1
|
Zuo S, Zhao J, Zhang P, Liu W, Bi K, Wei P, Lian J, Xu Z. Efficient production of l-glutathione by whole-cell catalysis with ATP regeneration from adenosine. Biotechnol Bioeng 2024; 121:2121-2132. [PMID: 38629468 DOI: 10.1002/bit.28711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
l-glutathione (GSH) is an important tripeptide compound with extensive applications in medicine, food additives, and cosmetics industries. In this work, an innovative whole-cell catalytic strategy was developed to enhance GSH production by combining metabolic engineering of GSH biosynthetic pathways with an adenosine-based adenosine triphosphate (ATP) regeneration system in Escherichia coli. Concretely, to enhance GSH production in E. coli, several genes associated with GSH and l-cysteine degradation, as well as the branched metabolic flow, were deleted. Additionally, the GSH bifunctional synthase (GshFSA) and GSH ATP-binding cassette exporter (CydDC) were overexpressed. Moreover, an adenosine-based ATP regeneration system was first introduced into E. coli to enhance GSH biosynthesis without exogenous ATP additions. Through the optimization of whole-cell catalytic conditions, the engineered strain GSH17-FDC achieved an impressive GSH titer of 24.19 g/L only after 2 h reaction, with a nearly 100% (98.39%) conversion rate from the added l-Cys. This work not only unveils a new platform for GSH production but also provides valuable insights for the production of other high-value metabolites that rely on ATP consumption.
Collapse
Affiliation(s)
- Siqi Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiarun Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Pengfei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Peilian Wei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang L, Guo Y, Shen Y, Yang K, Cai X, Zhang B, Liu Z, Zheng Y. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli. Biotechnol Adv 2024; 73:108353. [PMID: 38593935 DOI: 10.1016/j.biotechadv.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yingying Guo
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yizhou Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
3
|
Bhardwaj K, Kalita A, Verma N, Prakash A, Thakur R, Dutta D. Rho-dependent termination enables cellular pH homeostasis. J Bacteriol 2024; 206:e0035623. [PMID: 38169297 PMCID: PMC10810219 DOI: 10.1128/jb.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand Prakash
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Ruchika Thakur
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
4
|
Caballero Cerbon DA, Gebhard L, Dokuyucu R, Ertl T, Härtl S, Mazhar A, Weuster-Botz D. Challenges and Advances in the Bioproduction of L-Cysteine. Molecules 2024; 29:486. [PMID: 38257399 PMCID: PMC10821248 DOI: 10.3390/molecules29020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
L-cysteine is a proteogenic amino acid with many applications in the pharmaceutical, food, animal feed, and cosmetic industries. Due to safety and environmental issues in extracting L-cysteine from animal hair and feathers, the fermentative production of L-cysteine offers an attractive alternative using renewable feedstocks. Strategies to improve microbial production hosts like Pantoea ananatis, Corynebacterium glutamicum, Pseudomonas sp., and Escherichia coli are summarized. Concerning the metabolic engineering strategies, the overexpression of feedback inhibition-insensitive L-serine O-acetyltransferase and weakening the degradation of L-cysteine through the removal of L-cysteine desulfhydrases are crucial adjustments. The overexpression of L-cysteine exporters is vital to overcome the toxicity caused by intracellular accumulating L-cysteine. In addition, we compiled the process engineering aspects for the bioproduction of L-cysteine. Utilizing the energy-efficient sulfur assimilation pathway via thiosulfate, fermenting cheap carbon sources, designing scalable, fed-batch processes with individual feedings of carbon and sulfur sources, and implementing efficient purification techniques are essential for the fermentative production of L-cysteine on an industrial scale.
Collapse
Affiliation(s)
- Daniel Alejandro Caballero Cerbon
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| | - Leon Gebhard
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany
| | - Ruveyda Dokuyucu
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Theresa Ertl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Sophia Härtl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Ayesha Mazhar
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| |
Collapse
|
5
|
Yang H, Zhang B, Wu ZD, Chen LF, Pan JY, Xiu XL, Cai X, Liu ZQ, Zheng YG. Combinatorial Metabolic Engineering of Escherichia coli for Enhanced L-Cysteine Production: Insights into Crucial Regulatory Modes and Optimization of Carbon-Sulfur Metabolism and Cofactor Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13409-13418. [PMID: 37639615 DOI: 10.1021/acs.jafc.3c03709] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Microbial production of valuable compounds can be enhanced by various metabolic strategies. This study proposed combinatorial metabolic engineering to develop an effective Escherichia coli cell factory dedicated to L-cysteine production. First, the crucial regulatory modes that control L-cysteine levels were investigated to guide metabolic modifications. A two-stage fermentation was achieved by employing multi-copy gene expression, improving the balance between production and growth. Subsequently, carbon flux distribution was further optimized by modifying the C1 unit metabolism and the glycolytic pathway. The modifications of sulfur assimilation demonstrated superior performance of thiosulfate utilization pathways in enhancing L-cysteine titer. Furthermore, the studies focusing on cofactor availability and preference emphasized the vital role of synergistic enhancement of sulfur-carbon metabolism in L-cysteine overproduction. In a 5 L bioreactor, the strain BW15-3/pED accumulated 12.6 g/L of L-cysteine. This work presented an effective metabolic engineering strategy for the development of L-cysteine-producing strains.
Collapse
Affiliation(s)
- Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zi-Dan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Li-Feng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jia-Yuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiao-Ling Xiu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
6
|
Zhang B, Yang H, Wu Z, Pan J, Li S, Chen L, Cai X, Liu Z, Zheng Y. Spatiotemporal Gene Expression by a Genetic Circuit for Chemical Production in Escherichia coli. ACS Synth Biol 2023; 12:768-779. [PMID: 36821871 DOI: 10.1021/acssynbio.2c00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Gene expression in spatiotemporal distribution improves the ability of cells to respond to changing environments. For microbial cell factories in artificial environments, reconstruction of the target compound's biosynthetic pathway in a new spatiotemporal dimension/scale promotes the production of chemicals. Here, a genetic circuit based on the Esa quorum sensing and lac operon was designed to achieve the dynamic temporal gene expression. Meanwhile, the pathway was regulated by an l-cysteine-specific sensor and relocalized to the plasma membrane for further flux enhancement to l-cysteine and toxicity reduction on a spatial scale. Finally, the integrated spatiotemporal regulation circuit for l-cysteine biosynthesis enabled a 14.16 g/L l-cysteine yield in Escherichia coli. Furthermore, this spatiotemporal regulation circuit was also applied in our previously constructed engineered strain for pantothenic acid, methionine, homoserine, and 2-aminobutyric acid production, and the titer increased by 29, 33, 28, and 41%, respectively. These results highlighted the applicability of our spatiotemporal regulation circuit to enhance the performance of microbial cell factories.
Collapse
Affiliation(s)
- Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zidan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiayuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shirong Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lifeng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Mindt M, Ferrer L, Bosch D, Cankar K, Wendisch VF. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023; 107:1621-1634. [PMID: 36786915 PMCID: PMC10006044 DOI: 10.1007/s00253-023-12397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Indole has an increasing interest in the flavor and fragrance industry. It is used in dairy products, tea drinks, and fine fragrances due to its distinct floral odor typical of jasmine blossoms. The current production of indole based on isolation from coal tar is non-sustainable and its isolation from plants is often unprofitable due to low yields. To offer an alternative to the conventional production, biosynthesis of indole has been studied recently. A glucose-based indole production was achieved by employing the Corynebacterium glutamicum tryptophan synthase α-subunit (TrpA) or indole-3-glycerol phosphate lyase (IGL) from wheat Triticum aestivum in a genetically-engineered C. glutamicum strain. In addition, a highly efficient bioconversion process using C. glutamicum heterologously expressing tryptophanase gene (tnaA) from Providencia rettgeri as a biocatalyst was developed. In this work, de novo indole production from glucose was enabled by expressing the P. rettgeri tnaA in a tryptophan-producing C. glutamicum strain. By metabolic engineering of a C. glutamicum shikimate accumulating base strain, tryptophan production of 2.14 ± 0.02 g L-1 was achieved. Introduction of the tryptophanase form P. rettgeri enabled indole production, but to low titers, which could be improved by sequestering indole into the water-immiscible solvent tributyrin during fermentation and a titer of 1.38 ± 0.04 g L-1 was achieved. The process was accelerated by decoupling growth from production increasing the volumetric productivity about 4-fold to 0.08 g L-1 h-1. KEY POINTS: • Efficient de novo indole production via tryptophanases from glucose • Increased indole titers by product sequestration and improved precursor supply • Decoupling growth from production accelerated indole production.
Collapse
Affiliation(s)
- Melanie Mindt
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.,Translational Pharmacology, Faculty of Medicine OWL, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Katarina Cankar
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Niu K, Fu Q, Mei ZL, Ge LR, Guan AQ, Liu ZQ, Zheng YG. High-Level Production of l-Methionine by Dynamic Deregulation of Metabolism with Engineered Nonauxotroph Escherichia coli. ACS Synth Biol 2023; 12:492-501. [PMID: 36701126 DOI: 10.1021/acssynbio.2c00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
l-Methionine is the only sulfur-containing amino acid among the essential amino acids, and it is mainly produced by the chemical method in industry so far. The fermentation production of l-methionine by genetically engineered strains is an attractive alternative. Due to the complex metabolic mechanism and multilevel regulation of the synthesis pathway in the organism, the fermentation production of l-methionine by genetically engineered strains was still not satisfied. In this study, the biosynthesis pathway of l-methionine was regulated based on the previous studies. As the competitive pathway and an essential amino acid for cell growth, the biosynthesis pathway of l-lysine was first repaired by complementation of the lysA gene in situ on the genome and then replaced the in situ promoter with the dynamically regulated promoter PfliA to construct a nonauxotroph strain. In addition, the central metabolic pathway and l-cysteine catabolism pathway were further modified to promote the cell growth and enhance the l-methionine production. Finally, the l-methionine fermentation yield in a 5 L bioreactor reached 17.74 g/L without adding exogenous amino acids. These strategies can effectively balance the contradiction between cell growth and l-methionine production and alleviate the complexity of fermentation operation and the cost with auxotroph strains, which provide a reference for the industrial production of l-methionine by microbial fermentation.
Collapse
Affiliation(s)
- Kun Niu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiang Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zi-Long Mei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li-Rong Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - An-Qi Guan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Production of indole and hydrogen sulfide by the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 contributes to form a hypoxic microenvironment. Arch Microbiol 2022; 204:486. [PMID: 35834134 DOI: 10.1007/s00203-022-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.
Collapse
|
10
|
Usuda Y, Nishio Y, Nonaka G, Hara Y. Microbial Production Potential of Pantoea ananatis: From Amino Acids to Secondary Metabolites. Microorganisms 2022; 10:microorganisms10061133. [PMID: 35744651 PMCID: PMC9231021 DOI: 10.3390/microorganisms10061133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pantoea ananatis, a gram-negative bacterium belonging to the Erwiniaceae family, is a well-known phytopathogen isolated from many ecological niches and plant hosts. However, this bacterium also provides us with various beneficial characteristics, such as the growth promotion of their host plants and increased crop yield. Some isolated non-pathogenic strains are promising for the microbial production of useful substances. P. ananatis AJ13355 was isolated as an acidophilic bacterium and was used as an excellent host to produce L-glutamic acid under acidic conditions. The genome sequence of P. ananatis AJ13355 was determined, and specific genome-engineering technologies were developed. As a result, P. ananatis was successfully used to construct a bacterial strain that produces cysteine, a sulfur-containing amino acid that has been difficult to produce through fermentation because of complex regulation. Furthermore, by heterologous expression including plant-derived genes, construction of a strain that produces isoprenoids such as isoprene and linalool as secondary metabolites was achieved. P. ananatis is shown to be a useful host for the production of secondary metabolites, as well as amino acids, and is expected to be used as a platform for microbial production of bioactive substances, aromatic substances, and other high-value-added substances of plant origin in the future.
Collapse
Affiliation(s)
- Yoshihiro Usuda
- Research and Business Planning Department, Ajinomoto Co., Inc., Tokyo 104-8315, Japan
- Correspondence: ; Tel.: +81-70-4361-3762; Fax: +81-3-5250-8352
| | - Yousuke Nishio
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (Y.N.); (Y.H.)
| | - Gen Nonaka
- Ajinomoto-Genetika Research Institute, Moscow 117545, Russia;
| | - Yoshihiko Hara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (Y.N.); (Y.H.)
| |
Collapse
|
11
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
12
|
Imura M, Etoh S, Iwakiri R, Okano K, Honda K. Improvement of production yield of l-cysteine through in vitro metabolic pathway with thermophilic enzymes. J Biosci Bioeng 2021; 132:585-591. [PMID: 34600806 DOI: 10.1016/j.jbiosc.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023]
Abstract
The demand for the amino acid l-cysteine is increasing in the food, cosmetic, and pharmaceutical industries. Conventionally, the commercial production of l-cysteine is achieved by its extraction from the acid hydrolysate of hair and feathers. However, this production method is associated with the release of environmentally hazardous wastewater. Additionally, l-cysteine produced from animal sources cannot be halal-certified, which limits the market size. Although recent studies have developed an alternative commercial l-cysteine production method based on microbial fermentation, the production yield was insufficient owing to the cytotoxicity of l-cysteine against the host cells. In a previous study, we had developed an in vitrol-cysteine production method with a combination of 11 thermophilic enzymes, which yielded 10.5 mM l-cysteine from 20 mM glucose. In this study, we performed re-screening for enzymes catalyzing the rate-limiting steps of the in vitro pathway. Subsequently, the genes encoding enzymes necessary for the in vitro synthesis of l-cysteine were assembled in an expression vector and co-expressed in a single strain. To prevent the synthesis of hydrogen peroxide (H2O2), which is a byproduct and inhibits the enzyme activity, the redox balance in this biosynthetic pathway was maintained by replacing the H2O2-forming NADH oxidase with another enzymatic reaction in which pyruvate was used as a sacrificial substrate. The re-designed in vitro synthetic pathway resulted in the production of 28.2 mM l-cysteine from 20 mM glucose with a molar yield of 70.5%.
Collapse
Affiliation(s)
- Makoto Imura
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan
| | - Shinichi Etoh
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan
| | - Ryo Iwakiri
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan
| | - Kenji Okano
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
14
|
Sherman MW, Sandeep S, Contreras LM. The Tryptophan-Induced tnaC Ribosome Stalling Sequence Exposes High Amino Acid Cross-Talk That Can Be Mitigated by Removal of NusB for Higher Orthogonality. ACS Synth Biol 2021; 10:1024-1038. [PMID: 33835775 DOI: 10.1021/acssynbio.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing number of engineered synthetic circuits have employed biological parts coupling transcription and translation in bacterial systems to control downstream gene expression. One such example, the leader sequence of the tryptophanase (tna) operon, is a transcription-translation system commonly employed as an l-tryptophan inducible circuit controlled by ribosome stalling. While induction of the tna operon has been well-characterized in response to l-tryptophan, cross-talk of this modular component with other metabolites in the cell, such as other naturally occurring amino acids, has been less explored. In this study, we investigated the impact of natural metabolites and E. coli host factors on induction of the tna leader sequence. To do so, we constructed and biochemically validated an experimental assay using the tna operon leader sequence to assess differential regulation of transcription elongation and translation in response to l-tryptophan. Operon induction was then assessed following addition of each of the 20 naturally occurring amino acids to discover that several additional amino acids (e.g., l-alanine, l-cysteine, l-glycine, l-methionine, and l-threonine) also induce expression of the tna leader sequence. Following characterization of dose-dependent induction by l-cysteine relative to l-tryptophan, the effect on induction by single gene knockouts of protein factors associated with transcription and/or translation were interrogated. Our results implicate the endogenous cellular protein, NusB, as an important factor associated with induction of the operon by the alternative amino acids. As such, removal of the nusB gene from strains intended for tryptophan-sensing utilizing the tna leader region reduces amino acid cross-talk, resulting in enhanced orthogonal control of this commonly used synthetic system.
Collapse
Affiliation(s)
- Mark W. Sherman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Sanjna Sandeep
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| |
Collapse
|
15
|
Gallardo-Benavente C, Campo-Giraldo JL, Castro-Severyn J, Quiroz A, Pérez-Donoso JM. Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Genes (Basel) 2021; 12:187. [PMID: 33514061 PMCID: PMC7912247 DOI: 10.3390/genes12020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, 4780000 Temuco, Chile;
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - Jessica L. Campo-Giraldo
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, 1240000 Antofagasta, Chile;
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| |
Collapse
|
16
|
Liu H, Wang Y, Hou Y, Li Z. Fitness of Chassis Cells and Metabolic Pathways for l-Cysteine Overproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14928-14937. [PMID: 33264003 DOI: 10.1021/acs.jafc.0c06134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
l-Cysteine is a ubiquitous and unique sulfur-containing amino acid with numerous applications in agricultural and food industries. The efficient production of l-cysteine via microbial fermentation has received a great deal of attention. In this study, the fitness of different Escherichia coli K-12 strains harboring plasmid pLH03 was investigated. The enhancement of the precursor synthetic pathway and thiosulfate assimilation pathway resulted in the good performance of the E. coli BW25113 strain. The expression levels of synthetic pathway genes were optimized by two constitutive promoters to assess their effects on cysteine production. In conjunction, the main degradation pathway genes were also deleted for more efficient production of cysteine. l-Cysteine production was further increased through the manipulation of the sulfur transcription regulator cysB and sulfur supplementation. After process optimization in a 1.5 L bioreactor, LH2A1M0BΔYTS-pLH03 [BW25113 Ptrc2-serA Ptrc1-cysMPtrc-cysBΔyhaMΔtnaAΔsdaA-(pLH03)] accumulated 8.34 g/L cysteine, laying a foundation for application in the cysteine fermentation industry.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yehua Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
17
|
Ma N, Sha Z, Sun C. Formation of cadmium sulfide nanoparticles mediates cadmium resistance and light utilization of the deep-sea bacterium Idiomarina sp. OT37-5b. Environ Microbiol 2020; 23:934-948. [PMID: 32815245 DOI: 10.1111/1462-2920.15205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/16/2020] [Indexed: 01/10/2023]
Abstract
Heavy metal is one of the major factors threatening the survival of microorganisms. Here, a deep-sea bacterium designated Idiomarina sp. OT37-5b possessing strong cadmium (Cd) tolerance was isolated from a typical hydrothermal vent. Both the Cd-resistance and removal efficiency of Idiomarina sp. OT37-5b were significantly promoted by the supplement of cysteine and meanwhile large amount of CdS nanoparticles were observed. Production of H2 S from cysteine catalysed by methionine gamma-lyase was further demonstrated to contribute to the formation of CdS nanoparticles. Proteomic results showed the addition of cysteine effectively enhanced the efflux of Cd, improved the activities of reactive oxygen species scavenging enzymes, and thereby boosted the nitrogen reduction and energy production of Idiomarina sp. OT37-5b. Notably, the existence of CdS nanoparticles obviously promoted the growth of Idiomarina sp. OT37-5b when exposed to light, indicating this bacterium might grab light energy through CdS nanoparticles. Proteomic analysis revealed the expression levels of essential components for light utilization including electron transport, cytochrome complex and F-type ATPase were significantly up-regulated, which strongly suggested the formation of CdS nanoparticles promoted light utilization and energy production. Our results provide a good model to investigate the uncovered mechanisms of self-photosensitization of nonphotosynthetic bacteria for light-to-chemical production in the deep biosphere.
Collapse
Affiliation(s)
- Ning Ma
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Centre of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhongli Sha
- Centre of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Centre of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
18
|
Cotton CAR, Bernhardsgrütter I, He H, Burgener S, Schulz L, Paczia N, Dronsella B, Erban A, Toman S, Dempfle M, De Maria A, Kopka J, Lindner SN, Erb TJ, Bar-Even A. Underground isoleucine biosynthesis pathways in E. coli. eLife 2020; 9:e54207. [PMID: 32831171 PMCID: PMC7476758 DOI: 10.7554/elife.54207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a wild-type strain when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.
Collapse
Affiliation(s)
| | | | - Hai He
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Simon Burgener
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Luca Schulz
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Stepan Toman
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Marian Dempfle
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Alberto De Maria
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | | | - Tobias J Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| |
Collapse
|
19
|
Thomas SA, Catty P, Hazemann JL, Michaud-Soret I, Gaillard JF. The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism. Metallomics 2020; 11:1219-1229. [PMID: 31143907 DOI: 10.1039/c9mt00077a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biogenic thiols, such as cysteine, have been used to control the speciation of Hg(ii) in bacterial exposure experiments. However, the extracellular biodegradation of excess cysteine leads to the formation of Hg(ii)-sulfide species, convoluting the interpretation of Hg(ii) uptake results. Herein, we test the hypothesis that Hg(ii)-sulfide species formation is a critical step during bacterial Hg(ii) uptake in the presence of excess cysteine. An Escherichia coli (E. coli) wild-type and mutant strain lacking the decR gene that regulates cysteine degradation to sulfide were exposed to 50 and 500 nM Hg with 0 to 2 mM cysteine. The decR mutant released ∼4 times less sulfide from cysteine degradation compared to the wild-type for all tested cysteine concentrations during a 3 hour exposure period. We show with thermodynamic calculations that the predicted concentration of Hg(ii)-cysteine species remaining in the exposure medium (as opposed to forming HgS(s)) is a good proxy for the measured concentration of dissolved Hg(ii) (i.e., not cell-bound). Likewise, the measured cell-bound Hg(ii) correlates with thermodynamic calculations for HgS(s) formation in the presence of cysteine. High resolution X-ray absorption near edge structure (HR-XANES) spectra confirm the existence of cell-associated HgS(s) at 500 nM total Hg and suggest the formation of Hg-S clusters at 50 nM total Hg. Our results indicate that a speciation change to Hg(ii)-sulfide controls Hg(ii) cell-association in the presence of excess cysteine.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| | - Patrice Catty
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | | | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
20
|
Yamazaki S, Ziyatdinov MK, Nonaka G. Fermentative production of sulfur-containing amino acid with engineering putative l-cystathionine and l-cysteine uptake systems in Escherichia coli. J Biosci Bioeng 2020; 130:14-19. [PMID: 32217026 DOI: 10.1016/j.jbiosc.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/25/2022]
Abstract
Here, proteins involved in sulfur-containing amino acid uptake in Escherichia coli strains were investigated with the aim of applying the findings in fermentative amino acid production. A search of genes in an l-methionine auxotrophic strain library suggested YecSC as the putative transporter of l-cystathionine. l-Methionine production increased by 15% after amplification of yecSC in producer strains. A candidate protein responsible for l-cysteine uptake was also found by experimentation with multicopy suppressor E. coli strains that recovered from growth defects caused by l-cysteine auxotrophy. Based on the results of an uptake assay, growth using l-cysteine as a sole sulfur source, and sensitivity to l-cysteine toxicity, we proposed that YeaN is an l-cysteine transporter. l-Cysteine production increased by 50% as a result of disrupting yeaN in producer strain. The study of amino acid transporters is valuable to industrialized amino acid production and also sheds light on the role of these transporters in sulfur assimilation.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Mikhail Kharisovich Ziyatdinov
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan; Ajinomoto-Genetika Research Institute, 117545 Moscow, Russia
| | - Gen Nonaka
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan; Ajinomoto-Genetika Research Institute, 117545 Moscow, Russia.
| |
Collapse
|
21
|
Gallardo-Benavente C, Carrión O, Todd JD, Pieretti JC, Seabra AB, Durán N, Rubilar O, Pérez-Donoso JM, Quiroz A. Biosynthesis of CdS Quantum Dots Mediated by Volatile Sulfur Compounds Released by Antarctic Pseudomonas fragi. Front Microbiol 2019; 10:1866. [PMID: 31456780 PMCID: PMC6700389 DOI: 10.3389/fmicb.2019.01866] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Previously we reported the biosynthesis of intracellular cadmium sulfide quantum dots (CdS QDs) at low temperatures by the Antarctic strain Pseudomonas fragi GC01. Here we studied the role of volatile sulfur compounds (VSCs) in the biosynthesis of CdS QDs by P. fragi GC01. The biosynthesis of nanoparticles was evaluated in the presence of sulfate, sulfite, thiosulfate, sulfide, cysteine and methionine as sole sulfur sources. Intracellular biosynthesis occurred with all sulfur sources tested. However, extracellular biosynthesis was observed only in cultures amended with cysteine (Cys) and methionine (Met). Extracellular nanoparticles were characterized by dynamic light scattering, absorption and emission spectra, energy dispersive X-ray, atomic force microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Purified QDs correspond to cubic nanocrystals of CdS with sizes between 2 and 16 nm. The analysis of VSCs revealed that P. fragi GC01 produced hydrogen sulfide (H2S), methanethiol (MeSH) and dimethyl sulfide (DMS) in the presence of sulfate, Met or Cys. Dimethyl disulfide (DMDS) was only detected in the presence of Met. Interestingly, MeSH was the main VSC produced in this condition. In addition, MeSH was the only VSC for which the concentration decreased in the presence of cadmium (Cd) of all the sulfur sources tested, suggesting that this gas interacts with Cd to form nanoparticles. The role of MeSH and DMS on Cds QDs biosynthesis was evaluated in two mutants of the Antarctic strain Pseudomonas deceptionensis M1T: megL - (unable to produce MeSH from Met) and mddA - (unable to generate DMS from MeSH). No biosynthesis of QDs was observed in the megL - strain, confirming the importance of MeSH in QD biosynthesis. In addition, the production of QDs in the mddA - strain was not affected, indicating that DMS is not a substrate for the biosynthesis of nanoparticles. Here, we confirm a link between MeSH production and CdS QDs biosynthesis when Met is used as sole sulfur source. This work represents the first report that directly associates the production of MeSH with the bacterial synthesis of QDs, thus revealing the importance of different VSCs in the biological generation of metal sulfide nanostructures.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ornella Carrión
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Joana C. Pieretti
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Amedea B. Seabra
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Nelson Durán
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
- Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
22
|
Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y. Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl Microbiol Biotechnol 2018; 103:1325-1338. [DOI: 10.1007/s00253-018-9547-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
23
|
Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, James AG, Thomas GH, Newstead S. Structural basis of malodour precursor transport in the human axilla. eLife 2018; 7:e34995. [PMID: 29966586 PMCID: PMC6059767 DOI: 10.7554/elife.34995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023] Open
Abstract
Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.
Collapse
Affiliation(s)
- Gurdeep S Minhas
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Daniel Bawdon
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Reyme Herman
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Andrew P Stone
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Gavin H Thomas
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Simon Newstead
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
24
|
Sergeeva OV, Bredikhin DO, Nesterchuk MV, Serebryakova MV, Sergiev PV, Dontsova OA. Possible Role of Escherichia coli Protein YbgI. BIOCHEMISTRY (MOSCOW) 2018; 83:270-280. [PMID: 29625546 DOI: 10.1134/s0006297918030070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins containing the NIF3 domain are highly conserved and are found in bacteria, eukaryotes, and archaea. YbgI is an Escherichia coli protein whose gene is conserved among bacteria. The structure of YbgI is known; however, the function of this protein in cells remains obscure. Our studies of E. coli cells with deleted ybgI gene suggest that YbgI is involved in formation of the bacterial cell wall.
Collapse
Affiliation(s)
- O V Sergeeva
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Moscow Region, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Liu H, Fang G, Wu H, Li Z, Ye Q. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy. Biotechnol J 2018; 13:e1700695. [PMID: 29405609 DOI: 10.1002/biot.201700695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Indexed: 01/07/2023]
Abstract
L-cysteine is an amino acid with important physiological functions and has a wide range of applications in medicine, food, animal feed, and cosmetics industry. In this study, the L-cysteine synthesis in Escherichia coliEscherichia coli is divided into four modules: the transport module, sulfur module, precursor module, and degradation module. The engineered strain LH03 (overexpression of the feedback-insensitive cysE and the exporter ydeD in JM109) accumulated 45.8 mg L-1 of L-cysteine in 48 hr with yield of 0.4% g/g glucose. Further modifications of strains and culture conditions which based on the rational metabolic engineering and modular strategy improved the L-cysteine biosynthesis significantly. The engineered strain LH06 (with additional overexpression of serA, serC, and serB and double mutant of tnaA and sdaA in LH03) produced 620.9 mg L-1 of L-cysteine with yield of 6.0% g/g glucose, which increased the production by 12 times and the yield by 14 times more than those of LH03 in the original condition. In fed-batch fermentation performed in a 5-L reactor, the concentration of L-cysteine achieved 5.1 g L-1 in 32 hr. This work demonstrates that the combination of rational metabolic engineering and module strategy is a promising approach for increasing the L-cysteine production in E. coli.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guochen Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Gu H, Yang Y, Wang M, Chen S, Wang H, Li S, Ma Y, Wang J. Novel Cysteine Desulfidase CdsB Involved in Releasing Cysteine Repression of Toxin Synthesis in Clostridium difficile. Front Cell Infect Microbiol 2018; 7:531. [PMID: 29376034 PMCID: PMC5767170 DOI: 10.3389/fcimb.2017.00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile, a major cause of nosocomial diarrhea and pseudomembranous colitis, still poses serious health-care challenges. The expression of its two main virulence factors, TcdA and TcdB, is reportedly repressed by cysteine, but molecular mechanism remains unclear. The cysteine desulfidase CdsB affects the virulence and infection progresses of some bacteria. The C. difficile strain 630 genome encodes a homolog of CdsB, and in the present study, we analyzed its role in C. difficile 630Δerm by constructing an isogenic ClosTron-based cdsB mutant. When C. difficile was cultured in TY broth supplemented with cysteine, the cdsB gene was rapidly induced during the exponential growth phase. The inactivation of cdsB not only affected the resistance of C. difficile to cysteine, but also altered the expression levels of intracellular cysteine-degrading enzymes and the production of hydrogen sulfide. This suggests that C. difficile CdsB is a major inducible cysteine-degrading enzyme. The inactivation of the cdsB gene in C. difficile also removed the cysteine-dependent repression of toxin production, but failed to remove the Na2S-dependent repression, which supports that the cysteine-dependent repression of toxin production is probably attributable to the accumulation of cysteine by-products. We also mapped a δ54 (SigL)-dependent promoter upstream from the cdsB gene, and cdsB expression was not induced in response to cysteine in the cdsR::ermB or sigL::ermB strain. Using a reporter gene fusion analysis, we identified the necessary promoter sequence for cysteine-dependent cdsB expression. Taken together, these results indicate that CdsB is a key inducible cysteine desulfidase in C. difficile which is regulated by δ54 and CdsR in response to cysteine and that cysteine-dependent regulation of toxin production is closely associated with cysteine degradation.
Collapse
Affiliation(s)
- Huawei Gu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yingyin Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuyi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haiying Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Nonaka G, Takumi K. Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli. AMB Express 2017; 7:90. [PMID: 28488255 PMCID: PMC5423876 DOI: 10.1186/s13568-017-0389-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/16/2022] Open
Abstract
Cysteine is an important amino acid for various industries; however, there is no efficient microbial fermentation-based production method available. Owing to its cytotoxicity, bacterial intracellular levels of cysteine are stringently controlled via several modes of regulation, including cysteine degradation by cysteine desulfhydrases and cysteine desulfidases. In Escherichia coli, several metabolic enzymes are known to exhibit cysteine degradative activities, however, their specificity and physiological significance for cysteine detoxification via degradation are unclear. Relaxing the strict regulation of cysteine is crucial for its overproduction; therefore, identifying and modulating the major degradative activity could facilitate the genetic engineering of a cysteine-producing strain. In the present study, we used genetic screening to identify genes that confer cysteine resistance in E. coli and we identified yhaM, which encodes cysteine desulfidase and decomposes cysteine into hydrogen sulfide, pyruvate, and ammonium. Phenotypic characterization of a yhaM mutant via growth under toxic concentrations of cysteine followed by transcriptional analysis of its response to cysteine showed that yhaM is cysteine-inducible, and its physiological role is associated with resisting the deleterious effects of cysteine in E. coli. In addition, we confirmed the effects of this gene on the fermentative production of cysteine using E. coli-based cysteine-producing strains. We propose that yhaM encodes the major cysteine-degrading enzyme and it has the most significant role in cysteine detoxification among the numerous enzymes reported in E. coli, thereby providing a core target for genetic engineering to improve cysteine production in this bacterium.
Collapse
|
28
|
Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis) Reveal Differential Gene Expression in Bacteria Occupying Multiple Host Organs. G3-GENES GENOMES GENETICS 2017; 7:3073-3082. [PMID: 28705905 PMCID: PMC5592932 DOI: 10.1534/g3.117.044255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission.
Collapse
|
29
|
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli. J Bacteriol 2017; 199:JB.00117-17. [PMID: 28607157 DOI: 10.1128/jb.00117-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis.IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.
Collapse
|
30
|
Thomas SA, Gaillard JF. Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)-S Coordination in Actively Metabolizing Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4642-4651. [PMID: 28353340 DOI: 10.1021/acs.est.6b06400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The bacterial uptake of mercury(II), Hg(II), is believed to be energy-dependent and is enhanced by cysteine in diverse species of bacteria under aerobic and anaerobic conditions. To gain insight into this Hg(II) biouptake pathway, we have employed X-ray absorption spectroscopy (XAS) to investigate the relationship between exogenous cysteine, cellular metabolism, cellular localization, and Hg(II) coordination in aerobically respiring Escherichia coli (E. coli). We show that cells harvested in exponential growth phase consistently display mixtures of 2-fold and 4-fold Hg(II) coordination to sulfur (Hg-S2 and Hg-S4), with added cysteine enhancing Hg-S4 formation. In contrast, cells in stationary growth phase or cells treated with a protonophore causing a decrease in cellular ATP predominantly contain Hg-S2, regardless of cysteine addition. Our XAS results favor metacinnabar (β-HgS) as the Hg-S4 species, which we show is associated with both the cell envelope and cytoplasm. Additionally, we observe that added cysteine abiotically oxidizes to cystine and exponentially growing E. coli degrade high cysteine concentrations (100-1000 μM) into sulfide. Thermodynamic calculations confirm that cysteine-induced sulfide biosynthesis can promote the formation of dissolved and particulate Hg(II)-sulfide species. This report reveals new complexities arising in Hg(II) bioassays with cysteine and emphasizes the need for considering changes in chemical speciation as well as growth stage.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Fermentative Production of Cysteine by Pantoea ananatis. Appl Environ Microbiol 2017; 83:AEM.02502-16. [PMID: 28003193 DOI: 10.1128/aem.02502-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Cysteine is a commercially important amino acid; however, it lacks an efficient fermentative production method. Due to its cytotoxicity, intracellular cysteine levels are stringently controlled via several regulatory modes. Managing its toxic effects as well as understanding and deregulating the complexities of regulation are crucial for establishing the fermentative production of cysteine. The regulatory modes include feedback inhibition of key metabolic enzymes, degradation, efflux pumps, and the transcriptional regulation of biosynthetic genes by a master cysteine regulator, CysB. These processes have been extensively studied using Escherichia coli for overproducing cysteine by fermentation. In this study, we genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to identify key factors required for cysteine production. According to this and our previous studies, we identified a major cysteine desulfhydrase gene, ccdA (formerly PAJ_0331), involved in cysteine degradation, and the cysteine efflux pump genes cefA and cefB (formerly PAJ_3026 and PAJ_p0018, respectively), which may be responsible for downregulating the intracellular cysteine level. Our findings revealed that ccdA deletion and cefA and cefB overexpression are crucial factors for establishing fermentative cysteine production in P. ananatis and for obtaining a higher cysteine yield when combined with genes in the cysteine biosynthetic pathway. To our knowledge, this is the first demonstration of cysteine production in P. ananatis, which has fundamental implications for establishing overproduction in this microbe.IMPORTANCE The efficient production of cysteine is a major challenge in the amino acid fermentation industry. In this study, we identified cysteine efflux pumps and degradation pathways as essential elements and genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to establish the fermentative production of cysteine. This study provides crucial insights into the design and construction of cysteine-producing strains, which may play central roles in realizing commercial basis production.
Collapse
|
32
|
Bacterial Cysteine-Inducible Cysteine Resistance Systems. J Bacteriol 2016; 198:1384-92. [PMID: 26883827 DOI: 10.1128/jb.01039-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA(formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded byccdR(formerly PAJ_0332 orybaO), located just upstream of ccdA The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR(formerly PAJ_3027), located just upstream of cefA To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra- or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis IMPORTANCE Because of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and efflux, the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for industrial purposes. We propose that this novel mechanism for sensing and regulating cysteine levels is a safety valve enabling adaptation to sudden changes in intra- or extracellular cysteine levels in bacteria. Our findings provide important insights into optimizing the production of cysteine and related biomaterials by P. ananatis and also a deep understanding of sulfur/cysteine metabolism and regulation in this plant pathogen and related bacteria.
Collapse
|
33
|
Zhang J, Quan C, Wang C, Wu H, Li Z, Ye Q. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microb Cell Fact 2016; 15:38. [PMID: 26883423 PMCID: PMC4754818 DOI: 10.1186/s12934-016-0439-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/03/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND L-glutathione (GSH) is a non-protein thiol compound with important biological properties and is widely used in pharmaceutical, food, cosmetic and health products. The cellular GSH is determined by the activity and characteristic of GSH-synthesizing enzymes, energy and precursor supply, and degradation of formed GSH. RESULTS In this study, genes encoding enzymes related to the precursor amino acid degradation and glycogen formation as well as GSH degradation were systematically manipulated in Escherichia coli strains over-expressing gshF from Actinobacillus succinogenes. The manipulation included disrupting the precursor degradation pathways (tnaA and sdaA), eliminating L-glutathione degradation (ggt and pepT), and manipulating the intracellular ATP level (disruption of glgB). However the constructed mutants showed lower levels of GshF expression. 2-D electrophoresis was performed to elucidate the reasons for this discrepancy, and the results indicated obvious changes in central metabolism and amino acid metabolism in the penta-mutant. Fed-batch culture of the penta-mutant ZJ12345 was performed where the GshF expression level was enhanced, and both the GSH production (19.10 mM) and the yield based on added L-cysteine (0.76 mmol/mmol) were significantly increased. CONCLUSION By interrupting the degradation pathways of L-cysteine, serine and GSH and blocking glycogen formation, the GSH production efficiency was significantly improved.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Cong Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Cheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
34
|
l-Cysteine Metabolism and Fermentation in Microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:129-151. [DOI: 10.1007/10_2016_29] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. J Ind Microbiol Biotechnol 2015; 43:45-53. [PMID: 26586402 DOI: 10.1007/s10295-015-1707-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source.
Collapse
|
36
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
37
|
Santiago M, Gardner RC. TheIRC7gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source. Yeast 2015; 32:519-32. [DOI: 10.1002/yea.3076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023] Open
Affiliation(s)
- Margarita Santiago
- Wine Science Group, School of Biological Sciences; University of Auckland; New Zealand
| | - Richard C. Gardner
- Wine Science Group, School of Biological Sciences; University of Auckland; New Zealand
| |
Collapse
|
38
|
Cotten C, Reed JL. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol J 2013; 8:595-604. [DOI: 10.1002/biot.201200316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/20/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022]
|
39
|
Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium. J Bacteriol 2012; 194:4366-76. [PMID: 22685283 DOI: 10.1128/jb.00729-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cysteine is potentially toxic and can affect diverse functions such as oxidative stress, antibiotic resistance, and swarming motility. The contribution of cysteine catabolism in modulating responses to cysteine has not been examined, in part because the genes have not been identified and mutants lacking these genes have not been isolated or characterized. We identified the gene for a previously described cysteine desulfhydrase, which we designated cdsH (formerly STM0458). We also identified a divergently transcribed gene that regulates cdsH expression, which we designated cutR (formerly ybaO, or STM0459). CdsH appears to be the major cysteine-degrading and sulfide-producing enzyme aerobically but not anaerobically. Mutants with deletions of cdsH and ybaO exhibited increased sensitivity to cysteine toxicity and altered swarming motility but unaltered cysteine-enhanced antibiotic resistance and survival in macrophages.
Collapse
|
40
|
Yang B, Liu Z, Deng B, Zeng Y, Hu J, Li W, Hu Z. Isolation and genetic improvement of Pseudomonas sp. strain HUT-78, capable of enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid. J GEN APPL MICROBIOL 2012; 57:379-86. [PMID: 22353743 DOI: 10.2323/jgam.57.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms able to bioconvert DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) into L-cysteine were originally isolated from 10 soil samples with DL-ATC as the sole nitrogen source. Ninety-seven L-cysteine-producing bacterial strains were screened out and obtained in pure culture. Among them, a strain, designated as HUT-78, was selected as the best producer, with a molar bioconversion rate of 60%. Based on the 16S rRNA gene sequence analysis, this isolate was placed within the genus Pseudomonas. A novel mutant of this strain with a significantly reduced activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was derived by UV-mutagenesis. This mutant, designated as mHUT-78, exhibited a 42% increase in L-cysteine producing activity. Moreover, the bioconversion reactions in both the parent and the mutant strain were significantly accelerated by co-overexpression of the two key enzymes, AtcB and AtcC, involved in the bioconversion reaction.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Atsumi S, Wu TY, Machado IMP, Huang WC, Chen PY, Pellegrini M, Liao JC. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 2011; 6:449. [PMID: 21179021 PMCID: PMC3018172 DOI: 10.1038/msb.2010.98] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/25/2010] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli has been engineered to produce isobutanol, with titers reaching greater than the toxicity level. However, the specific effects of isobutanol on the cell have never been fully understood. Here, we aim to identify genotype–phenotype relationships in isobutanol response. An isobutanol-tolerant mutant was isolated with serial transfers. Using whole-genome sequencing followed by gene repair and knockout, we identified five mutations (acrA, gatY, tnaA, yhbJ, and marCRAB) that were primarily responsible for the increased isobutanol tolerance. We successfully reconstructed the tolerance phenotype by combining deletions of these five loci, and identified glucosamine-6-phosphate as an important metabolite for isobutanol tolerance, which presumably enhanced membrane synthesis. The isobutanol-tolerant mutants also show increased tolerance to n-butanol and 2-methyl-1-butanol, but showed no improvement in ethanol tolerance and higher sensitivity to hexane and chloramphenicol than the parental strain. These results suggest that C4, C5 alcohol stress impacts the cell differently compared with the general solvent or antibiotic stresses. Interestingly, improved isobutanol tolerance did not increase the final titer of isobutanol production.
Collapse
Affiliation(s)
- Shota Atsumi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
A novel cdsAB operon is involved in the uptake of L-cysteine and participates in the pathogenesis of Yersinia ruckeri. J Bacteriol 2010; 193:944-51. [PMID: 21169490 DOI: 10.1128/jb.01058-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Application of in vivo expression technology (IVET) to Yersinia ruckeri, an important fish pathogen, allowed the identification of two adjacent genes that represent a novel bacterial system involved in the uptake and degradation of l-cysteine. Analysis of the translational products of both genes showed permease domains (open reading frame 1 [ORF1]) and amino acid position identities (ORF2) with the l-cysteine desulfidase from Methanocaldococcus jannaschii, a new type of enzyme involved in the breakdown of l-cysteine. The operon was named cdsAB (cysteine desulfidase) and is found widely in anaerobic and facultative bacteria. cdsAB promoter analysis using lacZY gene fusion showed highest induction in the presence of l-cysteine. Two cdsA and cdsB mutant strains were generated. The limited toxic effect and the low utilization of l-cysteine observed in the cdsA mutant, together with radiolabeled experiments, strongly suggested that CdsA is an l-cysteine permease. Fifty percent lethal dose (LD(50)) and competence index experiments showed that both the cdsA and cdsB loci were involved in the pathogenesis of the bacteria. In conclusion, this study has shown for the first time in bacteria the existence of an l-cysteine uptake system that together with an additional l-cysteine desulfidase-encoding gene constitutes a novel operon involved in bacterial virulence.
Collapse
|
43
|
Chalova VI, Froelich CA, Ricke SC. Potential for development of an Escherichia coli-based biosensor for assessing bioavailable methionine: a review. SENSORS (BASEL, SWITZERLAND) 2010; 10:3562-84. [PMID: 22319312 PMCID: PMC3274233 DOI: 10.3390/s100403562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 11/30/2022]
Abstract
Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs.
Collapse
Affiliation(s)
- Vesela I. Chalova
- Poultry Science Department, Texas A&M University, College Station, TX 77843-2472, USA; E-Mails: (V.I.C.); (C.A.F.)
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Clifford A. Froelich
- Poultry Science Department, Texas A&M University, College Station, TX 77843-2472, USA; E-Mails: (V.I.C.); (C.A.F.)
| | - Steven C. Ricke
- Poultry Science Department, Texas A&M University, College Station, TX 77843-2472, USA; E-Mails: (V.I.C.); (C.A.F.)
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| |
Collapse
|
44
|
Bai H, Zhang Z, Guo Y, Yang G. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 2009; 70:142-6. [DOI: 10.1016/j.colsurfb.2008.12.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/29/2022]
|
45
|
Wiriyathanawudhiwong N, Ohtsu I, Li ZD, Mori H, Takagi H. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 2009; 81:903-13. [DOI: 10.1007/s00253-008-1686-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
46
|
Bai HJ, Zhang ZM, Yang GE, Li BZ. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. BIORESOURCE TECHNOLOGY 2008; 99:7716-7722. [PMID: 18358716 DOI: 10.1016/j.biortech.2008.01.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/27/2008] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
The removal kinetic characteristic and mechanism of cadmium by growing Rhodobacter sphaeroides were investigated. The removal data were fitted to the second-order equation, with a correlation coefficient, R2=0.9790-0.9916. Furthermore, it was found that the removal mechanism of cadmium was predominantly governed by bioprecipitation as cadmium sulfide with biosorption contributing to a minor extent. Also, the results revealed that the activities of cysteine desulfhydrase in strains grown in the presence of 10 and 20 mg/l of cadmium were higher than in the control, while the activities in the presence of 30 and 40 mg/l of cadmium were lower than in the control. Content analysis of subcellular fractionation showed that cadmium was mostly removed and transformed by precipitation on the cell wall.
Collapse
Affiliation(s)
- Hong-Juan Bai
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, PR China.
| | | | | | | |
Collapse
|
47
|
Lee DH, Kim SG, Park YC, Nam SW, Lee KH, Seo JH. Proteome analysis of recombinant Escherichia coli producing human glucagon-like peptide-1. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:323-30. [PMID: 17049938 DOI: 10.1016/j.jchromb.2006.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 11/22/2022]
Abstract
The proteomic response of recombinant Escherichia coli producing human glucagon-like peptide-1 was analyzed by two-dimensional gel electrophoresis. Protein spots in two-dimensional gel could be identified by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and their expression profiles were compared with those of nonproducing cells. Thirty-five intracellular proteins exhibited differential expression levels between the production and control strains. These changes reflected physiological responses to heterologous peptide production in recombinant E. coli. Specifically, physiological changes included the down-regulation of proteins involved in the central carbon metabolism, biosynthesis of cellular building blocks and peptides, and up-regulation of cell protection proteins and some sugar transport proteins. This comprehensive analysis would provide useful information for understanding physiological alterations to heterologous peptide production and for designing efficient metabolic engineering strategies for the production of recombinant peptides in E. coli.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Agricultural Biotechnology and The BioMAX Institute, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Wada M, Takagi H. Metabolic pathways and biotechnological production of l-cysteine. Appl Microbiol Biotechnol 2006; 73:48-54. [PMID: 17021879 DOI: 10.1007/s00253-006-0587-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 11/30/2022]
Abstract
L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are commercially produced by fermentation, cysteine is mainly produced by protein hydrolysis. However, synthetic or biotechnological products have been preferred in the market. Biotechnological processes for cysteine production, both enzymatic and fermentative processes, are discussed. Enzymatic process, the asymmetric hydrolysis of DL-2-amino-Delta(2)-thiazoline-4-carboxylic acid to L-cysteine, has been developed and industrialized. The L-cysteine biosynthetic pathways of Escherichia coli and Corynebacterium glutamicum, which are used in many amino acid production processes, are also described. These two bacteria have basically same L-cysteine biosynthetic pathways. L-Cysteine-degrading enzymes and L-cysteine-exporting proteins both in E. coli and C. glutamicum are also described. In conclusion, for the effective fermentative production of L-cysteine directly from glucose, the combination of enhancing biosynthetic activity, weakening the degradation pathway, and exploiting the export system seems to be effective.
Collapse
Affiliation(s)
- Masaru Wada
- Division of Applied Life Science, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan.
| | | |
Collapse
|
49
|
Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 2006; 72:4735-42. [PMID: 16820466 PMCID: PMC1489377 DOI: 10.1128/aem.02507-05] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
L-cysteine is an important amino acid in terms of its industrial applications. We previously found a marked production of L-cysteine from glucose in recombinant Escherichia coli cells expressing an altered cysE gene encoding feedback inhibition-insensitive serine acetyltransferase. Also, a lower level of cysteine desulfhydrase (CD) activity, which is involved in L-cysteine degradation, increased L-cysteine productivity in E. coli. The use of an L-cysteine efflux system could be promising for breeding L-cysteine overproducers. In addition to YdeD and YfiK, which have been reported previously as L-cysteine exporter proteins in E. coli, we analyzed the effects of 33 putative drug transporter genes in E. coli on L-cysteine export and overproduction. Overexpression of the acrD, acrEF, bcr, cusA, emrAB, emrKY, ybjYZ, and yojIH genes reversed the growth inhibition of tnaA (the major CD gene)-disrupted E. coli cells by L-cysteine. We also found that overexpression of these eight genes reduces intracellular L-cysteine levels after cultivation in the presence of L-cysteine. Amino acid transport assays showed that Bcr overexpression conferring bicyclomycin and tetracycline resistance specifically promotes L-cysteine export driven by energy derived from the proton gradient. When a tnaA-disrupted E. coli strain expressing the altered cysE gene was transformed with a plasmid carrying the bcr gene, the transformant exhibited more L-cysteine production than cells carrying the vector only. A reporter gene assay suggested that the bcr gene is constitutively expressed at a substantial level. These results indicate that the multidrug transporter Bcr in the major facilitator family is involved in L-cysteine export and overproduction in genetically engineered E. coli cells.
Collapse
Affiliation(s)
- Satoshi Yamada
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum. AMINO ACID BIOSYNTHESIS ~ PATHWAYS, REGULATION AND METABOLIC ENGINEERING 2006. [DOI: 10.1007/7171_2006_059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|