1
|
Koutsoumpli G, Stasiukonyte N, Hoogeboom BN, Daemen T. An in vitro CD8 T-cell priming assay enables epitope selection for hepatitis C virus vaccines. Vaccine 2024; 42:126032. [PMID: 38964950 DOI: 10.1016/j.vaccine.2024.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.
Collapse
Affiliation(s)
- Georgia Koutsoumpli
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Neringa Stasiukonyte
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands.
| |
Collapse
|
2
|
Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: Principles to practice. Cancer Cell 2024; 42:1163-1184. [PMID: 38848720 DOI: 10.1016/j.ccell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.
Collapse
Affiliation(s)
- Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Bulashevska A, Nacsa Z, Lang F, Braun M, Machyna M, Diken M, Childs L, König R. Artificial intelligence and neoantigens: paving the path for precision cancer immunotherapy. Front Immunol 2024; 15:1394003. [PMID: 38868767 PMCID: PMC11167095 DOI: 10.3389/fimmu.2024.1394003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Alla Bulashevska
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Zsófia Nacsa
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Franziska Lang
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Markus Braun
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Machyna
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Liam Childs
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
4
|
Fasoulis R, Rigo MM, Antunes DA, Paliouras G, Kavraki LE. Transfer learning improves pMHC kinetic stability and immunogenicity predictions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2024; 13:100030. [PMID: 38577265 PMCID: PMC10994007 DOI: 10.1016/j.immuno.2023.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Mauricio Menegatti Rigo
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Dinler Amaral Antunes
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd, Houston, 77004, TX, United States
| | - Georgios Paliouras
- Institute of Informatics and Telecommunications, NCSR Demokritos, Patr. Gregoriou E and 27 Neapoleos St, Athens, 15341, Greece
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| |
Collapse
|
5
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Zhang B, Bassani-Sternberg M. Current perspectives on mass spectrometry-based immunopeptidomics: the computational angle to tumor antigen discovery. J Immunother Cancer 2023; 11:e007073. [PMID: 37899131 PMCID: PMC10619091 DOI: 10.1136/jitc-2023-007073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 10/31/2023] Open
Abstract
Identification of tumor antigens presented by the human leucocyte antigen (HLA) molecules is essential for the design of effective and safe cancer immunotherapies that rely on T cell recognition and killing of tumor cells. Mass spectrometry (MS)-based immunopeptidomics enables high-throughput, direct identification of HLA-bound peptides from a variety of cell lines, tumor tissues, and healthy tissues. It involves immunoaffinity purification of HLA complexes followed by MS profiling of the extracted peptides using data-dependent acquisition, data-independent acquisition, or targeted approaches. By incorporating DNA, RNA, and ribosome sequencing data into immunopeptidomics data analysis, the proteogenomic approach provides a powerful means for identifying tumor antigens encoded within the canonical open reading frames of annotated coding genes and non-canonical tumor antigens derived from presumably non-coding regions of our genome. We discuss emerging computational challenges in immunopeptidomics data analysis and tumor antigen identification, highlighting key considerations in the proteogenomics-based approach, including accurate DNA, RNA and ribosomal sequencing data analysis, careful incorporation of predicted novel protein sequences into reference protein database, special quality control in MS data analysis due to the expanded and heterogeneous search space, cancer-specificity determination, and immunogenicity prediction. The advancements in technology and computation is continually enabling us to identify tumor antigens with higher sensitivity and accuracy, paving the way toward the development of more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| |
Collapse
|
7
|
Lee CH, Huh J, Buckley PR, Jang M, Pinho MP, Fernandes RA, Antanaviciute A, Simmons A, Koohy H. A robust deep learning workflow to predict CD8 + T-cell epitopes. Genome Med 2023; 15:70. [PMID: 37705109 PMCID: PMC10498576 DOI: 10.1186/s13073-023-01225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell epitopes have emerged. Despite recent developments, most immunogenicity algorithms struggle to learn features of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-specific CD8 + T-cell epitopes. METHODS We developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learning workflow for predicting CD8 + T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses transfer learning, deep learning architecture and MHC binding information to make context-specific predictions of CD8 + T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoantigens and tumour-associated antigens), as a complementary to 'dissimilarity to self' from cancer studies. RESULTS TRAP was used to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it outperformed other algorithms in both cancer and pathogenic settings. TRAP was especially effective at extracting immunogenicity-associated properties from restricted data of emerging pathogens and translating them onto related species, as well as minimising the loss of likely epitopes in imbalanced datasets. We also demonstrated that the novel metric termed RSAT was able to estimate immunogenic of pathogenic peptides of various lengths and species. TRAP implementation is available at: https://github.com/ChloeHJ/TRAP . CONCLUSIONS This study presents a novel computational workflow for accurately predicting CD8 + T-cell epitopes to foster a better understanding of antigen-specific T-cell response and the development of effective clinical therapeutics.
Collapse
Affiliation(s)
- Chloe H Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaesung Huh
- Visual Geometry Group, Department of Engineering Science, University of Oxford, Oxford, OX2 6NN, UK
| | - Paul R Buckley
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Myeongjun Jang
- Intelligent Systems Lab, Department of Computer Science, University of Oxford, Oxford, OX1 3QG, UK
| | - Mariana Pereira Pinho
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | - Agne Antanaviciute
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Alan Turning Fellow in Health and Medicine, The Alan Turing Institute, London, UK.
| |
Collapse
|
8
|
Bravi B, Di Gioacchino A, Fernandez-de-Cossio-Diaz J, Walczak AM, Mora T, Cocco S, Monasson R. A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity. eLife 2023; 12:e85126. [PMID: 37681658 PMCID: PMC10522340 DOI: 10.7554/elife.85126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen's probability of triggering a response, and on the other hand the T-cell receptor's ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College LondonLondonUnited Kingdom
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| | - Andrea Di Gioacchino
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| | - Jorge Fernandez-de-Cossio-Diaz
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| | - Aleksandra M Walczak
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| | - Thierry Mora
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| | - Simona Cocco
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| | - Rémi Monasson
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-CitéParisFrance
| |
Collapse
|
9
|
Guarra F, Colombo G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J Chem Theory Comput 2023; 19:5315-5333. [PMID: 37527403 PMCID: PMC10448727 DOI: 10.1021/acs.jctc.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/03/2023]
Abstract
The design of new biomolecules able to harness immune mechanisms for the treatment of diseases is a prime challenge for computational and simulative approaches. For instance, in recent years, antibodies have emerged as an important class of therapeutics against a spectrum of pathologies. In cancer, immune-inspired approaches are witnessing a surge thanks to a better understanding of tumor-associated antigens and the mechanisms of their engagement or evasion from the human immune system. Here, we provide a summary of the main state-of-the-art computational approaches that are used to design antibodies and antigens, and in parallel, we review key methodologies for epitope identification for both B- and T-cell mediated responses. A special focus is devoted to the description of structure- and physics-based models, privileged over purely sequence-based approaches. We discuss the implications of novel methods in engineering biomolecules with tailored immunological properties for possible therapeutic uses. Finally, we highlight the extraordinary challenges and opportunities presented by the possible integration of structure- and physics-based methods with emerging Artificial Intelligence technologies for the prediction and design of novel antigens, epitopes, and antibodies.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
10
|
Amaya-Ramirez D, Martinez-Enriquez LC, Parra-López C. Usefulness of Docking and Molecular Dynamics in Selecting Tumor Neoantigens to Design Personalized Cancer Vaccines: A Proof of Concept. Vaccines (Basel) 2023; 11:1174. [PMID: 37514989 PMCID: PMC10386133 DOI: 10.3390/vaccines11071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
Personalized cancer vaccines based on neoantigens are a new and promising treatment for cancer; however, there are still multiple unresolved challenges to using this type of immunotherapy. Among these, the effective identification of immunogenic neoantigens stands out, since the in silico tools used generate a significant portion of false positives. Inclusion of molecular simulation techniques can refine the results these tools produce. In this work, we explored docking and molecular dynamics to study the association between the stability of peptide-HLA complexes and their immunogenicity, using as a proof of concept two HLA-A2-restricted neoantigens that were already evaluated in vitro. The results obtained were in accordance with the in vitro immunogenicity, since the immunogenic neoantigen ASTN1 remained bound at both ends to the HLA-A2 molecule. Additionally, molecular dynamic simulation suggests that position 1 of the peptide has a more relevant role in stabilizing the N-terminus than previously proposed. Likewise, the mutations may have a "delocalized" effect on the peptide-HLA interaction, which means that the mutated amino acid influences the intensity of the interactions of distant amino acids of the peptide with the HLA. These findings allow us to propose the inclusion of molecular simulation techniques to improve the identification of neoantigens for cancer vaccines.
Collapse
Affiliation(s)
| | - Laura Camila Martinez-Enriquez
- Grupo de Inmunología y Medicina Traslacional, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Grupo de Inmunología y Medicina Traslacional, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
11
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Huang X, Zhang G, Tang TY, Gao X, Liang TB. Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Mil Med Res 2022; 9:53. [PMID: 36224645 PMCID: PMC9556149 DOI: 10.1186/s40779-022-00416-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is characterized by inter-tumoral and intra-tumoral heterogeneity, especially in genetic alteration and microenvironment. Conventional therapeutic strategies for pancreatic cancer usually suffer resistance, highlighting the necessity for personalized precise treatment. Cancer vaccines have become promising alternatives for pancreatic cancer treatment because of their multifaceted advantages including multiple targeting, minimal nonspecific effects, broad therapeutic window, low toxicity, and induction of persistent immunological memory. Multiple conventional vaccines based on the cells, microorganisms, exosomes, proteins, peptides, or DNA against pancreatic cancer have been developed; however, their overall efficacy remains unsatisfactory. Compared with these vaccine modalities, messager RNA (mRNA)-based vaccines offer technical and conceptional advances in personalized precise treatment, and thus represent a potentially cutting-edge option in novel therapeutic approaches for pancreatic cancer. This review summarizes the current progress on pancreatic cancer vaccines, highlights the superiority of mRNA vaccines over other conventional vaccines, and proposes the viable tactic for designing and applying personalized mRNA vaccines for the precise treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China. .,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Tian-Yu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ting-Bo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China. .,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Buckley PR, Lee CH, Ma R, Woodhouse I, Woo J, Tsvetkov VO, Shcherbinin DS, Antanaviciute A, Shughay M, Rei M, Simmons A, Koohy H. Evaluating performance of existing computational models in predicting CD8+ T cell pathogenic epitopes and cancer neoantigens. Brief Bioinform 2022; 23:6573960. [PMID: 35471658 PMCID: PMC9116217 DOI: 10.1093/bib/bbac141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 12/16/2022] Open
Abstract
T cell recognition of a cognate peptide-major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging. Although numerous models have been proposed, performance of these models has not been systematically evaluated and their success rate in predicting epitopes in the context of human pathology has not been measured and compared. In this study, we evaluated the performance of several publicly available models, in identifying immunogenic CD8+ T cell targets in the context of pathogens and cancers. We found that for predicting immunogenic peptides from an emerging virus such as severe acute respiratory syndrome coronavirus 2, none of the models perform substantially better than random or offer considerable improvement beyond HLA ligand prediction. We also observed suboptimal performance for predicting cancer neoantigens. Through investigation of potential factors associated with ill performance of models, we highlight several data- and model-associated issues. In particular, we observed that cross-HLA variation in the distribution of immunogenic and non-immunogenic peptides in the training data of the models seems to substantially confound the predictions. We additionally compared key parameters associated with immunogenicity between pathogenic peptides and cancer neoantigens and observed evidence for differences in the thresholds of binding affinity and stability, which suggested the need to modulate different features in identifying immunogenic pathogen versus cancer peptides. Overall, we demonstrate that accurate and reliable predictions of immunogenic CD8+ T cell targets remain unsolved; thus, we hope our work will guide users and model developers regarding potential pitfalls and unsettled questions in existing immunogenicity predictors.
Collapse
Affiliation(s)
- Paul R Buckley
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Chloe H Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ruichong Ma
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Isaac Woodhouse
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jeongmin Woo
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Dmitrii S Shcherbinin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Agne Antanaviciute
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mikhail Shughay
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Margarida Rei
- The Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom,Alan Turning Fellow, University of Oxford, Oxford, United Kingdom,Corresponding author: Hashem Koohy, Associate Professor of Systems immunology, Alan Turing Fellow, Group Head, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK. Tel: 44(0)1865222430; E-mail:
| |
Collapse
|
14
|
Vijayakumar S. Harnessing Fuzzy Rule Based System for Screening Major Histocompatibility Complex Class I Peptide Epitopes from the Whole Proteome: An Implementation on the Proteome of Leishmania donovani. J Comput Biol 2022; 29:1045-1058. [PMID: 35404099 DOI: 10.1089/cmb.2021.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of peptide-based vaccines is enhanced by immunoinformatics, which predicts the patterns that B cells and T cells recognize. Although several tools are available for predicting the Major histocompatibility complex (MHC-I) binding peptides, the wide variants of human leucocyte antigen allele make it challenging to choose a peptide that will induce an immune response in a majority of people. In addition, for a peptide to be considered a potential vaccine candidate, factors such as T cell affinity, proteasome cleavage, and similarity to human proteins also play a major role. Identifying peptides that satisfy the earlier cited measures across the entire proteome is, therefore, challenging. Hence, the fuzzy inference system (FIS) is proposed to detect each peptide's potential as a vaccine candidate and assign it either a very high, high, moderate, or low ranking. The FIS includes input features from 6 modules (binding of 27 major alleles, T cell propensity, pro-inflammatory response, proteasome cleavage, transporter associated with antigen processing, and similarity with human peptide) and rules derived from an observation of features on positive samples. On validation of experimentally verified peptides, a balanced accuracy of ∼80% was achieved, with a Mathew's correlation coefficient score of 0.67 and an F-1 score of 0.74. In addition, the method was implemented on complete proteome of Leishmania donovani, which contains ∼4,800,000 peptides. Lastly, a searchable database of the ranked results of the L. donovani proteome was made and is available online (MHC-FIS-LdDB). It is hoped that this method will simplify the identification of potential MHC-I binding candidates from a large proteome.
Collapse
Affiliation(s)
- Saravanan Vijayakumar
- Department of Bioinformatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
15
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
16
|
|
17
|
Donzelli S, Spinella F, di Domenico EG, Pontone M, Cavallo I, Orlandi G, Iannazzo S, Ricciuto GM, Team ISGVC, Pellini R, Muti P, Strano S, Ciliberto G, Ensoli F, Zapperi S, La Porta CA, Blandino G, Morrone A, Pimpinelli F. Evidence of a SARS-CoV-2 double Spike mutation D614G/S939F potentially affecting immune response of infected subjects. Comput Struct Biotechnol J 2022; 20:733-744. [PMID: 35096288 PMCID: PMC8780065 DOI: 10.1016/j.csbj.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Despite extensive efforts to monitor the diffusion of COVID-19, the actual wave of infection is worldwide characterized by the presence of emerging SARS-CoV-2 variants. The present study aims to describe the presence of yet undiscovered SARS-CoV-2 variants in Italy. Methods Next Generation Sequencing was performed on 16 respiratory samples from occasionally employed within the Bangladeshi community present in Ostia and Fiumicino towns. Computational strategy was used to identify all potential epitopes for reference and mutated Spike proteins. A simulation of proteasome activity and the identification of possible cleavage sites along the protein guided to a combined score involving binding affinity, peptide stability and T-cell propensity. Results Retrospective sequencing analysis revealed a double Spike D614G/S939F mutation in COVID-19 positive subjects present in Ostia while D614G mutation was evidenced in those based in Fiumicino. Unlike D614G, S939F mutation affects immune response by the slight but significant modulation of T-cell propensity and the selective enrichment of potential binding epitopes for some HLA alleles. Conclusion Collectively, our findings mirror further the importance of deep sequencing of SARS-CoV-2 genome as a unique approach to monitor the appearance of specific mutations as for those herein reported for Spike protein. This might have implications on both the type of immune response triggered by the viral infection and the severity of the related illness.
Collapse
|
18
|
Dhall A, Jain S, Sharma N, Naorem LD, Kaur D, Patiyal S, Raghava GPS. In silico tools and databases for designing cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:1-50. [PMID: 35305716 DOI: 10.1016/bs.apcsb.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunotherapy is a rapidly growing therapy for cancer which have numerous benefits over conventional treatments like surgery, chemotherapy, and radiation. Overall survival of cancer patients has improved significantly due to the use of immunotherapy. It acts as a novel pillar for treating different malignancies from their primary to the metastatic stage. Recent preferments in high-throughput sequencing and computational immunology leads to the development of targeted immunotherapy for precision oncology. In the last few decades, several computational methods and resources have been developed for designing immunotherapy against cancer. In this review, we have summarized cancer-associated genomic, transcriptomic, and mutation profile repositories. We have also enlisted in silico methods for the prediction of vaccine candidates, HLA binders, cytokines inducing peptides, and potential neoepitopes. Of note, we have incorporated the most important bioinformatics pipelines and resources for the designing of cancer immunotherapy. Moreover, to facilitate the scientific community, we have developed a web portal entitled ImmCancer (https://webs.iiitd.edu.in/raghava/immcancer/), comprises cancer immunotherapy tools and repositories.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India.
| |
Collapse
|
19
|
La Porta CAM, Zapperi S. Immune Profile of SARS-CoV-2 Variants of Concern. Front Digit Health 2021; 3:704411. [PMID: 34713175 PMCID: PMC8521889 DOI: 10.3389/fdgth.2021.704411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023] Open
Abstract
The spread of the current Sars-Cov-2 pandemics leads to the development of mutations that are constantly monitored because they could affect the efficacy of vaccines. Three recently identified mutated strains, known as variants of concern, are rapidly spreading worldwide. Here, we study possible effects of these mutations on the immune response to Sars-Cov-2 infection using NetTepi a computational method based on artificial neural networks that considers binding and stability of peptides obtained by proteasome degradation for widely represented HLA class I alleles present in human populations as well as the T-cell propensity of viral peptides that measures their immune response. Our results show variations in the number of potential highly ranked peptides ranging between 0 and 20% depending on the specific HLA allele. The results can be useful to design more specific vaccines.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Environmental Science and Policy, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Genoa, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Physics, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Milan, Italy
| |
Collapse
|
20
|
Schaap-Johansen AL, Vujović M, Borch A, Hadrup SR, Marcatili P. T Cell Epitope Prediction and Its Application to Immunotherapy. Front Immunol 2021; 12:712488. [PMID: 34603286 PMCID: PMC8479193 DOI: 10.3389/fimmu.2021.712488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
T cells play a crucial role in controlling and driving the immune response with their ability to discriminate peptides derived from healthy as well as pathogenic proteins. In this review, we focus on the currently available computational tools for epitope prediction, with a particular focus on tools aimed at identifying neoepitopes, i.e. cancer-specific peptides and their potential for use in immunotherapy for cancer treatment. This review will cover how these tools work, what kind of data they use, as well as pros and cons in their respective applications.
Collapse
Affiliation(s)
| | - Milena Vujović
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
22
|
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 2020; 19:315-329. [PMID: 33425259 PMCID: PMC7779837 DOI: 10.1016/j.csbj.2020.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.
Collapse
Key Words
- ABR, Antigen-binding region
- ADA, Anti-drug antibody
- ANN, Artificial neural network
- APC, Antigen-presenting cell
- Anti-drug-antibody
- B cell epitope
- BCR, B cell receptor
- Bab, Binding antibody
- CDR, Complementarity determining region
- CRISPR, Clustered regularly interspaced short palindromic repeats
- DC, Dendritic cell
- ELP, Elastin-like polypeptide
- EPO, Erythropoietin
- ER, Endoplasmatic reticulum
- GLK, Gelatin-like protein
- HAP, Homo-amino-acid polymer
- HLA, Human leukocyte antigen
- HMM, Hidden Markov model
- IL, Interleukin
- Ig, Immunoglobulin
- Immunogenicity
- LPS, Lipopolysaccharide
- MHC, Major histocompatibility complex
- NMR, Nuclear magnetic resonance
- Nab, Neutralizing antibody
- PAMP, Pathogen-associated molecular pattern
- PAS, Polypeptide composed of proline, alanine, and/or serine
- PBMC, Peripheral blood mononuclear cell
- PD, Pharmacodynamics
- PEG, Polyethylene glycol
- PK, Pharmacokinetics
- PRR, Pattern recognition receptor
- PSA, Sialic acid polymers
- Protein therapeutic
- RNN, Recurrent artificial neural network
- SVM, Support vector machine
- T cell epitope
- TAP, Transporter associated with antigen processing
- TCR, T cell receptor
- TLR, Toll-like receptor
- XTEN, “Xtended” recombinant polypeptide
Collapse
Affiliation(s)
- Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Noël Stierlin
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020; 12:E2879. [PMID: 33036391 PMCID: PMC7600129 DOI: 10.3390/cancers12102879] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic instability of tumors leads to the appearance of numerous tumor-specific somatic mutations that could potentially result in the production of mutated peptides that are presented on the cell surface by the MHC molecules. Peptides of this kind are commonly called neoantigens. Their presence on the cell surface specifically distinguishes tumors from healthy tissues. This feature makes neoantigens a promising target for immunotherapy. The rapid evolution of high-throughput genomics and proteomics makes it possible to implement these techniques in clinical practice. In particular, they provide useful tools for the investigation of neoantigens. The most valuable genomic approach to this problem is whole-exome sequencing coupled with RNA-seq. High-throughput mass-spectrometry is another option for direct identification of MHC-bound peptides, which is capable of revealing the entire MHC-bound peptidome. Finally, structure-based predictions could significantly improve the understanding of physicochemical and structural features that affect the immunogenicity of peptides. The development of pipelines combining such tools could improve the accuracy of the peptide selection process and decrease the required time. Here we present a review of the main existing approaches to investigating the neoantigens and suggest a possible ideal pipeline that takes into account all modern trends in the context of neoantigen discovery.
Collapse
Affiliation(s)
| | | | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.V.G.); (E.N.K.)
| |
Collapse
|
25
|
La Porta CAM, Zapperi S. Estimating the Binding of Sars-CoV-2 Peptides to HLA Class I in Human Subpopulations Using Artificial Neural Networks. Cell Syst 2020; 11:412-417.e2. [PMID: 32916095 PMCID: PMC7488596 DOI: 10.1016/j.cels.2020.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the susceptibility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2 peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while the second shows strong binding and T cell propensity. Our work offers a useful support to identify the individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune response to SARS-CoV-2. A record of this paper’s transparent peer review process is included in the Supplemental Information. Binding of SARS-CoV-2 peptides to HLA molecules is computed Weakly or strongly binding haplotypes are identified in human populations Results explain variations in the individual immune response to SARS-CoV-2
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, Milano 20133, Italy.
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria 16, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, via R. Cozzi 53, Milano 20125, Italy
| |
Collapse
|
26
|
Abstract
Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide-MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Søren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Martínez-Rodrigo A, Mas A, Álvarez-Campos D, Orden JA, Domínguez-Bernal G, Carrión J. Epitope Selection for Fighting Visceral Leishmaniosis: Not All Peptides Function the Same Way. Vaccines (Basel) 2020; 8:E352. [PMID: 32630347 PMCID: PMC7564088 DOI: 10.3390/vaccines8030352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniosis (VL) caused by Leishmania infantum is a disease with an increasing prevalence worldwide. Treatments are expensive, toxic, and ineffective. Therefore, vaccination seems to be a promising approach to control VL. Peptide-based vaccination is a useful method due to its stability, absence of local side effects, and ease of scaling up. In this context, bioinformatics seems to facilitate the use of peptides, as this analysis can predict high binding affinity epitopes to MHC class I and II molecules of different species. We have recently reported the use of HisAK70 DNA immunization in mice to induce a resistant phenotype against L. major, L. infantum, and L. amazonensis infections. In the present study, we used bioinformatics tools to select promising multiepitope peptides (HisDTC and AK) from the polyprotein encoded in the HisAK70 DNA to evaluate their immunogenicity in the murine model of VL by L. infantum. Our results revealed that both multiepitope peptides were able to induce the control of VL in mice. Furthermore, HisDTC was able to induce a better cell-mediated immune response in terms of reduced parasite burden, protective cytokine profile, leishmanicidal enzyme modulation, and specific IgG2a isotype production in immunized mice, before and after infectious challenge. Overall, this study indicates that the HisDTC chimera may be considered a satisfactory tool to control VL because it is able to activate a potent CD4+ and CD8+ T-cell protective immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Domínguez-Bernal
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (D.Á.-C.); (J.A.O.); (J.C.)
| | | |
Collapse
|
28
|
Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers (Basel) 2020; 12:cancers12061660. [PMID: 32585818 PMCID: PMC7352969 DOI: 10.3390/cancers12061660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored. Cancer immunotherapy mainly relies on the generation and stimulation of cytotoxic CD8 T lymphocytes (CTLs) within the tumor microenvironment (TME), priming T cells and establishing efficient and durable anti-tumor immunity. Therefore, there is a clear need to define and identify immunogenic T cell epitopes to use in therapeutic cancer vaccines. Naturally presented antigens in the human leucocyte antigen-1 (HLA-I) complex on the tumor surface are the main protagonists in evocating a specific anti-tumor CD8+ T cell response. However, the methodologies for their identification have been a major bottleneck for their reliable characterization. Consequently, the field of antigen discovery has yet to improve. The current review is intended to define what are today known as tumor antigens, with a main focus on CTL antigenic peptides. We also review the techniques developed and employed to date for antigen discovery, exploring both the direct elution of HLA-I peptides and the in silico prediction of epitopes. Finally, the last part of the review analyses the future challenges and direction of the antigen discovery field.
Collapse
|
29
|
Protecting Tumors by Preventing Human Papilloma Virus Antigen Presentation: Insights from Emerging Bioinformatics Algorithms. Cancers (Basel) 2019; 11:cancers11101543. [PMID: 31614809 PMCID: PMC6826432 DOI: 10.3390/cancers11101543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Recent developments in bioinformatics technologies have led to advances in our understanding of how oncogenic viruses such as the human papilloma virus drive cancer progression and evade the host immune system. Here, we focus our review on understanding how these emerging bioinformatics technologies influence our understanding of how human papilloma virus (HPV) drives immune escape in cancers of the head and neck, and how these new informatics approaches may be generally applicable to other virally driven cancers. Indeed, these tools enable researchers to put existing data from genome wide association studies, in which high risk alleles have been identified, in the context of our current understanding of cellular processes regulating neoantigen presentation. In the future, these new bioinformatics approaches are highly likely to influence precision medicine-based decision making for the use of immunotherapies in virally driven cancers.
Collapse
|
30
|
Liu CC, Steen CB, Newman AM. Computational approaches for characterizing the tumor immune microenvironment. Immunology 2019; 158:70-84. [PMID: 31347163 PMCID: PMC6742767 DOI: 10.1111/imm.13101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in high-throughput molecular profiling technologies and multiplexed imaging platforms have revolutionized our ability to characterize the tumor immune microenvironment. As a result, studies of tumor-associated immune cells increasingly involve complex data sets that require sophisticated methods of computational analysis. In this review, we present an overview of key assays and related bioinformatics tools for analyzing the tumor-associated immune system in bulk tissues and at the single-cell level. In parallel, we describe how data science strategies and novel technologies have advanced tumor immunology and opened the door for new opportunities to exploit host immunity to improve cancer clinical outcomes.
Collapse
Affiliation(s)
- Candace C. Liu
- Immunology Graduate ProgramSchool of MedicineStanford UniversityStanfordCAUSA
| | - Chloé B. Steen
- Division of OncologyDepartment of MedicineStanford Cancer InstituteStanford UniversityStanfordCAUSA
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
- Department of Biomedical Data ScienceStanford UniversityStanfordCAUSA
| |
Collapse
|
31
|
Riley TP, Keller GLJ, Smith AR, Davancaze LM, Arbuiso AG, Devlin JR, Baker BM. Structure Based Prediction of Neoantigen Immunogenicity. Front Immunol 2019; 10:2047. [PMID: 31555277 PMCID: PMC6724579 DOI: 10.3389/fimmu.2019.02047] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022] Open
Abstract
The development of immunological therapies that incorporate peptide antigens presented to T cells by MHC proteins is a long sought-after goal, particularly for cancer, where mutated neoantigens are being explored as personalized cancer vaccines. Although neoantigens can be identified through sequencing, bioinformatics and mass spectrometry, identifying those which are immunogenic and able to promote tumor rejection remains a significant challenge. Here we examined the potential of high-resolution structural modeling followed by energetic scoring of structural features for predicting neoantigen immunogenicity. After developing a strategy to rapidly and accurately model nonameric peptides bound to the common class I MHC protein HLA-A2, we trained a neural network on structural features that influence T cell receptor (TCR) and peptide binding energies. The resulting structurally-parameterized neural network outperformed methods that do not incorporate explicit structural or energetic properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides, while also providing insight into the underlying structural and biophysical mechanisms governing immunogenicity. Our proof-of-concept study demonstrates the potential for structure-based immunogenicity predictions in the development of personalized peptide-based vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
32
|
Bonsack M, Hoppe S, Winter J, Tichy D, Zeller C, Küpper MD, Schitter EC, Blatnik R, Riemer AB. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC–Peptide Binding Data Set. Cancer Immunol Res 2019; 7:719-736. [DOI: 10.1158/2326-6066.cir-18-0584] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/19/2018] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
|
33
|
Jurtz VI, Olsen LR. Computational Methods for Identification of T Cell Neoepitopes in Tumors. Methods Mol Biol 2019; 1878:157-172. [PMID: 30378075 DOI: 10.1007/978-1-4939-8868-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has experienced several major breakthroughs in the past decade. Most recently, technical advances in next-generation sequencing methods have enabled discovery of tumor-specific mutations leading to protective T cell neoepitopes. Many of the successes are enabled by computational methods, which facilitate processing of raw data, mapping of mutations, and prediction of neoepitopes. In this book chapter, we provide an overview of the computational tasks related to the identification of neoepitopes, propose specific tools and best practices, and discuss strengths, weaknesses, and future challenges.
Collapse
Affiliation(s)
- Vanessa Isabell Jurtz
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Lars Rønn Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
34
|
Yi M, Qin S, Zhao W, Yu S, Chu Q, Wu K. The role of neoantigen in immune checkpoint blockade therapy. Exp Hematol Oncol 2018; 7:28. [PMID: 30473928 PMCID: PMC6240277 DOI: 10.1186/s40164-018-0120-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitor induces tumor rejection by activated host immune system. The anti-tumor immune response consists of capture, presentation, recognition of neoantigen, as well as subsequent killing of tumor cell. Due to the interdependence among this series of stepwise events, neoantigen profoundly influences the efficacy of anti-immune checkpoint therapy. Moreover, the neoantigen-specific T cell reactivity is the cornerstone of multiple immunotherapies. In fact, several strategies targeting neoantigen have been attempted for synergetic effect with immune checkpoint inhibitor. Increasing neoantigen presentation to immune system by oncolytic virus, radiotherapy, or cancer vaccine is feasible to enhance neoantigen-specific T cell reactivity in theory. However, some obstacles have not been overcome in practice such as dynamic variation of neoantigen landscape, identification of potential neoantigen, maintenance of high T cell titer post vaccination. In addition, adoptive T cell transfer is another approach to enhance neoantigen-specific T cell reactivity, especially for patients with severe immunosuppression. In this review, we highlighted the advancements of neoantigen and innovative explorations of utilization of neoantigen repertoire in immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
35
|
Jappe EC, Kringelum J, Trolle T, Nielsen M. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data. Immunology 2018; 154:407-417. [PMID: 29446062 DOI: 10.1111/imm.12905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 01/04/2023] Open
Abstract
Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots.
Collapse
Affiliation(s)
- Emma Christine Jappe
- Evaxion Biotech, Copenhagen, Denmark.,Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
36
|
Kar P, Ruiz-Perez L, Arooj M, Mancera RL. Current methods for the prediction of T-cell epitopes. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prattusha Kar
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University; Perth Western Australia 6845 Australia
| | - Lanie Ruiz-Perez
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University; Perth Western Australia 6845 Australia
| | - Mahreen Arooj
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University; Perth Western Australia 6845 Australia
| | - Ricardo L. Mancera
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University; Perth Western Australia 6845 Australia
| |
Collapse
|
37
|
Usmani SS, Kumar R, Bhalla S, Kumar V, Raghava GPS. In Silico Tools and Databases for Designing Peptide-Based Vaccine and Drugs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:221-263. [PMID: 29680238 DOI: 10.1016/bs.apcsb.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolonged conventional approaches of drug screening and vaccine designing prerequisite patience, vigorous effort, outrageous cost as well as additional manpower. Screening and experimentally validating thousands of molecules for a specific therapeutic property never proved to be an easy task. Similarly, traditional way of vaccination includes administration of either whole or attenuated pathogen, which raises toxicity and safety issues. Emergence of sequencing and recombinant DNA technology led to the epitope-based advanced vaccination concept, i.e., small peptides (epitope) can stimulate specific immune response. Advent of bioinformatics proved to be an adjunct in vaccine and drug designing. Genomic study of pathogens aid to identify and analyze the protective epitope. A number of in silico tools have been developed to design immunotherapy as well as peptide-based drugs in the last two decades. These tools proved to be a catalyst in drug and vaccine designing. This review solicits therapeutic peptide databases as well as in silico tools developed for designing peptide-based vaccine and drugs.
Collapse
Affiliation(s)
- Salman Sadullah Usmani
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India; Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rajesh Kumar
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India; Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sherry Bhalla
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Vinod Kumar
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India; Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gajendra P S Raghava
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India; Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
38
|
Abstract
T-cell responses are activated by specific peptides, called epitopes, presented on the cell surface by MHC molecules. Binding of peptides to the MHC is the most selective step in T-cell antigen presentation and therefore an essential factor in the selection of potential epitopes. Several in-vitro methods have been developed for the determination of peptide binding to MHC molecules, but these are all costly and time-consuming. In consequence, significant effort has been dedicated to the development of in-silico methods to model this event. Here, we describe two such tools, NetMHCcons and NetMHCIIpan, for the prediction of peptide binding to MHC class I and class II molecules, respectively, involved in the activation pathways of CD8+ and CD4+ T cells.
Collapse
|
39
|
Analyzing the effect of peptide-HLA-binding ability on the immunogenicity of potential CD8+ and CD4+ T cell epitopes in a large dataset. Immunol Res 2017; 64:908-18. [PMID: 27094547 DOI: 10.1007/s12026-016-8795-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Immunogenicity is a key factor that influences whether a peptide presented by major histocompatibility complex (MHC) can be a T cell epitope. However, peptide immunization experiments have shown that approximately half of MHC class I-binding peptides cannot elicit a T cell response, indicating the importance of analyzing the variables affecting the immunogenicity of MHC-binding peptides. In this study, we hierarchically investigated the contribution of the binding stability and affinity of peptide-MHC complexes to immunogenicity based on the available quantitative data. We found that the immunogenicity of peptides presented by human leukocyte antigen (HLA) class I molecules was still predictable using the experimental binding affinity, although approximately one-third of the peptides with a binding affinity stronger than 500 nM were non-immunogenic, whereas the immunogenicity of HLA-II-presented peptides was predicted well using the experimental affinity and even the predicted affinity. The positive correlation between the binding affinity and stability was only observed in peptide-HLA-I complexes with a binding affinity stronger than 500 nM, which suggested that the stability alone could not be used for the prediction of immunogenicity. A characterization and comparison of the 'holes' in the CD8+ and CD4+ T cell repertoire provided an explanation for the observed differences between the immunogenicity of peptides presented by HLA class I and II molecules. We also provided the optimal affinity threshold for the potential CD4+ and CD8+ T cell epitopes. Our results provide important insights into the cellular immune response and the accurate prediction of T cell epitopes.
Collapse
|
40
|
Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform 2017; 18:467-478. [PMID: 27016393 DOI: 10.1093/bib/bbw025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity.
Collapse
|
41
|
Abstract
The interrogation of cell surface-presented immunogenic epitopes is of great importance to differentiate diseased cells in consequence to malignant transformation or viral infections. On the basis of this knowledge, next-generation immunotherapies against cancers, autoimmunity, or infectious diseases can be developed. The identification of altered peptide repertoires of transformed cells renders mass spectrometry-based analysis indispensable. This is evident considering the low correlation of gene or protein expression alterations, respectively, with changes in the peptide repertoire rendering those analyses less informative. Nevertheless, immunogenicity of peptides appearing to be exclusively found on diseased cells has to be finally proven in T cell-based assays. This review highlights the capabilities and limitations of mass spectrometry in the identification of entire immunopeptidomes, as well as individual potential immunogenic epitopes with a strong focus on cancer. Furthermore, an overview of state-of-the-art immunogenicity screens is presented.
Collapse
|
42
|
Schmidt J, Guillaume P, Dojcinovic D, Karbach J, Coukos G, Luescher I. In silico and cell-based analyses reveal strong divergence between prediction and observation of T-cell-recognized tumor antigen T-cell epitopes. J Biol Chem 2017; 292:11840-11849. [PMID: 28536262 DOI: 10.1074/jbc.m117.789511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by in silico algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted in silico the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8+ T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by in silico algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of in silico-predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving in silico predictions of peptide immunogenicity.
Collapse
Affiliation(s)
- Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Danijel Dojcinovic
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | | | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Immanuel Luescher
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
43
|
Hackl H, Charoentong P, Finotello F, Trajanoski Z. Computational genomics tools for dissecting tumour–immune cell interactions. Nat Rev Genet 2016; 17:441-58. [DOI: 10.1038/nrg.2016.67] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Gfeller D, Bassani-Sternberg M, Schmidt J, Luescher IF. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology 2016; 5:e1177691. [PMID: 27622028 DOI: 10.1080/2162402x.2016.1177691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Tumor exome and RNA sequencing data provide a systematic and unbiased view on cancer-specific expression, over-expression, and mutations of genes, which can be mined for personalized cancer vaccines and other immunotherapies. Of key interest are tumor-specific mutations, because T cells recognizing neoepitopes have the potential to be highly tumoricidal. Here, we review recent developments and technical advances in identifying MHC class I and class II-restricted tumor antigens, especially neoantigen derived MHC ligands, including in silico predictions, immune-peptidome analysis by mass spectrometry, and MHC ligand validation by biochemical methods on T cells.
Collapse
Affiliation(s)
- David Gfeller
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| | - Immanuel F Luescher
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| |
Collapse
|
45
|
Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. ACTA ACUST UNITED AC 2015; 32:511-7. [PMID: 26515819 DOI: 10.1093/bioinformatics/btv639] [Citation(s) in RCA: 696] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/25/2015] [Indexed: 01/18/2023]
Abstract
MOTIVATION Many biological processes are guided by receptor interactions with linear ligands of variable length. One such receptor is the MHC class I molecule. The length preferences vary depending on the MHC allele, but are generally limited to peptides of length 8-11 amino acids. On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. RESULTS We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods trained on peptides of single lengths. Also, we illustrate how the location of deletions can aid the interpretation of the modes of binding of the peptide-MHC, as in the case of long peptides bulging out of the MHC groove or protruding at either terminus. Finally, we demonstrate that the method can learn the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. AVAILABILITY AND IMPLEMENTATION The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped sequence alignment is publicly available at: http://www.cbs.dtu.dk/services/NetMHC-4.0.
Collapse
Affiliation(s)
- Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina and
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina and Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
46
|
Jun SR, Leuze MR, Nookaew I, Uberbacher EC, Land M, Zhang Q, Wanchai V, Chai J, Nielsen M, Trolle T, Lund O, Buzard GS, Pedersen TD, Wassenaar TM, Ussery DW. Ebolavirus comparative genomics. FEMS Microbiol Rev 2015; 39:764-78. [PMID: 26175035 PMCID: PMC4551310 DOI: 10.1093/femsre/fuv031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Collapse
Affiliation(s)
- Se-Ran Jun
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Joint Institute for Computational Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael R Leuze
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Intawat Nookaew
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Edward C Uberbacher
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miriam Land
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Qian Zhang
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Visanu Wanchai
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Juanjuan Chai
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Thomas Trolle
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | - Thomas D Pedersen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark Assays, Cultures and Enzymes Division, Chr. Hansen A/S, Hørsholm, Denmark
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstr 7, D-55576 Zotzenheim, Germany
| | - David W Ussery
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| |
Collapse
|
47
|
Diken M, Boegel S, Grunwitz C, Kranz LM, Reuter K, van de Roemer N, Vascotto F, Vormehr M, Kreiter S. CIMT 2014: Next waves in cancer immunotherapy - Report on the 12th annual meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2014; 10:3090-100. [PMID: 25483671 PMCID: PMC5443098 DOI: 10.4161/hv.29767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mustafa Diken
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Sebastian Boegel
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Christian Grunwitz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Lena M. Kranz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | | | - Niels van de Roemer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Fulvia Vascotto
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Mathias Vormehr
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Sebastian Kreiter
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| |
Collapse
|