1
|
Tirado-Herranz A, Guasp P, Pastor-Moreno A, Area-Navarro M, Alvarez I. Analysis of the different subpeptidomes presented by the HLA class I molecules of the B7 supertype. Cell Immunol 2023; 387:104707. [PMID: 36933326 DOI: 10.1016/j.cellimm.2023.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
MHC-I molecules of the HLA-B7 supertype preferentially bind peptides with proline at position 2. HLA-B*51:01 and B*51:08 present two predominant subpeptidomes, one with Pro2 and hydrophobic residues at P1, and another with Ala2 and Asp enriched at position 1. Here, we present a meta-analysis of the peptidomes presented by molecules of the B7 supertype to investigate the presence of subpeptidomes across different allotypes. Several allotypes presented subpeptidomes differing in the presence of Pro or another residue at P2. The Ala2 subpeptidomes preferred Asp1 except in HLA-B*54:01, where ligands with Ala2 contained Glu1. Sequence alignment and the analysis of crystal structures allowed us to propose positions 45 and 67 of the MHC heavy chain as relevant for the presence of subpeptidomes. Deciphering the principles behind the presence of subpeptidomes could improve our understanding of antigen presentation in other MHC-I molecules. Running title: HLA-B7 supertype subpeptidomes.
Collapse
Affiliation(s)
- Adrián Tirado-Herranz
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alba Pastor-Moreno
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - María Area-Navarro
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
2
|
Tedeschi V, Paldino G, Paladini F, Mattorre B, Tuosto L, Sorrentino R, Fiorillo MT. The Impact of the 'Mis-Peptidome' on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int J Mol Sci 2020; 21:ijms21249608. [PMID: 33348540 PMCID: PMC7765998 DOI: 10.3390/ijms21249608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Correspondence:
| | - Giorgia Paldino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Benedetta Mattorre
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
3
|
Guasp P, Lorente E, Martín-Esteban A, Barnea E, Romania P, Fruci D, Kuiper JW, Admon A, López de Castro JA. Redundancy and Complementarity between ERAP1 and ERAP2 Revealed by their Effects on the Behcet's Disease-associated HLA-B*51 Peptidome. Mol Cell Proteomics 2019; 18:1491-1510. [PMID: 31092671 PMCID: PMC6682995 DOI: 10.1074/mcp.ra119.001515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to be loaded onto HLA molecules, including the main risk factor for Behçet's disease HLA-B*51. ERAP1 is also a risk factor among HLA-B*51-positive individuals, whereas no association is known with ERAP2. This study addressed the mutual relationships between both enzymes in the processing of an HLA-bound peptidome, interrogating their differential association with Behçet's disease. CRISPR/Cas9 was used to generate knock outs of ERAP1, ERAP2 or both from transfectant 721.221-HLA-B*51:01 cells. The surface expression of HLA-B*51 was reduced in all cases. The effects of depleting each or both enzymes on the B*51:01 peptidome were analyzed by quantitative label-free mass spectrometry. Substantial quantitative alterations of peptide length, subpeptidome balance, N-terminal residue usage, affinity and presentation of noncanonical ligands were observed. These effects were often different in the presence or absence of the other enzyme, revealing their mutual dependence. In the absence of ERAP1, ERAP2 showed similar and significant processing of B*51:01 ligands, indicating functional redundancy. The high overlap between the peptidomes of wildtype and double KO cells indicates that a large majority of B*51:01 ligands are present in the ER even in the absence of ERAP1/ERAP2. These results indicate that both enzymes have distinct, but complementary and partially redundant effects on the B*51:01 peptidome, leading to its optimization and maximal surface expression. The distinct effects of both enzymes on the HLA-B*51 peptidome provide a basis for their differential association with Behçet's disease and suggest a pathogenetic role of the B*51:01 peptidome.
Collapse
Affiliation(s)
- Pablo Guasp
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Elena Lorente
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Eilon Barnea
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Paolo Romania
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Doriana Fruci
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - JonasJ W Kuiper
- ‖Department of Ophthalmology, Laboratory of Translational Immunology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Arie Admon
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
4
|
López de Castro JA. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front Immunol 2018; 9:2463. [PMID: 30425713 PMCID: PMC6219399 DOI: 10.3389/fimmu.2018.02463] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Four inflammatory diseases are strongly associated with Major Histocompatibility Complex class I (MHC-I) molecules: birdshot chorioretinopathy (HLA-A*29:02), ankylosing spondylitis (HLA-B*27), Behçet's disease (HLA-B*51), and psoriasis (HLA-C*06:02). The endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 are also risk factors for these diseases. Since both enzymes are involved in the final processing steps of MHC-I ligands it is reasonable to assume that MHC-I-bound peptides play a significant pathogenetic role. This review will mainly focus on recent studies concerning the effects of ERAP1 and ERAP2 polymorphism and expression on shaping the peptidome of disease-associated MHC-I molecules in live cells. These studies will be discussed in the context of the distinct mechanisms and substrate preferences of both enzymes, their different patterns of genetic association with various diseases, the role of polymorphisms determining changes in enzymatic activity or expression levels, and the distinct peptidomes of disease-associated MHC-I allotypes. ERAP1 and ERAP2 polymorphism and expression induce significant changes in multiple MHC-I-bound peptidomes. These changes are MHC allotype-specific and, without excluding a degree of functional inter-dependence between both enzymes, reflect largely separate roles in their processing of MHC-I ligands. The studies reviewed here provide a molecular basis for the distinct patterns of genetic association of ERAP1 and ERAP2 with disease and for the pathogenetic role of peptides. The allotype-dependent alterations induced on distinct peptidomes may explain that the joint association of both enzymes and unrelated MHC-I alleles influence different pathological outcomes.
Collapse
|
5
|
Guasp P, Barnea E, González-Escribano MF, Jiménez-Reinoso A, Regueiro JR, Admon A, López de Castro JA. The Behçet's disease-associated variant of the aminopeptidase ERAP1 shapes a low-affinity HLA-B*51 peptidome by differential subpeptidome processing. J Biol Chem 2017; 292:9680-9689. [PMID: 28446606 DOI: 10.1074/jbc.m117.789180] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/21/2017] [Indexed: 01/05/2023] Open
Abstract
A low-activity variant of endoplasmic reticulum aminopeptidase 1 (ERAP1), Hap10, is associated with the autoinflammatory disorder Behçet's disease (BD) in epistasis with HLA-B*51, which is the main risk factor for this disorder. The role of Hap10 in BD pathogenesis is unknown. We sought to define the effects of Hap10 on the HLA-B*51 peptidome and to distinguish these effects from those due to HLA-B*51 polymorphisms unrelated to disease. The peptidome of the BD-associated HLA-B*51:08 subtype expressed in a Hap10-positive cell line was isolated, characterized by mass spectrometry, and compared with the HLA-B*51:01 peptidome from cells expressing more active ERAP1 allotypes. We additionally performed synthetic peptide digestions with recombinant ERAP1 variants and estimated peptide-binding affinity with standard algorithms. In the BD-associated ERAP1 context of B*51:08, longer peptides were generated; of the two major HLA-B*51 subpeptidomes with Pro-2 and Ala-2, the former one was significantly reduced, and the latter was increased and showed more ERAP1-susceptible N-terminal residues. These effects were readily explained by the low activity of Hap10 and the differential susceptibility of X-Pro and X-Ala bonds to ERAP1 trimming and together resulted in a significantly altered peptidome with lower affinity. The differences due to ERAP1 were clearly distinguished from those due to HLA-B*51 subtype polymorphism, which affected residue frequencies at internal positions of the peptide ligands. The alterations in the nature and affinity of HLA-B*51·peptide complexes probably affect T-cell and natural killer cell recognition, providing a sound basis for the joint association of ERAP1 and HLA-B*51 with BD.
Collapse
Affiliation(s)
- Pablo Guasp
- From the Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), 28049 Madrid, Spain
| | - Eilon Barnea
- the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Anaïs Jiménez-Reinoso
- the Department of Immunology, Hospital 12 de Octubre Health Research Institute (imas12), Complutense University School of Medicine, 28040 Madrid, Spain
| | - José R Regueiro
- the Department of Immunology, Hospital 12 de Octubre Health Research Institute (imas12), Complutense University School of Medicine, 28040 Madrid, Spain
| | - Arie Admon
- the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - José A López de Castro
- From the Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), 28049 Madrid, Spain,
| |
Collapse
|
6
|
Molecular and pathogenic effects of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated inflammatory disorders: Towards a unifying view. Mol Immunol 2016; 77:193-204. [DOI: 10.1016/j.molimm.2016.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022]
|
7
|
Guasp P, Alvarez-Navarro C, Gomez-Molina P, Martín-Esteban A, Marcilla M, Barnea E, Admon A, López de Castro JA. The Peptidome of Behçet's Disease-Associated HLA-B*51:01 Includes Two Subpeptidomes Differentially Shaped by Endoplasmic Reticulum Aminopeptidase 1. Arthritis Rheumatol 2016; 68:505-15. [PMID: 26360328 DOI: 10.1002/art.39430] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To characterize the peptidome of the Behçet's disease-associated HLA-B*51:01 allotype as well as the differential features of major peptide subsets and their distinct endoplasmic reticulum aminopeptidase 1 (ERAP-1)-mediated processing. METHODS The endogenous B*51:01-bound peptidome was characterized from 721.221 transfectant cells, after affinity chromatography and acid extraction, by tandem mass spectrometry. Recombinant ERAP-1 variants were used to digest synthetic B*51:01 ligands. HLA and transporter associated with antigen processing (TAP) binding affinities of peptide ligands were calculated with well-established algorithms. ERAP-1 and ERAP-2 from 721.221 cells were characterized by genomic sequencing and Western blotting. RESULTS The B*51:01 peptidome consisted of 29.5% octamers, 61.7% nonamers, 4.8% decamers, and 4.0% longer peptides. The major peptide motif consisted of Pro and Ala at position 2, aliphatic/aromatic position 3 residues, and Val and Ile at the C-terminal position. The ligands with Pro or Ala at position 2 constituted 2 distinct subpeptidomes. Peptides with Pro at position 2 showed higher affinity for B*51:01 and lower affinity for TAP than those with Ala at position 2. Most important, both peptide subsets differed drastically in the susceptibility of their position 1 residues to ERAP-1, revealing a distinct influence of this enzyme on both subpeptidomes, which may alter their balance, affecting the global affinity of B*51:01-peptide complexes. CONCLUSION ERAP-1 has a significant influence on the B*51:01 peptidome and its affinity. This influence is based on very distinct effects on the 2 subpeptidomes, whereby only peptides in the subpeptidome with Ala at position 2 are extensively destroyed, except when their position 1 residues are ERAP-1 resistant. This pattern provides a mechanism for the epistatic association of ERAP-1 and B*51:01 in Behçet's disease.
Collapse
Affiliation(s)
- Pablo Guasp
- CSIC, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | | | | | | | | | - Eilon Barnea
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
8
|
|
9
|
Distinct HIV-1 escape patterns selected by cytotoxic T cells with identical epitope specificity. J Virol 2012; 87:2253-63. [PMID: 23236061 DOI: 10.1128/jvi.02572-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pol283-8-specific, HLA-B*51:01-restricted, cytotoxic T cells (CTLs) play a critical role in the long-term control of HIV-1 infection. However, these CTLs select for the reverse transcriptase (RT) I135X escape mutation, which may be accumulating in circulating HIV-1 sequences. We investigated the selection of the I135X mutation by CTLs specific for the same epitope but restricted by HLA-B*52:01. We found that Pol283-8-specific, HLA-B*52:01-restricted CTLs were elicited predominantly in chronically HIV-1-infected individuals. These CTLs had a strong ability to suppress the replication of wild-type HIV-1, though this ability was weaker than that of HLA-B*51:01-restricted CTLs. The crystal structure of the HLA-B*52:01-Pol283-8 peptide complex provided clear evidence that HLA-B*52:01 presents the peptide similarly to HLA-B*51:01, ensuring the cross-presentation of this epitope by both alleles. Population level analyses revealed a strong association of HLA-B*51:01 with the I135T mutant and a relatively weaker association of HLA-B*52:01 with several I135X mutants in both Japanese and predominantly Caucasian cohorts. An in vitro viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of the I135X mutant viruses, indicating the selection of these mutants by the CTLs. These results suggest that the different pattern of I135X mutant selection may have resulted from the difference between these two CTLs in the ability to suppress HIV-1 replication.
Collapse
|
10
|
|
11
|
Ueno T, Tomiyama H, Takiguchi M. Single T cell receptor-mediated recognition of an identical HIV-derived peptide presented by multiple HLA class I molecules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4961-9. [PMID: 12391209 DOI: 10.4049/jimmunol.169.9.4961] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A dual specific human CTL clone harboring one beta and two inframe alpha transcripts of TCR was previously reported to recognize an HIV Pol-derived nonapeptide (IPLTEEAEL) endogenously presented by both syngeneic HLA-B*3501 and HLA-B*5101. In the current study, a retrovirus-mediated TCR transfer of individual alpha- and beta-chains to TCR-negative hybridoma showed that Valpha12.1 TCR in complex with Vbeta5.6 were responsible for the peptide-specific response in the context of both HLA-B*3501 and HLA-B*5101, confirming single TCR-mediated dual specificity. The second TCR-alpha chain was not somehow expressed on the cell surface. Remarkably, the Valpha12.1/Vbeta5.6 TCR also recognized the same peptide presented by allogeneic HLA class I molecules that share the similar peptide-binding motifs, such as HLA-B*5301 and HLA-B*0702. The sensitivity of peptide recognition by the Valpha12/Vbeta5.6 TCR appeared to be comparable when the peptide was presented by syngeneic and allogeneic HLA class I molecules, with changes in T cell responsiveness caused largely by peptide-binding capacity. Moreover, the CTL clone bearing Valpha12.1/Vbeta5.6 TCR showed substantial cytolytic activity against the peptide-loaded cells expressing HLA-B*3501, HLA-B*5101, HLA-B*5301, or HLA-B*0702, providing further evidence that a single TCR complex can recognize the same peptide presented by a broad range of HLA class I molecules. A TCR with fine specificity for an HIV Ag but broad specificity to multiple HLA molecules may provide an advantage to the generation of allorestricted, peptide-specific T cells, and thus could be a potent candidate for immunotherapy against HIV infection.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/physiology
- Clone Cells
- Cloning, Molecular
- Cytotoxicity, Immunologic/genetics
- Gene Products, pol/immunology
- Gene Products, pol/metabolism
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- HIV-1/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HLA Antigens/metabolism
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- HLA-B35 Antigen/immunology
- HLA-B35 Antigen/metabolism
- HLA-B51 Antigen
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Hybridomas
- Mice
- Molecular Sequence Data
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Takamasa Ueno
- Division of Viral Immunology, Center for AIDS Research, Kumamoto University, Japan
| | | | | |
Collapse
|
12
|
Abstract
This article reviews the newly released JenPep database and two new powerful techniques for T-cell epitope prediction: (i) the additive method; and (ii) a 3D-Quantitative Structure Activity Relationships (3D-QSAR) method, based on Comparative Molecular Similarity Indices Analysis (CoMSIA). The JenPep database is a family of relational databases supporting the growing need of immunoinformaticians for quantitative data on peptide binding to major histocompatibility complexes and to the Transporters associated with Antigen Processing (TAP). It also contains an annotated list of T-cell epitopes. The database is available free via the Internet (http://www.jenner.ac.uk/JenPep). The additive prediction method is based on the assumption that the binding affinity of a peptide depends on the contributions from each amino acid as well as on the interactions between the adjacent and every second side-chain. In the 3D-QSAR approach, the influence of five physicochemical properties (steric bulk, electrostatic potential, local hydrophobicity, hydrogen-bond donor and hydrogen-bond acceptor abilities) on the affinity of peptides binding to MHC molecules were considered. Both methods were exemplified through their application to the well-studied problem of peptides binding to the human class I MHC molecule HLA-A*0201.
Collapse
Affiliation(s)
- Irini A Doytchinova
- Edward Jenner Institute for Vaccine Research, Compton, Berkshire, United Kingdom
| | | |
Collapse
|
13
|
Maenaka K, Maenaka T, Tomiyama H, Takiguchi M, Stuart DI, Jones EY. Nonstandard peptide binding revealed by crystal structures of HLA-B*5101 complexed with HIV immunodominant epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3260-7. [PMID: 10975842 DOI: 10.4049/jimmunol.165.6.3260] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The crystal structures of the human MHC class I allele HLA-B*5101 in complex with 8-mer, TAFTIPSI, and 9-mer, LPPVVAKEI, immunodominant peptide epitopes from HIV-1 have been determined by x-ray crystallography. In both complexes, the hydrogen-bonding network in the N-terminal anchor (P1) pocket is rearranged as a result of the replacement of the standard tyrosine with histidine at position 171. This results in a nonstandard positioning of the peptide N terminus, which is recognized by B*5101-restricted T cell clones. Unexpectedly, the P5 peptide residues appear to act as anchors, drawing the peptides unusually deeply into the peptide-binding groove of B51. The unique characteristics of P1 and P5 are likely to be responsible for the zig-zag conformation of the 9-mer peptide and the slow assembly of B*5101. A comparison of the surface characteristics in the alpha1-helix C-terminal region for B51 and other MHC class I alleles highlights mainly electrostatic differences that may be important in determining the specificity of human killer cell Ig-like receptor binding.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Animals
- Binding Sites/immunology
- Cell Line
- Computer Simulation
- Cross Reactions
- Crystallography, X-Ray
- Cytotoxicity Tests, Immunologic
- HIV-1/chemistry
- HIV-1/immunology
- HIV-1/metabolism
- HLA-B Antigens/chemistry
- HLA-B Antigens/metabolism
- HLA-B51 Antigen
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macromolecular Substances
- Mice
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Protein Conformation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Receptors, KIR
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- K Maenaka
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|