologs to the Northern pike Z lineage sequences. Instead, salmonids have experienced unique gene duplications in both duplicate regions as well as in the Salmo and Oncorhynchus branch. Species-specific gene duplications are even more pronounced for some L lineage genes. Conclusions Although both Northern pike as well as salmonids have expanded their U and Z lineage genes, these gene duplications occurred separately in pike and in salmonids. However, the similarity between these duplications suggest the transposable machinery was present in a common ancestor. The salmonid MHCIa and MHCIb regions were formed during the 94 MYA since the split from pike and before the Oncorhynchus and Salmo branch separated. As seen in tetrapods, the non-classical U lineage genes are diversified duplicates of their classical counterpart. One MHCI lineage, the L lineage, experienced massive species-specific gene duplications after Oncorhynchus and Salmo split approximately 25 MYA. Based on what we currently know about L lineage genes, this large variation in number of L lineage genes also signals a large functional diversity in salmonids.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The availability of organs for transplant fails to meet the demand and this shortage is growing worse every year. As the cost of not getting a suitable donor organ can mean death for patients, new tools and approaches that allows us to make advances in transplantation faster and provide a different vantage point are required. To address this need, we introduce the concept of using the zebrafish (Danio rerio) as a new model system in organ transplantation. The zebrafish community offers decades of research experience in disease modeling and a rich toolbox of approaches for interrogating complex pathological states. We provide examples of how already existing zebrafish assays/tools from cancer, regenerative medicine, immunology, and others, could be leveraged to fuel new discoveries in pursuit of solving the organ shortage. RECENT FINDINGS Important innovations have enabled several types of transplants to be successfully performed in zebrafish, including stem cells, tumors, parenchymal cells, and even a partial heart transplant. These innovations have been performed against a backdrop of an expansive and impressive list of tools designed to uncover the biology of complex systems that include a wide array of fluorescent transgenic fish that label specific cell types and mutant lines that are transparent, immune-deficient. Allogeneic transplants can also be accomplished using immune suppressed and syngeneic fish. Each of these innovations within the zebrafish community would provide several helpful tools that could be applied to transplant research. SUMMARY We highlight some examples of existing tools and assays developed in the zebrafish community that could be leveraged to overcome barriers in organ transplantation, including ischemia-reperfusion, short preservation durations, regeneration of marginal grafts, and acute and chronic rejection.
Collapse
|
8
|
Abstract
Based on analysis of available genome sequences, five gene lineages of MHC class I molecules (MHC I-U, -Z, -S, -L and -P) and one gene lineage of MHC class II molecules (MHC II-D) have been identified in Osteichthyes. In the latter lineage, three MHC II molecule sublineages have been identified (MHC II-A, -B and -E). As regards MHC class I molecules in Osteichthyes, it is important to take note of the fact that the lineages U and Z in MHC I genes have been identified in almost all fish species examined so far. Phylogenetic studies into MHC II molecule genes of sublineages A and B suggest that they may be descended from the genes of the sublineage named A/B that have been identified in spotted gar (Lepisosteus oculatus). The sublineage E genes of MHC II molecules, which represent the group of non-polymorphic genes with poor expression in the tissues connected with the immune system, are present in primitive fish, i.e. in paddlefish, sturgeons and spotted gar (Lepisosteus oculatus), as well as in cyprinids (Cyprinidae), Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss). Full elucidation of the details relating to the organisation and functioning of the particular components of the major histocompatibility complex in Osteichthyes can advance the understanding of the evolution of the MHC molecule genes and the immune mechanism.
Collapse
|
9
|
Discovery of a Novel MHC Class I Lineage in Teleost Fish which Shows Unprecedented Levels of Ectodomain Deterioration while Possessing an Impressive Cytoplasmic Tail Motif. Cells 2019; 8:cells8091056. [PMID: 31505831 PMCID: PMC6769792 DOI: 10.3390/cells8091056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
A unique new nonclassical MHC class I lineage was found in Teleostei (teleosts, modern bony fish, e.g., zebrafish) and Holostei (a group of primitive bony fish, e.g., spotted gar), which was designated “H” (from “hexa”) for being the sixth lineage discovered in teleosts. A high level of divergence of the teleost sequences explains why the lineage was not recognized previously. The spotted gar H molecule possesses the three MHC class I consensus extracellular domains α1, α2, and α3. However, throughout teleost H molecules, the α3 domain was lost and the α1 domains showed features of deterioration. In fishes of the two closely related teleost orders Characiformes (e.g., Mexican tetra) and Siluriformes (e.g., channel catfish), the H ectodomain deterioration proceeded furthest, with H molecules of some fishes apparently having lost the entire α1 or α2 domain plus additional stretches within the remaining other (α1 or α2) domain. Despite these dramatic ectodomain changes, teleost H sequences possess rather large, unique, well-conserved tyrosine-containing cytoplasmic tail motifs, which suggests an important role in intracellular signaling. To our knowledge, this is the first description of a group of MHC class I molecules in which, judging from the sequence conservation pattern, the cytoplasmic tail is expected to have a more important conserved function than the ectodomain.
Collapse
|
10
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
11
|
Dijkstra JM, Yamaguchi T, Grimholt U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 2017; 70:459-476. [DOI: 10.1007/s00251-017-1050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
12
|
Wcisel DJ, Ota T, Litman GW, Yoder JA. Spotted Gar and the Evolution of Innate Immune Receptors. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:666-684. [PMID: 28544607 DOI: 10.1002/jez.b.22738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/02/2023]
Abstract
The resolution of the gar genome affords an opportunity to examine the diversification and functional specialization of immune effector molecules at a distant and potentially informative point in phylogenetic development. Although innate immunity is effected by a particularly large number of different families of molecules, the focus here is to provide detailed characterization of several families of innate receptors that are encoded in large multigene families, for which orthologous forms can be identified in other species of bony fish but not in other vertebrate groups as well as those for which orthologs are present in other vertebrate species. The results indicate that although teleost fish and the gar, as a holostean reference species, share gene families thought previously to be restricted to the teleost fish, the manner in which the members of the multigene families of innate immune receptors have undergone diversification is different in these two major phylogenetic radiations. It appears that both the total genome duplication and different patterns of genetic selection have influenced the derivation and stabilization of innate immune genes in a substantial manner during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Avagyan S, Zon LI. Fish to Learn: Insights into Blood Development and Blood Disorders from Zebrafish Hematopoiesis. Hum Gene Ther 2016; 27:287-94. [PMID: 27018965 DOI: 10.1089/hum.2016.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since its introduction in early 1980s, the zebrafish (Danio rerio) has become an invaluable vertebrate animal model system to study many human disorders in almost all systems, from hepatic and brain pathology, to autoimmune and psychiatric disorders. Hematopoiesis between zebrafish and mammals is highly conserved, making the zebrafish an attractive model to study hematopoietic development and blood disorders. Unique attributes of the zebrafish include the ability to perform large-scale genetic and chemical screens in vivo, study development at the cellular level, and use transgenic fish to dissect mechanisms of disease or drug effects. This review summarizes major discoveries that helped define molecular control of hematopoiesis in vertebrates and specific contributions from studies in zebrafish.
Collapse
Affiliation(s)
- Serine Avagyan
- 1 Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute , Boston, Massachusetts
| | - Leonard I Zon
- 1 Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute , Boston, Massachusetts.,2 Howard Hughes Medical Institute, Harvard Stem Cell Institute , Harvard Medical School, Boston, Massachusetts.,3 Chemical Biology Program, Harvard University , Cambridge, Massachusetts
| |
Collapse
|
14
|
Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 2016; 590:4016-4033. [PMID: 27616157 DOI: 10.1002/1873-3468.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders and discuss their application for investigating stem cell dysfunction in disease and for the development of new therapeutics.
Collapse
Affiliation(s)
- Anne L Robertson
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Serine Avagyan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Wcisel DJ, Yoder JA. The confounding complexity of innate immune receptors within and between teleost species. FISH & SHELLFISH IMMUNOLOGY 2016; 53:24-34. [PMID: 26997203 DOI: 10.1016/j.fsi.2016.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Teleost genomes encode multiple multigene families of immunoglobulin domain-containing innate immune receptors (IIIRs) with unknown function and no clear mammalian orthologs. However, the genomic organization of IIIR gene clusters and the structure and signaling motifs of the proteins they encode are similar to those of mammalian innate immune receptor families such as the killer cell immunoglobulin-like receptors (KIRs), leukocyte immunoglobulin-like receptors (LILRs), Fc receptors, triggering receptors expressed on myeloid cells (TREMs) and CD300s. Teleost IIIRs include novel immune-type receptors (NITRs); diverse immunoglobulin domain containing proteins (DICPs); polymeric immunoglobulin receptor-like proteins (PIGRLs); novel immunoglobulin-like transcripts (NILTs) and leukocyte immune-type receptors (LITRs). The accumulation of genomic sequence data has revealed that IIIR gene clusters in zebrafish display haplotypic and gene content variation. This intraspecific genetic variation, as well as significant interspecific variation, frequently confounds the identification of definitive orthologous IIIR sequences between teleost species. Nevertheless, by defining which teleost lineages encode (and do not encode) different IIIR families, predictions can be made about the presence (or absence) of specific IIIR families in each teleost lineage. It is anticipated that further investigations into available genomic resources and the sequencing of a variety of multiple teleost genomes will identify additional IIIR families and permit the modeling of the evolutionary origins of IIIRs.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
16
|
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, Berlin AM, Campbell MS, Barrell D, Martin KJ, Mulley JF, Ravi V, Lee AP, Nakamura T, Chalopin D, Fan S, Wcisel D, Cañestro C, Sydes J, Beaudry FEG, Sun Y, Hertel J, Beam MJ, Fasold M, Ishiyama M, Johnson J, Kehr S, Lara M, Letaw JH, Litman GW, Litman RT, Mikami M, Ota T, Saha NR, Williams L, Stadler PF, Wang H, Taylor JS, Fontenot Q, Ferrara A, Searle SMJ, Aken B, Yandell M, Schneider I, Yoder JA, Volff JN, Meyer A, Amemiya CT, Venkatesh B, Holland PWH, Guiguen Y, Bobe J, Shubin NH, Di Palma F, Alföldi J, Lindblad-Toh K, Postlethwait JH. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 2016; 48:427-37. [PMID: 26950095 PMCID: PMC4817229 DOI: 10.1038/ng.3526] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Andrew R Gehrke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Jeremy Pasquier
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Julian Catchen
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Aaron M Berlin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael S Campbell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Daniel Barrell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, UK
| | - John F Mulley
- School of Biological Sciences, Bangor University, Bangor, UK
| | - Vydianathan Ravi
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alison P Lee
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tetsuya Nakamura
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Shaohua Fan
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dustin Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Felix E G Beaudry
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yi Sun
- Center for Circadian Clocks, Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Michael J Beam
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Mario Fasold
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Mikio Ishiyama
- Department of Dental Hygiene, Nippon Dental University College at Niigata, Niigata, Japan
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steffi Kehr
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Marcia Lara
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - John H Letaw
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Ronda T Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Masato Mikami
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Hayama, Japan
| | - Nil Ratan Saha
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Louise Williams
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Quenton Fontenot
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Brazil
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Chris T Amemiya
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Yann Guiguen
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Julien Bobe
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | | | - Jessica Alföldi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
17
|
Rodriguez-Nunez I, Wcisel DJ, Litman RT, Litman GW, Yoder JA. The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes. Immunogenetics 2016; 68:295-312. [PMID: 26801775 DOI: 10.1007/s00251-016-0901-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor.
Collapse
Affiliation(s)
- Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Ronda T Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL, 33701, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL, 33701, USA.,Department of Molecular Genetics, All Children's Hospital Johns Hopkins Medicine, 501 6th Avenue South, St. Petersburg, FL, 33701, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.
| |
Collapse
|
18
|
Grimholt U. MHC and Evolution in Teleosts. BIOLOGY 2016; 5:biology5010006. [PMID: 26797646 PMCID: PMC4810163 DOI: 10.3390/biology5010006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions.
Collapse
Affiliation(s)
- Unni Grimholt
- Department of Virology, Norwegian Veterinary Institute, Ullevaalsveien 68, Oslo N-0106, Norway.
| |
Collapse
|
19
|
A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant. Immunogenetics 2015; 67:501-13. [PMID: 26254596 DOI: 10.1007/s00251-015-0862-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here, we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ~30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanax mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idella).
Collapse
|
20
|
Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM. A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 2015; 15:32. [PMID: 25888517 PMCID: PMC4364491 DOI: 10.1186/s12862-015-0309-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MHC class I (MHCI) molecules are the key presenters of peptides generated through the intracellular pathway to CD8-positive T-cells. In fish, MHCI genes were first identified in the early 1990's, but we still know little about their functional relevance. The expansion and presumed sub-functionalization of cod MHCI and access to many published fish genome sequences provide us with the incentive to undertake a comprehensive study of deduced teleost fish MHCI molecules. RESULTS We expand the known MHCI lineages in teleosts to five with identification of a new lineage defined as P. The two lineages U and Z, which both include presumed peptide binding classical/typical molecules besides more derived molecules, are present in all teleosts analyzed. The U lineage displays two modes of evolution, most pronouncedly observed in classical-type alpha 1 domains; cod and stickleback have expanded on one of at least eight ancient alpha 1 domain lineages as opposed to many other teleosts that preserved a number of these ancient lineages. The Z lineage comes in a typical format present in all analyzed ray-finned fish species as well as lungfish. The typical Z format displays an unprecedented conservation of almost all 37 residues predicted to make up the peptide binding groove. However, also co-existing atypical Z sub-lineage molecules, which lost the presumed peptide binding motif, are found in some fish like carps and cavefish. The remaining three lineages, L, S and P, are not predicted to bind peptides and are lost in some species. CONCLUSIONS Much like tetrapods, teleosts have polymorphic classical peptide binding MHCI molecules, a number of classical-similar non-classical MHCI molecules, and some members of more diverged MHCI lineages. Different from tetrapods, however, is that in some teleosts the classical MHCI polymorphism incorporates multiple ancient MHCI domain lineages. Also different from tetrapods is that teleosts have typical Z molecules, in which the residues that presumably form the peptide binding groove have been almost completely conserved for over 400 million years. The reasons for the uniquely teleost evolution modes of peptide binding MHCI molecules remain an enigma.
Collapse
Affiliation(s)
| | - Kentaro Tsukamoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Teruo Azuma
- Fisheries Technology Division, National Research Institute of Fisheries Engineering, 7620-7, Hasaki, Kamisu-shi, Ibaraki, Japan.
| | - Jong Leong
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada.
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
21
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|